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Abstract  

Purpose: Sphericity has been proposed to characterize PET tumor volumes, with complementary 

prognostic value with respect to SUV and volume in both head and neck and lung cancer. The 

objective of the present study was to investigate its dependency on the tumor delineation and the 

resulting impact on its prognostic value. 

Materials and methods: Five segmentation methods were considered: 2 thresholds (40% and 50% of 

SUVmax), the ant colony optimization (ACO), the fuzzy locally adaptive Bayesian (FLAB), and the 

gradient-aided region-based active contour (GARAC). The accuracy of each method to extract 

sphericity was evaluated on a dataset of 176 simulated, phantom and clinical PET images of tumors 

with associated ground-truth. The prognostic value of sphericity and its complementary value with 

volume for each segmentation method was evaluated in a cohort of 87 stage II-III lung cancer 

patients. 

Results: Volume and sphericity associated values were dependent on the segmentation method. The 

correlation between the segmentation accuracy and the sphericity error was moderate (|ρ| from 

0.24 to 0.57). The accuracy in measuring the sphericity was not dependent on the volume (|ρ|<0.4). 

In the lung cancer cohort, sphericity had prognostic value although lower than volume, except for 

FLAB for which a small improvement over volume alone when combined with sphericity was 

observed (hazard ratio of 2.67 compared to 2.5). Substantial differences in patients’ prognosis 

stratification were observed depending on the segmentation. 

Conclusion: The tumor functional sphericity was found to be dependent on the segmentation 

method, although the accuracy to retrieve the true sphericity was not dependent on tumor volume. 

In addition, even an accurate segmentation can lead to an inaccurate sphericity, and vice-versa. 

Sphericity had similar or lower prognostic value than volume in the NSCLC cohort, except with one 

method (FLAB) for which there was a small improvement in stratification when combining both 

parameters. 
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Introduction 

The extraction of advanced metrics from Positron Emission Tomography / Computed Tomography 

(PET/CT) images has been a productive field of research since the use of 3D shape descriptors and 

textural features was introduced for PET [1]. More recently, the radiomics approach has proposed 

the systematic, high-throughput extraction of quantitative data from radiology based medical images 

[2], which requires a complex workflow along with robust machine learning techniques to handle the 

numerous features that are calculated [3,4]. In functional PET imaging more specifically, the rationale 

behind the use of radiomics has been mostly related to the quantification of the tumor functional 

volume and the heterogeneity of the intra-tumor activity distribution, usually addressed by 

extracting 1st-order histogram-based metrics [1,5] or higher order textural features [1,6].  

The use of a 3D shape descriptor named asphericity has been proposed to indirectly assess uptake 

heterogeneity in FDG PET images with prognostic value in both head and neck and non-small cell 

lung cancer (NSCLC) [7–9]. It was also shown to be correlated with underlying histopathological 

features and molecular markers [10].  

Asphericity has up to now been evaluated mostly by one group [7–10], using a segmentation method 

based on adaptive thresholding taking into account the background activity concentration [11]. Two 

other groups investigated asphericity or a similar metric in squamous cell lung carcinoma [12] and in 

lymphoma [13]. Despite the early promising results associated with the use of asphericity as a PET 

image biomarker, the dependency of this parameter and its associated prognostic value on the 

choice of the segmentation methodology has not been investigated. The objective of this study was 

to determine this dependency using diverse segmentation techniques first in a large dataset of 

physical, simulated, and clinical PET tumor images with ground-truth, second in terms of prognosis 

stratification in a cohort of NSCLC patients. 



 

Materials and methods 

Sphericity and segmentation methods 

Functional tumor sphericity is defined as 
      
 

 
, where V is the volume and S the surface of the 

segmented functional uptake of the tumor. Therefore, a value of 1 corresponds to a perfect sphere 

whereas lower values correspond to functional uptake with less spherical (i.e. more complex) shapes. 

Previous publications [7–10] used a slightly different (although similar) definition: 

Asphericity=  
  

     

 
  . 

Four different segmentation approaches were considered: fixed thresholding (with two different 

values of 40% and 50% of SUVmax) and 3 semi-automatic methods chosen in order to include different 

paradigms. The fuzzy locally adaptive Bayesian (FLAB) combines a statistical measure with fuzzy 

modeling [14]. Ant colony optimization (ACO) mimics the behavior of real ants foraging for food [15]. 

Gradient-aided region-based active contour (GARAC) is a level-set combining region, edge and 

curvature constraints [16]. ACO and FLAB are both clustering methods but rely on completely 

different functions, whereas GARAC is a geometric model (additional details in the Supplementary 

material). We did not include an adaptive threshold because it requires optimization for each specific 

configuration of scanner model, acquisition protocol, reconstruction algorithm and parameters 

[17,18], yet the dataset we used is highly heterogeneous in that regard. Although the other 

algorithms were previously optimized during their development on various clinical and simulated 

datasets, they do not require scanner or reconstruction-specific optimization contrary to adaptive 

thresholding approaches. Fixed thresholding at 40% and 50% of SUVmax obviously do not require any 

previous optimization. 

 



 

Datasets  

Following the recommendations of the recent report by the Taskgroup 211 of the American 

Association of Physicists in Medicine (AAPM), we collected a combination of three types of datasets: 

synthetic and simulated images, phantom acquisitions, and real clinical images [18,19]. Each category 

has different advantages and drawbacks in terms of realism and reliability of the ground-truth (or 

surrogate of truth). They are thus complementary within the context of a comprehensive and 

rigorous evaluation of the methods’ accuracy. The following dataset was assembled: 76 synthetic and 

simulated (with GATE or SIMSET) images, 75 zeolites physical phantom images and 25 clinical images 

(19 with corresponding histopathology volumes and 6 with consensus of three expert manual 

delineations) (table 1). All tumors in this dataset were isolated in cropped volumes of interest (VOI) 

containing only the tumor and its immediate surrounding. The ground-truth of each tumor image 

allows the computation of a sphericity ground-truth simply by calculating the sphericity on the binary 

map. The volume V and surface S were determined through the marching cubes algorithm for better 

accuracy [20].  

The second dataset exploited in the present work consists of 87 stage II (n=30) and III (n=57) NSCLC 

patients, diagnosed between 2008 and 2012 in the University Hospital of Poitiers (France) and 

already retrospectively recruited and analyzed for a previous study [21] (Table 1). Treatment 

consisted of (chemo)radiotherapy for 41 patients, whereas 34 underwent surgery (either alone or in 

combination with chemotherapy and/or radiotherapy) and 12 received palliative chemotherapy. 

Radiotherapy was with curative intent for all patients (mean dose 59.4 Gy). Stage II and III patients 

had similar OS (HR 1.4, p>0.2), with none of the clinical (age, gender, smoking status, N stage, 

treatment modality) or standard imaging features (SUVmax, SUVmean, SUVpeak) significantly associated 

with OS after correction for multiple testing and retained in multivariate analysis, contrary to volume 

and other radiomics features [21]. 



Mean follow-up was 25 months (range 1.5-74 months). Median OS was 14.9 months. At last follow-

up 65 patients were dead and 22 alive. A maximum of two weeks after diagnosis, all patients 

underwent an 18F-FDG PET/CT scan on a Philips GEMINI PET/CT scanner (Philips Medical Systems, 

USA) following standard routine protocol: image acquisition began after 6 hours of fasting and 

60±5min after injection of 5MBq/kg of 18F-FDG (424±97MBq, range 220-690MBq). Non-contrast 

enhanced, non-respiratory gated (free breathing) CT images were acquired (120kV, 100mAs), with an 

in-plane resolution of 0.853×0.853mm2 and a 5mm slice thickness. PET data were acquired using 2 

min per bed position. Images were reconstructed using a 3D row-action maximum likelihood 

algorithm (2 iterations, relaxation parameter 0.05, 4×4×4mm3 voxels) and post-filtered with a 5 mm 

full-width-at-half-maximum 3-D Gaussian. All PET images were corrected for attenuation using the 

associated CT. The primary tumors of each patient were isolated in VOIs for the previous study [21], 

and the same VOIs were used in the present work. 

Figure 1 shows the distributions of volumes and sphericity values and figure 2 provides visual 

examples from each dataset. 

Evaluation methodology and statistical analysis 

In order to evaluate the accuracy of each segmentation method on the dataset with ground-truth, 

the combination of sensitivity (SE) and positive predictive value (PPV) was used as recommended by 

the taskgroup 211 since it provides the most comprehensive information on location, size and shape, 

as well as information regarding false positive and false negative rates [18]. In the present work, the 

accuracy was quantified using score = 0.5 × PPV + 0.5 × SE. 

First, scatter diagrams of the volume-sphericity distributions were generated for the ground-truth 

and each segmentation method. 

Second, the accuracy in retrieving the ground-truth sphericity value was evaluated by calculating the 

difference (%) between the sphericity of the ground-truth and the one calculated on the 



segmentation map for each method. Scatter diagrams between these sphericity errors and the 

corresponding accuracy, as well as the corresponding volume were generated. Spearman rank 

correlations were used to quantify the correlation between variables and Mann-Whitney tests were 

used to compare distributions.  

Assuming a larger volume and lower sphericity (higher asphericity) are both associated with poorer 

outcome [7] and their correlation is sufficiently low to provide complementary stratification power, 

we compared the prognosis stratification for OS in the cohort of the 87 NSCLC patients obtained 

using the tumor volume, sphericity, and the combination of the two parameters as provided by each 

segmentation method. For each parameter, the best cut-off value to stratify patients was 

determined through receiver operating characteristic (ROC) curve analysis and the Youden index. 

Regarding the combination of the two parameters, we generated survival curves for either 2 or 3 

patient groups, according to the following combination of prognostic factors (i.e., volume above the 

identified threshold and sphericity below the identified threshold): for stratification into 2 groups, 

patients were classified as having both factors vs. patients having neither or either. For stratification 

into 3 groups, patients were classified as having neither (group 1), either (group 2), or both (group 3) 

factors. The obtained stratifications were compared in terms of hazard ratios, median survival in 

each group and p-value of the log-rank test of Kaplan-Meier curves. Statistical significance was set at 

p<0.01. Statistics are reported as mean±standard deviation (median). Statistical analyses were 

performed with MedCalcTM (Medcalc software, Belgium). 

Results 

As shown in figure 1, the ranges of volumes and sphericity varied with each category of data. 

Regarding the first dataset with ground-truth, the simulated dataset encompasses the largest range 

of configurations in both volume (<1 to 200 cm3) and sphericity (0.45-0.95). The phantom 

acquisitions (zeolites) have a smaller range of both volumes (<1 to 6 cm3) and sphericity (0.75-0.85), 

whereas the clinical data have volumes between 1 and 80 cm3, corresponding to sphericity values of 



0.5 to 0.9. Overall, the rank correlation between volume and sphericity (ground-truth values) was 

weak although significant (ρ=-0.27), larger volumes exhibiting lower sphericity, mostly because of a 

much higher correlation in the phantom data (ρ=-0.73) compared to simulated (ρ=-0.21) and clinical 

(ρ=-0.12) images, mostly due to the lower range of sphericity values for phantom zeolites 

acquisitions (0.75-0.85). By comparison, the tumors in the NSCLC cohort exhibited somewhat larger 

volumes with however a large overlap with the volumes of the first dataset (1-400 cm3) and with a 

very close range of sphericity values (0.4-0.9). Correlation between volume and sphericity was ρ=-

0.66. 

Dataset with ground-truth 

The volume-sphericity distributions obtained by each segmentation method show that ACO and FLAB 

overestimated volumes whereas GARAC and thresholds underestimated them (figure 3, 

Supplemental figure 1). Overall, higher segmentation accuracy was achieved on simulated and 

phantom images compared to clinical ones (figure 4a-b). This can be attributed to a combination of a 

higher complexity and a lower reliability of the surrogate of truth for clinical images. ACO had the 

best segmentation accuracy, followed by FLAB and GARAC, although there was no significant 

difference between them (figure 4c). All three had significantly higher segmentation accuracy than 

T40 (p<0.01) and T50 (p<0.0001). On the other hand, all five methods had similar accuracy in 

retrieving sphericity, with no statistically significant difference (p>0.1) in terms of absolute sphericity 

measurement errors, although the different methods had different behaviors: ACO, FLAB and both 

thresholds tended to either over- or under-estimate sphericity (0.2±18.4% (2.5%), 3.9±17.0% (0.5%), 

2.5±13.3% (4.0%) and 0.74±15.8% (3.1%) for ACO, FLAB, T40 and T50 respectively), whereas GARAC 

had a clear bias towards overestimation (14.0±16.2% (11.3%)) (figure 4d).  The correlation between 

the method accuracy and the resulting sphericity measurement error was moderate, and varied 

amongst the methods (figure 5): it was higher for GARAC and ACO (ρ=-0.57 and ρ=-0.54), whereas it 

was lower for FLAB and the thresholds (ρ=-0.25, ρ=-0.27 and ρ=-0.24 respectively). Some accurate 



delineations still led to high sphericity errors. The ability to recover sphericity with accuracy was only 

weakly correlated with tumor volume (|ρ|<0.4) whatever the segmentation method (figure 6). 

Stratification in NSCLC patients 

Independently of the segmentation methodology, sphericity was correlated with the corresponding 

tumor volume, larger volumes exhibiting lower sphericity (supplemental material figure 3). However, 

the correlation varied from ρ=-0.55 according to GARAC, up to ρ=-0.75 with ACO. Nonetheless, 

sphericity showed some potential complementary information with respect to tumor volume for all 

segmentation methods. 

Given the large differences in the volume distributions determined by the five segmentation 

methods, the best cut-off values were similarly different, ranging from 21 cm3 for T40 to 45 cm3 for 

GARAC (table 3). The corresponding sphericity had lower variability and the best thresholds ranged 

from 0.801 for T50 to 0.881 for GARAC.  

Using volume alone to stratify patients into 2 groups, differences were seen amongst segmentation 

methods, although it was possible to obtain two groups with significantly different outcome for all 

methods (table 3). Hazard ratios ranged from 2.1 for T40 to almost 2.5 for ACO. The different 

distributions of volumes depending on the segmentation method led to different repartitions of 

patients in each risk group. For example, using ACO or GARAC led in classifying 29 patients in low risk 

and 58 patients in high risk, whereas using FLAB it was more balanced with 43 patients in low risk 

and 44 in high risk. 

Using sphericity alone for 2-group stratification, only ACO and FLAB allowed to obtain significantly 

different outcome (p>0.02 for T40, T50 and GARAC). The hazard ratio associated with sphericity was 

higher than the one associated with volume only for FLAB (2.50 vs. 2.45). When combining the two 

parameters, a moderate improvement (with respect to volume or sphericity alone) was seen only for 

FLAB (2.67), whereas for the other methods it led to lower HRs than volume alone (table 3, figure 7). 



Regarding the stratification into three groups, again substantial differences were observed (figure 8, 

supplemental table 1). The best stratification was obtained with FLAB, with a hazard ratio of 3.41 

between groups 1 and 3, and the highest differentiation between group 2 and the two other groups. 

GARAC and ACO also provided good stratification but with slightly lower hazard ratios. The least 

convincing stratifications were obtained with T40 and T50 for which groups 1 and 2 were not 

differentiated.  

Discussion 

The application of radiomics in multimodality PET/CT imaging is a very active field of research. 

However, numerous issues have been identified that slow its transfer to the clinical practice [3]. 

These issues include the time-consuming and user-dependent tumor segmentation, the lack of 

standardization, as well as the challenges in identifying reliable, repeatable, robust and non-

redundant biomarkers amongst the hundreds that can be calculated. A first selection of the most 

appropriate features can be made based on test-retest, reproducibility and robustness analyses. 

However, the need to combine a number of these biomarkers into multi-variable models requires the 

use of appropriate techniques from the field of machine learning [4], raising numerous additional 

issues, amongst others the choice of classifier and features selection methods and the need for 

complex statistical validation of findings [22]. 

In that context, the appeal of any single parameter that could complement tumor volume to further 

characterize functional tumor uptakes from PET images and can be relatively quickly implemented in 

clinical practice is strong. The shape descriptor sphericity has been recently highlighted as one such  

new measure that could provide complementary prognostic value for patients stratification in both 

H&N and NSCLC [7–10]. In addition, it could be also considered as indirectly quantifying uptake 

heterogeneity. Second and higher-order textural features require a complex calculation workflow 

involving multiple choices (quantization pre-processing, texture matrices design, etc.) [3] and it can 

be challenging to provide visual interpretation for them, although correlations were reported 



[23,24]. This is especially the case for higher order features that may capture different information 

than the naked eye [25,26]. On the contrary, sphericity is easier to calculate and represents a more 

intuitive interpretation for clinicians. Another advantage of sphericity, amongst other shape 

descriptors, is its high test-retest repeatability [27,28]. Sphericity was also previously shown to be 

rather consistent across five different manual segmentation by experts with an inter-observer ICC of 

0.80 [29], although this evaluation was performed on 23 images only, with manual delineation 

performed on fused PET/CT images, not using automated segmentation methods as in the present 

study.   

In this work we compared sphericity and volume as determined by four different segmentation 

paradigms. We observed in a large physical, simulated and clinical dataset with associated ground-

truth that sphericity was dependent on the segmentation methodology, with different volume-

sphericity distributions. A higher segmentation accuracy according to a combination of PPV and SE 

was not necessarily associated with an accurate estimation of true sphericity. Indeed, a 

segmentation result could well overlap with the ground-truth without respecting its shape. For 

instance, spatial methods with explicit curvature regularization such as the GARAC deformable model 

tend to increase the sphericity value and reduce its variability across subjects. They should therefore 

be carefully tuned to allow for more accurate sphericity estimation. Although thresholds were 

significantly less accurate than more advanced methods in terms of segmentation for the first 

dataset, they nonetheless provided sphericity measurements with similar accuracy. However, in the 

NSCLC cohort, they provided metrics (either alone or combined) with consistently lower prognostic 

value than ACO and FLAB. This can be attributed in part to the fact that the first dataset contains a 

majority of simpler (homogeneous uptakes, less complex shapes) cases, whereas the NSCLC dataset 

contains a larger proportion of more complex shapes and more heterogeneous distributions. 

In the clinical cohort of NSCLC patients, differences in patient stratification according to volume and 

sphericity were observed, depending on the segmentation. Although all segmentation methods 



allowed stratifying patients into two groups with significantly different survival based on volume 

alone (HR between 2.10 and 2.48, p<0.006), corroborating similar observations in previous studies 

[30], such was not the case for sphericity alone, only FLAB and ACO providing sphericity with 

significant prognostic value. This highlights the potentially higher dependency of this parameter’s 

prognostic value on the segmentation choice compared to volume. In addition, sphericity did not 

demonstrate higher prognostic value than volume in our cohort, whatever method was considered. 

Combining volume and sphericity led to at best a moderate improvement only, from hazard ratios 

with volume or sphericity alone of 2.45 and 2.5 to 2.67 when combining both using FLAB. For the 

four other methods, the combination of parameters led to lower HRs than volume. Although for 

stratification into two groups, the differences between methods were small, when exploiting volume 

and sphericity for 3-group stratification, the three advanced methods provided metrics more useful 

than both thresholds. It is likely due to the combination of i) a reduced accuracy in the sphericity 

measurement of lesions with the most complex shapes and heterogeneous and ii) the level of 

intrinsic correlation between volume and sphericity, depending on the segmentation method. 

Our results are therefore not in line with those obtained in 60 NSCLC patients where volume was not 

a significant prognostic factor for OS (despite a trend) whereas asphericity had a HR of 2.97 (p=0.03) 

[7] and was correlated with volume at |ρ|=0.54, which is similar to what we observed for the FLAB-

derived values (|ρ|=0.67). A major difference was that the 60 patients were a more heterogeneous 

mixture of stage I to IV, whereas our cohort was limited to stage II and III. A metric similar to 

asphericity was also found moderately correlated (r=0.53) with heterogeneity visual scoring and 

associated with recurrence in 83 lung cancer patients [12]. In 57 lymphoma patients PET uptakes 

larger than 50 cm3 were characterized with numerous radiomics features including asphericity, after 

segmentation using two different fixed threshold (31 and 40% of SUVmax) [13]. Asphericity was not 

found to be predictive of metabolic response, contrary to other radiomics features. Although two 

different segmentation methods were considered, variability of the results according to 



segmentation were presented only for the few features found significant, therefore no results were 

available for asphericity. 

Our study has limitations. The first dataset is highly heterogeneous in image characteristics, owing to 

the fact that it results from various contributions of different types of data. This is a desirable 

property for the purpose of evaluating the image segmentation methods [18]. However this 

prevented us to include an adaptive thresholding technique due to the requirement of optimizing 

these methods for specific combinations of scanner models, acquisition protocols and reconstruction 

parameters [18]. Apart from the widely used fixed thresholds at 40% and 50% of SUVmax, the three 

other more advanced methods are not widely available. They are, however, representative of state-

of-the-art developments of various image segmentation paradigms (clustering, fuzzy modeling, 

deformable models) that have been adapted for PET image segmentation [18]. Therefore the 

variability of the resulting sphericity we observed amongst these three approaches will likely be quite 

similar when comparing other PET segmentation algorithms (e.g adaptive thresholding, region 

growing, or contour/gradient-based segmentation). We focused on PET functional sphericity. NSCLC 

tumor shape has also been characterized from anatomical imaging such as CT, also providing 

prognostic value [31]. Future investigations may compare the prognostic value of anatomical tumor 

shape (from CT) and functional uptake shape (from PET) or their combination [21]. The cohort of 

patients was of limited size, which reduced the discriminative power in comparing the stratification 

results between methods. We also did not split the cohort into training and testing sets, as our goal 

was to compare the stratifications obtained using the parameters derived from different 

segmentations. We also did not include other shape features usually considered in radiomics studies 

(e.g. solidity, convexity, etc.). However, these shape features are highly correlated with each other 

and usually have similar behavior in robustness and repeatability studies [27–29], suggesting our 

results may be generalizable to other shape descriptors. Finally, the clinical PET acquisitions were 

carried out without respiratory gating, which could lead to biased estimation of the true sphericity in 



some of the tumors most affected by motion. Ideally, when analyzing lung tumors in any radiomics 

study, respiratory motion correction is expected to improve the results. 

To conclude, caution should be exercised regarding the method used for tumor volume delineation 

in the PET images, as this could have a strong impact on the estimated clinical value of the sphericity 

parameter. In particular, methods exploiting curvature or shape priors should be carefully evaluated 

and subsequently optimized for sphericity determination. Finally, the prognostic value of sphericity in 

NSCLC might be limited with respect to that of volume alone, and this warrants further investigations 

in larger cohorts. 

Conclusions 

The tumor functional sphericity was found to be dependent on the segmentation methodology. An 

accurate segmentation can nonetheless lead to an inaccurate sphericity, and vice-versa. The resulting 

impact in patients’ prognosis stratification was found to be important; not all segmentation methods 

allowing to demonstrate a complementary or additional prognostic value of sphericity compared to 

volume. In conclusion, caution should be exercised regarding the method used for tumor volume 

delineation in the PET image for any study investigating the prognostic value of sphericity and 

potentially other shape descriptors. 
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Table 1: The dataset containing 176 PET images with ground-truth 

Type of PET images Associated ground-truth Details 

Synthetic and realistic 

simulated images 

Voxel-based from the simulated 

object 

14 synthetic images. 

12 images simulated with GATE. 

50 images simulated with SIMSET. 

Physical phantom 

acquisitions 

Volumes derived through 

thresholding of the associated 

high resolution CT 

Different acquisitions of a physical 

phantom containing 11 zeolites 

(no cold walls) of various shapes 

and sizes (total 75 images). 

Clinical images Digitized reconstructed volumes 

from histopathology slices. 

19 images of head and neck or 

lung tumors with associated 

histopathology volumetric 

measurements. 

Clinical images Statistical consensus of 3 different 

manual contours by 3 experts. 

6 images of lung tumors with 

consensus of manual delineations 

by 3 experts. 

 

  



Table 2: Patients characteristics 

 Characteristic No. of 

patients 

(N=87) 

Gender Male 69 

Female 18 

Age (y) Range 48-84 

Mean + SD 63±8 

Treatment Surgery only 10 

Chemotherapy only 12 

Radiotherapy only 0 

Surgery + chemotherapy 14 

Surgery + radiotherapy 1 

Chemotherapy + radiotherapy 41 

Chemotherapy + radiotherapy + surgery 9 

Clinical stage IIA 12 

IIB 18 

IIIA 30 

IIIB 27 



Table 3. Stratification of patients into 2 groups using volume, sphericity or both derived by each 

segmentation. 

Segmentation 

methods 

Volume 

(cm3) 

threshold 

Sphericity 

threshold 

Stratification using volume Stratification using sphericity Stratification using volume and sphericity 

Median OS  Hazard 

ratio 

Log-

rank 

p-

value 

Median OS  Hazard 

ratio 

Log-

rank 

p-

value 

Median OS  Hazard 

ratio 

Log-

rank p-

value 1st 

group 

2nd 

group 

1st 

group 

2nd 

group 

1st 

group 

2nd 

group 

ACO > 42.2 ≤ 0.831 41.9 

(n=29) 

12.5 

(n=58) 

2.48 0.0009 28.0 

(n=35) 

13.1 

(n=52) 

1.96 0.0091 25.1 

(n=41) 

12.4 

(n=46) 

2.02 0.0043 

FLAB > 35.8 ≤ 0.845 27.9 

(n=43) 

9.9 

(n=44) 

2.45 0.0002 41.9 

(n=25) 

13.1 

(n=62) 

2.50 0.0020 27.9 

(n=46) 

9.1 

(n=41) 

2.67 <0.0001 

GARAC > 44.9 ≤ 0.883 31.3 

(n=29) 

13.1 

(n=58) 

2.31 0.0025 17.6 

(n=16) 

14.9 

(n=71) 

1.72 0.1243 30.4 

(n=33) 

13.4 

(n=54) 

2.13 0.0044 

T40 > 21.1 ≤ 0.819 30.4 

(n=30) 

13.1 

(n=57) 

2.10 0.0055 25.1 

(n=30) 

14.3 

(n=57) 

1.81 0.0291 17.6 

(n=46) 

12.5 

(n=41) 

1.84 0.0119 

T50 > 15.6 ≤ 0.801 30.4 

(n=35) 

10.8 

(n=52) 

2.26 0.0013 23.0 

(n=31) 

14.1 

(n=56) 

1.75 0.0376 17.6 

(n=58) 

9.1 

(n=27) 

1.99 0.0051 
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Figure legends 

Figure 1: Distributions of sphericity and volume for each dataset. 

Figure 2: Visual examples with ground-truth (green contour) volume and sphericity values. First row 

are simulated images, second row are zeolites from phantom acquisitions and third row are clinical 

images with contours from either consensus of manual delineation (first two images on the left) or 

digitized histopathology slices (two images on the right). 

Figure 3: Sphericity-volume scatter diagrams in the first dataset for (a) ground-truth and (b-f) the 

segmentation methods: (b) ACO, (c) FLAB, (d) GARAC, (e) T40 and (f) T50. 

Figure 4: (a, c) Segmentation accuracy and (b, d) sphericity measurement error for all segmentation 

methods. (a, b) show results for each data category, whereas (c, d) show results for the entire 

dataset. (b) presents absolute errors (showing no significant differences), whereas (d) shows relative 

errors to highlight the bias of GARAC towards overestimation. 

Figure 5: Scatter diagrams and Spearman rank correlations (ρ) between the segmentation accuracy 

and the corresponding sphericity absolute error for (a) ACO, (b) FLAB, (c) GARAC, (d) T40 and (e) T50. 

Figure 6: Scatter diagrams and Spearman rank correlations (ρ) between the volume and the 

corresponding sphericity absolute error for (a) ACO, (b) FLAB, (c) GARAC, (d) T40 and (e) T50. 

Figure 7: Kaplan-meier curves for OS stratification into two groups using volume and sphericity as 

determined by (a) ACO, (b) FLAB, (c) GARAC, (d) T40 and (e) T50. 

Figure 8: Kaplan-meier curves for OS stratification into 3 groups obtained using volume and 

sphericity as determined by (a) ACO, (b) FLAB, (c) GARAC, (d) T40 and (e) T50. Hazard ratios are listed 

for group 1 vs. 2, 2 vs. 3 and 1 vs. 3. 

 

 

 

 

 


