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PET segmentation methods 

Fixed thresholds 

Thresholds of intensities at respectively 40% (T50) or 50% (T50) of SUVmax. 

FLAB 

FLAB incorporates a fuzzy measure within a Bayesian-based statistical segmentation framework, in order 

to take into account both noise characteristics and limited spatial resolution of PET images when 

performing voxels classification in different classes (e.g. background or tumor). The parameters (mean 

and standard deviation of statistical distributions for each class and fuzzy transitions between classes, as 

well as neighboring voxels spatial correlation) are initialized through a simple fuzzy C-means and are 

subsequently estimated within an iterative process. FLAB was first proposed with 2 classes only [1] and 

was subsequently improved to better account for heterogeneous uptake using 3 classes [2,3]. Its 

robustness and reproducibility was thoroughly evaluated [4–6]. It was also used in PET images with 

different radiotracers such as FLT [7] or FMISO [8]. Most of these previous studies relied on the user for 

the choice of 2 or 3 classes. In the present work, an automated detection of the number of classes was 

implemented so it could be run without user intervention, for a fair comparison with the other methods. 

ACO 

ACO is a population-based model that mimics the collective foraging behavior of real ant colonies. 

Artificial ants explore their environment (in the present case the PET volume) in quest for food (the 

aimed functional volume) and exchange information through iterative update of pheromone 

quantitative information, which attracts other ants along their path. The food source was initialized by 

considering the food as a r-radii neighborhood Nr(o) around voxels of intensity 70% of the maximum of 

the SUV. Unlike global thresholding, local neighborhood analysis is exploited to enhance the spatial 

consistency of the final volume. After convergence, a pheromone map is obtained with highest density in 

the estimated volume. The method was initially developed using 2 classes (Fayad et al., 2015).  

GARAC 

GARAC is a hybrid level-set 3D deformable model driven by both vector field convolution (VFC) edge-

based force fields (EBF) [9] and global region-based forces [10]. GARAC exploits both local and dynamic 

weighting of the EBF term influence according to a blind estimation of its relevance, in order to allow the 

contour to evolve towards the tumor boundary. EBF can generate centers of divergence [11] that act as 

impassable barriers preventing the contour to evolve. They are also more sensitive to noise because of 

their local nature and are thus not well defined everywhere across the PET image domain. In order for 

the contour to take advantage of global statistics for increased robustness and exploiting the more local 



edge information dynamically for increased accuracy around edges [12], the EBF term is locally weighted 

proportionally to the degree of collinearity between inner and outer net edge forces in the vicinity of 

each node of the discretized interface. It was observed on training data that the method tends to 

substantially underestimate volumes (high positive predictive value, low sensitivity). A 1-voxel dilatation 

of the resulting contour was implemented to improve sensitivity and resulting accuracy. 

  



Table 1 
Type of PET images Associated ground-truth Details 

Synthetic and realistic 
simulated images 

Voxel-based from the simulated object 14 synthetic images (LaTIM, Brest, 
France) 

12 images simulated with GATE [13] 
(LaTIM, France) 

50 images simulated with SIMSET [14] 
(M. Aristophanous, MD Anderson, USA)  

Physical phantom acquisitions Volumes derived through thresholding 
of the associated high resolution CT 

Different acquisitions of a physical 
phantom containing 11 zeolites (no 
cold walls) of various shapes and sizes 

[15] (E. De Bernardi, Italy). Total of 75 

images (6×11 + 3×3). 

Clinical images Digitized reconstructed volumes from 
histopathology slices. 

19 images of head and neck or lung 
tumors with associated histopathology 

volumetric measurements [16,17] (J. 

A. Lee, UCL, Belgium). 

Clinical images Statistical consensus of 3 different 
manual contours by 3 experts using 

STAPLE [18]. 

6 images of lung tumors with 
consensus of manual delineations by 3 

experts [19] (C. Cheze Le Rest, CHU de 

Poitiers, France). 

 

  



Table 2. Stratification of patients into three groups using volume and sphericity derived by each 

segmentation. 

Segmentation 
methods 

Stratification using volume and sphericity into three groups 

Median OS Hazard ratios between groups Log-rank p-
value 1st group 2nd group 3rd group 1 vs. 2 2 vs. 3 1 vs. 3 

ACO 41.9 (n=23) 15.4 (n=18) 12.4 (n=46) 2.25 1.32 2.97 0.0034 

FLAB 41.9 (n=22) 18.4 (n=24) 9.1 (n=41) 1.56 2.19 3.41 0.0001 

GARAC 30.4 (n=12) 20.2 (n=21) 13.4 (n=54) 1.35 1.92 2.58 0.0152 

T50 25.1 (n=20) 23.0 (n=26) 10.5 (n=41) 1.09 2.32 2.54 0.0011 

T40 25.1 (n=18) 31.3 (n=20) 12.4 (n=49) 0.87 2.59 2.26 0.0019 

 
  



 

Figure 1: Distributions of volume and sphericity of the first dataset with ground-truth, for the ground-

truth and all 5 segmentation methods.   



 

Figure 2: scatter diagrams and Spearman rank correlations (ρ) between volume and sphericity 

determined by (a) ACO, (b) FLAB, (c) GARAC, (d) T40 and (e) T50, in the 87 NSCLC tumors. 
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