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In the present paper we prove uniqueness results for solutions to a class of Neumann boundary value problems whose prototype is

where Ω is a bounded domain of R N , N ≥ 2, with Lipschitz boundary, 1 < p < N , n is the outer unit normal to ∂Ω, the datum f belongs to L (p * ) ′ (Ω) or to L 1 (Ω) and satisfies the compatibility condition Ω f dx = 0. Finally the coefficient c(x) belongs to an appropriate Lebesgue space.

Introduction

In the present paper we prove uniqueness results for solutions to a class of Neumann boundary value problems whose prototype is (1.1) -div((1 + |∇u| 2 ) (p-2)/2 ∇u) -div(c(x)|u| p-2 u) = f in Ω,

(1 + |∇u| 2 ) (p-2)/2 ∇u + c(x)|u| p-2 u • n = 0 on ∂Ω,
where Ω is a bounded domain of R N , N ≥ 2, with Lipschitz boundary, 1 < p < N , n is the outer unit normal to ∂Ω, the datum f belongs to L (p * ) ′ (Ω), where p * = N p N -p , or to L 1 (Ω) and satisfies the compatibility condition

Ω f dx = 0.
Finally the coefficient c(x) belongs to an appropriate Lebesgue space which will be specified later.

The main difficulties in studying existence or uniqueness for this type of problems are due to the presence of a lower order term, the lower summability of the datum f and the boundary Neumann conditions.

The existence for Neumann boundary value problems with L 1 -data when c = 0 has been treated in various contests. In [START_REF] Andreu | Quasi-linear elliptic and parabolic equations in L 1 with nonlinear boundary conditions[END_REF], [START_REF] Chabrowski | On the Neumann problem with L 1 data[END_REF], [START_REF] Droniou | Solving convection-diffusion equations with mixed, Neumann and Fourier boundary conditions and measures as data, by a duality method[END_REF], [START_REF] Droniou | Noncoercive convection-diffusion elliptic problems with Neumann boundary conditions[END_REF] and [START_REF] Prignet | Conditions aux limites non homogènes pour des problèmes elliptiques avec second membre mesure[END_REF] the existence of a distributional solution which belongs to a suitable Sobolev space and which has null mean value is proved. Nevertheless when p is close to 1, i.e. p ≤ 2 -1/N, the distributional solution to problem (1.1) does not belong to a Sobolev space and in general is not a summable function; this implies that its mean value has not meaning and any existence result for distributional solution with null mean value cannot hold. This difficulty is overcome in [START_REF] Decarreau | Trace imbeddings for T -sets and application to Neumann-Dirichlet problems with measures included in the boundary data[END_REF] by considering solutions u which are not in L 1 (Ω), but for which Φ(u) is in L 1 (Ω), where Φ(t) = t 0 ds (1+|s|) α with appropriate α > 1.

In [START_REF] Alvino | Well-posed elliptic Neumann problems involving irregular data and domains[END_REF] the case where both the datum f and the domain Ω are not smooth enough is studied and the existence and continuity with respect to the data of solutions whose median is equal to zero is proved with a natural process of approximations and symmetrization techniques. We recall that the median of u is defined by (1.2) med(u) = sup{t ∈ R : meas{u > t} > meas(Ω)/2} .

The existence for solutions having null median to problem (1.1) when c = 0 are proved in [START_REF] Betta | Neumann problems for nonlinear elliptic equations with L 1 data[END_REF].

We explicitly remark that when the datum f has a lower summability, i.e. it is just an L 1 -function, one has to give a meaning to the notion of solution; such a question has been faced already in the case where Dirichlet boundary conditions are prescribed, by introducing different notion of solutions (cf. [START_REF] Bénilan | An L 1 -theory of existence and uniqueness of solutions of nonlinear elliptic equations[END_REF], [START_REF] Dall | Approximated solutions of equations with L 1 data. Application to the H-convergence of quasi-linear parabolic equations[END_REF], [START_REF] Lions | Sur les solutions renormalisées d'équations elliptiques non linéaires[END_REF], [START_REF] Murat | Equations elliptiques non linéaires avec second membre L 1 ou mesure[END_REF] ). Such notion turn out to be equivalent, at least when the datum is an L 1 -function.

In the present paper, when f ∈ L 1 (Ω), we refer to the so-called renormalized solutions (see [START_REF] Maso | Renormalized solutions of elliptic equations with general measure data[END_REF], [START_REF] Lions | Sur les solutions renormalisées d'équations elliptiques non linéaires[END_REF], [START_REF] Murat | Equations elliptiques non linéaires avec second membre L 1 ou mesure[END_REF]) whose precise definition is recalled in Section 2.

The main novelty of this article is to prove uniqueness (up to additive constants) results for renormalized solutions to problem (1.1) having null median and whose existence has been proved in [START_REF] Betta | Neumann problems for nonlinear elliptic equations with L 1 data[END_REF].

To our knowledge uniqueness results for problem (1.1) are new even in the variational case, i.e. when f belongs to L (p * ) ′ (Ω) and the usual notion of weak solution is considered. When c(x) = 0 and f is an element of the dual space of the Sobolev space W 1,p (Ω), the existence and uniqueness (up to additive constants) of weak solutions to problem (1.1) is consequence of the classical theory of pseudo monotone operators (cfr. [START_REF] Leray | Quelques résulatats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder[END_REF], [START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites non linéaires[END_REF]), while existence results for weak solutions to problem (1.1) when the lower order term appears have been proved in [START_REF] Betta | Neumann problems for nonlinear elliptic equations with L 1 data[END_REF].

As pointed out we will prove different results according to the summability of f , i.e. f ∈ L (p * ) ′ (Ω) or f ∈ L 1 (Ω) and to the value of p, i.e. p ≤ 2 and p ≥ 2. As far as p is concerned such a difference is due to the principal part of the operator, which we consider. Actually we assume that the principal part -div(a(x, Du)) is not degenerate when p > 2, i.e. in the model case -div(a(x, ∇u)) = -div((1 + |∇u| 2 ) (p-2)/2 ∇u). But such an assumption is not required when p ≤ 2, that is for such values of p we prove uniqueness results for operators whose prototype is the so-called p-Laplace operator, -∆ p u = -div(|∇u| p-2 ∇u).

Let us explain the main ideas of our results. To this aim let us consider the simpler case of weak solutions and p = 2. When a Dirichlet boundary value problem is considered, following an idea of Artola [START_REF] Artola | Sur une classe de problèmes paraboliques quasi-linéaires[END_REF] (see also [START_REF] Boccardo | Unicité de la solution de certaines équations elliptiques non linéaires[END_REF][START_REF] Chipot | Uniqueness results and monotonicity properties for strongly nonlinear elliptic variational inequalities[END_REF]), denoted by u and v two solutions, one can use the test function T k (u -v) and obtain 

(1.3) lim k→0 1 k 2 Ω |∇T k (u -v)| 2 dx = 0. Since u, v ∈ H 1 0 (Ω), Poincaré inequality implies that (1.4) Ω |sign(u -v)| 2 dx = lim k→0 1 k 2 Ω |T k (u -v)|
w k,δ = T k (u -v) k T δ (u + ) δ - T δ (v -) δ ,
where T k denote the truncate function at height k and

u + = max{0 , u} , v -= max{0 , -v}.
Neumann problems have been studied by a different point of view in [START_REF] Ferone | A second order derivation formula for functions defined by integrals[END_REF], [START_REF] Ferone | Neumann problems and Steiner symmetrization[END_REF], while existence or uniqueness results for Dirichlet boundary value problems for nonlinear elliptic equations with L 1 -data are treated in [START_REF] Boccardo | Nonlinear elliptic and parabolic equations involving measure data[END_REF], [START_REF] Boccardo | Nonlinear elliptic equations with right-hand side measures[END_REF] and was continued in various contributions, including [START_REF] Alvino | Nonlinear elliptic problems with L 1 data: an approach via symmetrization methods[END_REF], [START_REF] Cheikh | Nonlinear and non-coercive elliptic problems with integrable data[END_REF], [START_REF] Bénilan | An L 1 -theory of existence and uniqueness of solutions of nonlinear elliptic equations[END_REF], [START_REF] Betta | Existence and uniqueness results for nonlinear elliptic problems with a lower order term and measure datum[END_REF], [START_REF] Betta | Existence of renormalized solutions to nonlinear elliptic equations with a lower-order term and righthand side a measure[END_REF], [START_REF] Maso | Renormalized solutions of elliptic equations with general measure data[END_REF], [START_REF] Barles | Uniqueness and continuum of foliated solutions for a quasilinear elliptic equation with a non-Lipschitz nonlinearity[END_REF] [17], [START_REF] Guibé | Existence and stability results for renormalized solutions to noncoercive nonlinear elliptic equations with measure data[END_REF], [START_REF] Guibé | Existence of renormalized solutions to nonlinear elliptic equations with two lower order terms and measure data[END_REF]; mixed boundary value problems have been also studied, for example, in [START_REF] Cheikh | Nonlinear and non-coercive elliptic problems with integrable data[END_REF], [START_REF] Droniou | Solving convection-diffusion equations with mixed, Neumann and Fourier boundary conditions and measures as data, by a duality method[END_REF].

The paper is organized as follows. In Section 2 we detail the assumptions and we give the definition of a renormalized solution to (1.1). Section 3 is devoted to prove two uniqueness results for weak solutions when the datum is in the Lebesgue space L (p * ) ′ (Ω). In Section 4 we state our main results, Theorem 4.1, Theorem 4.2, where we prove the uniqueness of a renormalized solution to (1.1) when datum is a L 1 function.

Assumptions and definitions

Let us consider the following nonlinear elliptic Neumann problem

(2.1) -div (a (x, ∇u) + Φ(x, u)) = f in Ω, (a (x, ∇u) + Φ(x, u)) • n = 0 on ∂Ω,
where Ω is a bounded domain of R N , N ≥ 2, having finite Lebesgue measure and Lipschitz boundary, n is the outer unit normal to ∂Ω. We assume that p is a real number such that 1 < p < N. The function

a : Ω × R N → R N is a Carathéodory function such that a(x, ξ) • ξ ≥ α|ξ| p , α > 0, (2.2) | a(x, ξ)| ≤ c[|ξ| p-1 + a 0 (x)], c > 0, a 0 ∈ L p ′ (Ω), a 0 ≥ 0, (2.3)
for almost every x ∈ Ω and for every ξ ∈ R N . Moreover a is strongly monotone, that is a constant β > 0 exists such that

(a(x, ξ) -a(x, η)) • (ξ -η) ≥      β |ξ -η| 2 (|ξ| + |η|) 2-p if 1 < p ≤ 2, β|ξ -η| 2 (1 + |ξ| + |η|) p-2 if p ≥ 2, (2.4) 
for almost every x ∈ Ω and for every ξ, η ∈ R N , ξ = η. We assume that Φ : Ω × R → R N is a Carathéodory function which satisfies the following "growth condition"

(2.5) |Φ(x, s)| ≤ c(x)(1 + |s|) p-1 , c ∈ L t (Ω), c ≥ 0, with (2.6) t ≥ N p -1
for a.e. x ∈ Ω and for every s ∈ R. Moreover we assume that such function is locally Lipschitz continuous with respect to the second variable, that is

(2.7) |Φ(x, s) -Φ(x, z)| ≤ c(x)(1 + |s| + |z|) τ |s -z|, τ ≥ 0,
for almost every x ∈ Ω, for every s, z ∈ R.

Finally we assume that the datum f is a measurable function in a Lebesgue space L r (Ω), 1 ≤ r ≤ +∞, which belongs to the dual space of the classical Sobolev space W 1,p (Ω) or is just an L 1 -function. Moreover it satisfies the compatibility condition (2.8)

Ω f dx = 0.
As explained in the Introduction we deal with solutions whose median is equal to zero. Let us recall that if u is a measurable function, we denote the median of u by (2.9) med(u) = sup t ∈ R : meas{x ∈ Ω : u(x) > t} > meas(Ω) 2 .

Let us explicitely observe that if med(u) = 0 then

meas{x ∈ Ω : u(x) > 0} ≤ meas(Ω) 2 , meas{x ∈ Ω : u(x) < 0} ≤ meas(Ω) 2 .
In this case a Poincaré-Wirtinger inequality holds (see e.g. [30]):

Proposition 2.1. If u ∈ W 1,p (Ω), then (2.10) u -med(u) L p (Ω) ≤ C ∇u (L p (Ω)) N
where C is a constant depending on p, N, Ω.

When the datum f is not an element of the dual space of the classical Sobolev space W 1,p (Ω), the classical notion of weak solution does not fit. We will refer to the notion of renormalized solution to (2.1) (see [START_REF] Maso | Renormalized solutions of elliptic equations with general measure data[END_REF][START_REF] Murat | Equations elliptiques non linéaires avec second membre L 1 ou mesure[END_REF] for elliptic equations with Dirichlet boundary conditions) which we give below.

In the whole paper, T k , k ≥ 0, denotes the truncation at height k that is T k (s) = min(k, max(s, -k)), ∀s ∈ R. and if for every function h belonging to W 1,∞ (R) with compact support and for every ϕ ∈ L ∞ (Ω) ∩ W 1,p (Ω), we have

(2.14) Ω h(u) a(x, ∇u)∇ϕ dx + Ω h ′ (u) a(x, ∇u)∇uϕ dx + Ω h(u)Φ(x, u)∇ϕ dx + Ω h ′ (u)Φ(x, u)∇uϕ dx = Ω f ϕh(u) dx.
Remark 2.3. A renormalized solution is not in general an L 1 loc (Ω)function and therefore it has not a distributional gradient. Condition (2.12) allows to define a generalized gradient of u according to Lemma 2.1 of [START_REF] Bénilan | An L 1 -theory of existence and uniqueness of solutions of nonlinear elliptic equations[END_REF], which asserts the existence of a unique measurable function v defined in Ω such that ∇T k (u) = χ {|u|<k} v a.e. in Ω, ∀k > 0. This function v is the generalized gradient of u and it is denoted by ∇u.

Equality 

1 n Ω |Φ(x, u)| |∇T n (u)|dx = 0, (2.16 
)

Ω |∇u| p (1 + |u|) 1+m dx ≤ C , ∀m > 0,
where C is a positive constant depending only on m, f , Ω, α and Φ (2.17)

|u| p-1 ∈ L q (Ω), ∀ 1 < q < N N -p , (2.18) |∇u| p-1 ∈ L q (Ω), ∀ 1 < q < N N -1 .
Sketch of the proof. For the proof of (2.15) see Remark 2.4 of [START_REF] Betta | Neumann problems for nonlinear elliptic equations with L 1 data[END_REF].

The estimate (2.16) is related to the Boccardo-Gallouët estimates [START_REF] Boccardo | Nonlinear elliptic and parabolic equations involving measure data[END_REF], and it is obtained through a usual process. Indeed since m > 0,

r 0 ds (1 + |s|) 1+m ∈ L ∞ (R) ∩ C 1 (R). Defining h n by (2.19) h n (s) =        0 if |s| > 2n, 2n -|s| n if n < |s| ≤ 2n, 1 if |s| ≤ n ,
we can use the renormalized formulation (2.14) with h = h n and ϕ =

T 2n (u) 0 ds (1 + |s|) 1+m .
In view of (2.13) and (2.15), the growth condition (2.5) on Φ allows one to pass to the limit as n → +∞ and to obtain (2.16). As far as (2.17) and (2.18) are concerned, it is sufficient to observe that (2.12), (2.16) and Poincaré-Wirtinger inequality imply (through an approximation process) that

u 0 ds (1 + |s|) 1+m p ∈ W 1,p (Ω). Then Sobolev embedding Theorem leads to ∀m > 0, |u| p-(1+m) p ∈ L Np N-p (Ω) which is equivalent to |u| p-1 ∈ L q (Ω), ∀ 1 ≤ q < N N -p .
Using again that

u 0 ds (1 + |s|) 1+m p
∈ W 1,p (Ω), (2.17) and Hölder inequality allow one to deduce (2.18).

Uniqueness results for weak solution

In this section we assume that the right-hand side f is an element of the dual space L (p * ) ′ (Ω). In [START_REF] Betta | Neumann problems for nonlinear elliptic equations with L 1 data[END_REF] an existence result for weak solution to problem (2.1) having null median has been proved. Such a weak solution u is a function such that

u ∈ W 1,p (Ω), Ω a(x, ∇u)∇vdx + Ω Φ(x, u)∇vdx = Ω f vdx, for any v ∈ W 1,p (Ω).
In this section we assume a suitable growth condition on Φ, that is a bound on τ in (2.7) is assumed and the following assumption on the datum is made

(3.1) f ∈ L (p * ) ′ (Ω) .
Now we prove two uniqueness results depending on the values of p:

Theorem 3.1. Let 1 < p < 2. Assume that (2.2)-(2.7) with (3.2) τ ≤ p -1
and (2.8), (3.1) hold. If u, v are two weak solutions to problem (2.1)

having med(u) = med(v) = 0, then u = v a.e. in Ω. Theorem 3.2. Let p ≥ 2. Assume that (2.2)-(2.7) with (3.3) τ ≤ Np N -p 1 2 - 1 t , (3.4) t ≥ max 2, N p -1 and (2.8), (3.1) hold. If u, v are two weak solutions to problem (2.1) having med(u) = med(v) = 0, then u = v a.e. in Ω. Remark 3.3. We explicitely observe that if 2 ≤ p ≤ N +2
2 , we have uniqueness results under the assumption that c belongs to L Proof of Theorem 3.1. Since for every fixed k > 0, T k (u-v) ∈ W 1,p (Ω), it can be used as test function in the equation satisfied by u and in the equation satisfied by v. Then by subtracting the two equations, we get

Ω (a(x, ∇u) -a(x, ∇v)) • ∇T k (u -v) dx (3.5) + Ω (Φ(x, u) -Φ(x, v)) • ∇T k (u -v) dx = 0 .
We proceed by dividing the proof by steps.

Step 1. We prove that (3.6) lim

k→0 1 k p Ω |∇T k (u -v)| p dx = 0.
By the assumptions on the strong monotonicity on the operator (2.4) and the local Lipschitz condition on Φ (2.7) with τ which satisfies (3.2), we get

β Ω |∇T k (u -v)| 2 (|∇u| + |∇v|) 2-p dx (3.7) ≤ k Ω c(x)(1 + |u| + |v|) τ |∇T k (u -v)| dx .
The assumption on τ assures that the right-hand side of the previous inequality is finite. Moreover by Hölder inequality and assumption on τ , we obtain

β Ω |∇T k (u -v)| 2 (|∇u| + |∇v|) 2-p dx (3.8) ≤ k {0<|u-v|<k} c(x) 2 (1 + |u| + |v|) 2τ (|∇u| + |∇v|) 2-p dx 1 2 × Ω |∇T k (u -v)| 2 (|∇u| + |∇v|) 2-p dx 1 2
i.e.

β 2 k 2 Ω |∇T k (u -v)| 2 (|∇u| + |∇v|) 2-p dx (3.9) ≤ {0<|u-v|<k} c(x) 2 (1 + |u| + |v|) 2τ (|∇u| + |∇v|) 2-p dx. Since τ ≤ p -1 = (1 -1 p -p-1 N ) N p N -p
, Hölder inequality assures that the integral in the right-hand side is finite. Since χ {0<|u-v|<k} tends to 0 a.e. in Ω as k goes to 0, this implies

(3.10) lim k→0 1 k 2 Ω |∇T k (u -v)| 2 (|∇u| + |∇v|) 2-p dx = 0.
Moreover by Hölder inequality we get Step 2. We prove that either

1 k p Ω |∇T k (u -v)| p dx (3.11) ≤ 1 k 2 Ω |∇T k (u -v)| 2 (|∇u| + |∇v|) 2-p dx p 2 Ω (|∇u| + |∇v|) p dx
     u = v a.e. in Ω, u < v a.e. in Ω, u > v a.e. in Ω. Since T k (u-v) k belongs to W 1,p (Ω) Poincaré-Wirtinger inequality yields Ω T k (u -v) k -med T k (u -v) k p dx (3.12) ≤ C Ω ∇T k (u -v)| k p dx .
Therefore, by Step 1, we deduce that

(3.13) lim k→0 Ω T k (u -v) k -med T k (u -v) k p dx = 0. Since T k (u-v) k ≤ 1, we obtain med T k (u -v) k ≤ 1 , k > 0
and, up to a subsequence, by (3.13)

lim k→0 med T k (u -v) k = γ
for a suitable constant γ ∈ R, |γ| ≤ 1. On the other hand, we have

lim k→0 T k (u -v) k = sign (u -v) .
Therefore, up to subsequence, by (3.13) we get

Ω |sign (u -v) -γ| p dx = 0 which implies γ = 0 or γ = -1 or γ = 1 .
This means that either

     u = v a.e. in Ω, u < v a.e. in Ω, u > v
a.e. in Ω.

Step 3. We prove that u < v, a.e. in Ω or u > v , a.e. in Ω can not occur.

We assume that

(3.14) u > v , a.e. in Ω
and we prove that this yields a contradiction. The same arguments prove that u < v a.e. in Ω can not be verified.

Since med(v) = 0, meas{x ∈ Ω : v(x) < 0} ≤ meas(Ω) 2 , then (3.15) meas{x ∈ Ω : v(x) ≥ 0} ≥ meas(Ω) 2 .
On the other hand, we have

{x ∈ Ω : u(x) > 0} = {x ∈ Ω : u(x) > 0 , v(x) ≥ 0} ∪ {x ∈ Ω : u(x) > 0 , v(x) < 0}. Since we assume (3.14), then we deduce {x ∈ Ω : u(x) > 0 , v(x) ≥ 0} = {x ∈ Ω : v(x) ≥ 0} Therefore we get {x ∈ Ω : u(x) > 0} = {x ∈ Ω : v(x) ≥ 0} ∪ {x ∈ Ω : u(x) > 0, v(x) < 0}. Moreover, since (3.15) holds true and since meas{x ∈ Ω : u(x) > 0} ≤ meas(Ω) 2 , we conclude that meas{x ∈ Ω : u(x) > 0 , v(x) < 0} = 0 .
This means that "u and v have the same sign". Now let us consider the test function

(3.16) w k,δ = T k (u -v) k T δ (u + ) δ - T δ (v -) δ ,
for fixed k > 0, δ > 0, where

u + = max{0 , u} , v -= max{0 , -v}. Since T k (u -v) > 0 a.e. in Ω, one can verify that {x ∈ Ω : w k,δ (x) > 0} = {x ∈ Ω : u(x) > 0} and {x ∈ Ω : w k,δ (x) < 0} = {x ∈ Ω : v(x) < 0}. Moreover T δ (u + ) , T δ (v -) ∈ W 1,p (Ω) and hence, since med (u) , med (v) = 0, we conclude that meas{x ∈ Ω : w k,δ (x) > 0} ≤ meas(Ω) 2 , meas{x ∈ Ω : w k,δ (x) < 0} ≤ meas(Ω) 2 ,
this means med (w k,δ ) = 0 .

Therefore by Poincaré-Wirtinger inequality we deduce (3.17)

Ω |w k,δ | p dx ≤ C Ω |∇w k,δ | p dx .
We now evaluate the gradient of w k,δ ,

∇w k,δ = ∇T k (u -v) k T δ (u + ) δ - T δ (v -) δ (3.18) + T k (u -v) k ∇u δ χ { 0<u<δ} + ∇v δ χ { -δ<v<0} a.e. in Ω.
Since u and v "have the same sign", then, for every fixed k > 0, it results

0 < T k (u -v) kδ χ { 0<u<δ} ≤ 1 k χ { 0<u<δ} , 0 < T k (u -v) kδ χ { -δ<v<0} ≤ 1 k χ { -δ<v<0} ,
then for fixed k > 0, we have

lim δ→0 T k (u -v) kδ χ { 0<u<δ} = 0 a.e. in Ω . lim δ→0 T k (u -v) kδ χ { -δ<v<0} = 0 a.e. in Ω .
Moreover we have also

T k (u -v) kδ ∇uχ { 0<u<δ} ≤ 1 k |∇u|χ { 0<u<δ} , T k (u -v) kδ ∇vχ { -δ<v<0} ≤ 1 k |∇v|χ { -δ<v<0} ,
and since |∇u|, |∇v| ∈ L p (Ω), we can apply Lebesgue dominated convergence Theorem, i.e.

lim δ→0 Ω |∇w k,δ | p dx = Ω ∇T k (u -v) k χ { u>0} -χ { v<0} p dx .
Since

Ω ∇T k (u -v) k χ { u>0} -χ { v<0} p dx ≤ Ω ∇T k (u -v) k p dx,
by

Step 1, we conclude that

lim k→0 lim δ→0 Ω |∇w k,δ | p dx = 0 .
Now we can pass to the limit in (3.17) as δ → 0 first and then as k → 0 and we get

Ω sign (u -v) χ { u>0} -χ { v<0} p dx = Ω |sign(u)| p dx = 0 .
We deduce that χ { u>0} = χ { v<0} a.e. in Ω; this yields a contradiction since we have proved that u and v have the same sign.

The same arguments yield that we can not have u < v a.e. in Ω. The conclusion follows.

Proof of Theorem 3.2. As in the previous proof we arrive to equality (3.5) and we divide the proof by 3 steps.

Step 1. We prove that

(3.19) lim k→0 1 k 2 Ω |∇T k (u -v)| 2 dx = 0.
By the assumptions on the strong monotonicity on the operator (2.4) and the local Lipschitz condition on Φ (2.7) with τ which satisfies (3.3), we get

β Ω (1 + |∇u| + |∇v|) p-2 |∇T k (u -v)| 2 dx (3.20) ≤ k Ω c(x)(1 + |u| + |v|) τ |∇T k (u -v)| dx . Since p ≥ 2, T k (u -v) belongs to W 1,2 (Ω).
Then by Hölder inequality and assumption on τ , we obtain

β Ω |∇T k (u -v)| 2 dx (3.21) ≤ k c L t ({0<|u-v|<k}) 1 + |u| + |v| τ L p * ∇T k (u -v) L 2 dx , i.e. (3.22) β 2 k 2 Ω |∇T k (u -v)| 2 dx ≤ c 2 L t ({0<|u-v|<k}) 1 + |u| + |v| 2τ L p * .
Since χ {x : 0<|u-v|<k} → 0 a.e. in Ω, Lebesgue dominated convergence theorem implies that (3.19) holds.

Step 2. We prove that either

     u = v a.e. in Ω, u < v a.e. in Ω, u > v
a.e. in Ω.

By Poincaré-Wirtinger inequality, we get

Ω T k (u -v) k -med T k (u -v) k 2 dx (3.23) ≤ C Ω ∇T k (u -v)| k 2 dx .
Therefore, by Step 1. we deduce that

(3.24) lim k→0 Ω T k (u -v) k -med T k (u -v) k 2 dx = 0 Since T k (u-v) k ≤ 1, we obtain med T k (u -v) k ≤ 1 ,
and, up to a subsequence,

lim k→0 med T k (u -v) k = γ
for a suitable constant γ ∈ R, |γ| ≤ 1. On the other hand, we have

lim k→0 T k (u -v) k = sign (u -v) ,
Therefore, up to subsequence, we get

Ω |sign (u -v) -γ| 2 dx = 0 which implies γ = 0 or γ = -1 or γ = 1 .
This means that either u = v , a.e. in Ω or u < v , a.e. in Ω or u > v , a.e. in Ω .

Step 3. Arguing as in Step 3 of the previous theorem, we prove that the last two possibilities can not occur. Then conclusion follows.

Remark 3.5. In [START_REF] Betta | Neumann problems for nonlinear elliptic equations with L 1 data[END_REF] we estabilished the existence of a weak solution when a(x, ξ) is replaced by a Leray-Lions operator a(x, r, ξ) which depends on x, r and ξ and verifies the standard conditions (see [START_REF] Leray | Quelques résulatats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder[END_REF]). In the Dirichlet case and 1 < p ≤ 2 it is well known (see [13] [15]) that under suitable assumptions on a(x, r, ξ) the weak solution is unique.

In view of the proofs of Theorem 3.1 and Theorem 3.2 it is possible to obtain the uniqueness of the weak solution having null median of the problem

(3.25) -div (a (x, u, ∇u) + Φ(x, u)) = f in Ω, (a (x, u, ∇u) + Φ(x, u)) • n = 0 on ∂Ω.
If we assume that a(x, r, ξ) is a Carathéodory function which verifies

a(x, s, ξ) • ξ ≥ α|ξ| p , α > 0, (3.26) | a(x, s, ξ)| ≤ c 1 [|ξ| p-1 + |s| p-1 + a 0 (x)], (3.27) c 1 > 0, a 0 ∈ L p ′ (Ω), a 0 ≥ 0, (a(x, s, ξ) -a(x, s, η)) • (ξ -η) ≥      β |ξ -η| 2 (|ξ| + |η|) 2-p if 1 ≤ p ≤ 2, β|ξ -η| 2 (1 + |ξ| + |η|) p-2 if p ≥ 2, (3.28) 
and moreover a(x, r, ξ) satisfies a Lipschitz condition with respect to r

| a(x, s, ξ) -a(x, r, ξ)| ≤ c 2 |s -r|(|ξ| p-1 + |s| p-1 + |r| p-1 + h(x)), (3.29) 
c 2 > 0, h ∈ L p ′ (Ω), h ≥ 0,
for almost every x ∈ Ω, s ∈ R and for every ξ ∈ R N , then Theorem 3.1 and Theorem 3.2 hold true. Indeed the methods developped in [START_REF] Boccardo | Unicité de la solution de certaines équations elliptiques non linéaires[END_REF] allow one to prove Step 1 in Theorem 3.1 namely

lim k→0 1 k p Ω |∇T k (u -v)| p dx = 0.
and Step 1 in Theorem 3.2 namely

lim k→0 1 k 2 Ω |∇T k (u -v)| 2 dx = 0.
In both cases the Step 2 and Step 3 remain unchanged.

Remark 3.6. In [START_REF] Betta | Neumann problems for nonlinear elliptic equations with L 1 data[END_REF] and in the present paper we have chosen to deal with solutions to (2.1) with null median value instead of null mean value. As explained in Introduction this choice allows one to consider solution to (2.1) for f ∈ L 1 (Ω) even if the solution u does not belong to L 1 (Ω). When f ∈ L (p * ) ′ (Ω) a simply examination of the proof of [START_REF] Betta | Neumann problems for nonlinear elliptic equations with L 1 data[END_REF] leads to the existence of solutions to (2.1) such that

Ω u dx = 0.
Assuming that (2.2)-(2.7) are in force similar arguments to the one developped in the proof of Theorem 3.1 and Theorem 3.2 yield the uniqueness of solution to (2.1) having a null mean value. Let us explain briefly the case p = 2.

Step 1 remains unchanged so that if u and v are two solutions of (2.1) then we have

lim k→0 1 k 2 Ω |∇T k (u -v)| 2 dx = 0.
Poincaré-Wirtinger inequality leads to

lim k→0 Ω T k (u -v) k - 1 |Ω| Ω T k (u -v) k dy 2 dx = 0.
so that, up to subsequence, there exists γ ∈

[-1, 1] such that Ω |sign (u -v) -γ| 2 dx = 0. As in Step 2 γ = 0 or γ = -1 or γ = 1 and      u = v a.e. in Ω, u < v
a.e. in Ω, u > v a.e. in Ω. We now show that u < v a.e. in Ω or u > v a.e. in Ω can not occur. The method is similar to Step 3 of the proof of Theorem 3.1:

w k,δ = T k (u -v) k T δ (u + ) δ - T δ (v -) δ , belongs to H 1 (Ω) while lim k→0 lim δ→0 ∇w k,δ L 2 (Ω) = 0. Poincaré-Wirtinger inequality yields lim k→0 lim δ→0 Ω w k,δ - 1 |Ω| Ω w k,δ dy 2 dx = 0.
In the case u > v a.e. in Ω, the Lebesque dominated Theorem allows one to conclude that

Ω sign(u) - 1 |Ω| Ω sign(u)dy 2 dx = 0 ,
and then u has a constant sign. Recalling that Ω u dx = Ω v dx = 0 gives a contradiction. Therefore u = v a.e. in Ω.

Uniqueness result for renormalized solution

In this section we prove the uniqueness of the renormalized solution to problem (2.1), when the following assumption on datum is made

(4.1) f ∈ L 1 (Ω) .
As in Section 3 we state two uniqueness theorems depending on the values of p: 

Theorem 4.1. Let 1 < p < 2. Assume that (2.2)-(2.7) with (4.2) τ ≤ p - 3 2 + p -1 N - 1 t N(p -
> 0, h n (u)T k (u -v) = h n (v)T k (T 2n (u) -T 2n+k (u)) ∈ L ∞ (Ω) ∩ W 1,p (Ω), we can use h = h n (u) and ϕ = h n (v)T k (u -v) in (2.

14) written in u, and we can use

h = h n (v) and ϕ = h n (u)T k (u -v) in (2.

14) written in v. By substracting the two equations, we get

Ω h n (u)h n (v)(a(x, ∇u) -a(x, ∇v)) • ∇T k (u -v) dx (4.5) + Ω h n (u)h n (v)(Φ(x, u) -Φ(x, v)) • ∇T k (u -v) dx + Ω h ′ n (u)h n (v)T k (u -v)(a(x, ∇u) + Φ(x, u) -a(x, ∇v) -Φ(x, v)) • ∇u dx + Ω h n (u)h ′ n (v)T k (u -v)(a(x, ∇u) + Φ(x, u) -a(x, ∇v) -Φ(x, v)) • ∇v dx = 0 .
We proceed by dividing the proof into 3 steps.

Step 1. By passing to the limit in (4.5) first as n → +∞, then as k → 0 this step is to devoted to prove that

(4.6) lim k→0 1 k 2 Ω |∇T k (u -v)| 2 (|∇u| + |∇v|) 2-p dx = 0.
We first study the behaviour of the last two integrals in (4.5) as n goes to +∞ by showing (4.7)

lim n→+∞ Ω h ′ n (u)h n (v)T k (u-v)(a(x, ∇u)+Φ(x, u)-a(x, ∇v)-Φ(x, v))•∇u dx = 0
and by symmetry with respect to u and v (4.8)

lim n→+∞ Ω h ′ n (v)h n (u)T k (u-v)(a(x, ∇u)+Φ(x, u)-a(x, ∇v)-Φ(x, v))•∇v dx = 0.
By (2.13) of Definition 2.2 and (2.15) of Proposition 2.4, we get (4.9) lim

n→+∞ Ω h ′ n (u)h n (v)T k (u -v) a(x, ∇u) • ∇u dx = 0, (4.10) lim n→+∞ Ω h ′ n (u)h n (v)T k (u -v)Φ(x, u) • ∇u dx = 0.
By assumption (2.3) and Hölder inequality we have Therefore recalling that a 0 ∈ L p ′ (Ω) we conclude that (4.12) lim

Ω h ′ n (u)h n (v)T k (u -v) a(x, ∇v) • ∇u dx ≤ ck n {|v|≤2n} (|a 0 (x)| + |∇v| p-1 ) p p-
n→+∞ Ω h ′ n (u)h n (v)T k (u -v) a(x, ∇v) • ∇u dx = 0.
To prove that (4.7) holds it remains to control

Ω h ′ n (u)h n (v)T k (u - v)Φ(x, v) • ∇u dx.
By assumption (2.5) and Hölder inequality we have

Ω h ′ n (u)h n (v)T k (u -v)Φ(x, v) • ∇u dx ≤ k 1 n {|v|≤2n} |c(x)| p p-1 (1 + |v|) p dx p-1 p 1 n {|u|≤2n} |∇u| p dx 1 p . Since c ∈ L t (Ω) with t ≥ N/(p -1) (see Assumption (2.6)) we get {|v|≤2n} |c(x)| p p-1 (1 + |v|) p ≤ Ω |c| N/(p-1) dx p/N 1 + T 2n (v) p L p * (Ω)
and Poincaré-Wirtinger inequality leads to

{|v|≤2n} |c(x)| p p-1 (1+|v|) p ≤ C Ω |c| N/(p-1) dx p/N 1+ Ω |∇T 2n (v)| p dx ,
where C > 0 is independent of n and k. It follows that

Ω h ′ n (u)h n (v)T k (u -v)Φ(x, v) • ∇u dx ≤ Ck c L N/(p-1) (Ω) × 1 n + 1 n {|v|≤2n} |∇v| p dx p-1 p 1 n {|u|≤2n} |∇u| p dx 1 p .
Therefore (4.11) leads to

(4.13) lim n→+∞ Ω h ′ n (u)h n (v)T k (u -v)Φ(x, v) • ∇u dx = 0,
and then (4.7) holds. We observe that (4.8) is obtained by analogous argument.

Then by (4.5), (4.7), (4.8), using the assumptions on the strong monotonicity on the operator (2.4), the local Lipschitz condition on Φ (2.7) with τ which satisfies (4.2) and Young inequality we get

β Ω h n (u)h n (v) |∇T k (u -v)| 2 (|∇u| + |∇v|) 2-p dx ≤ 2ω k (n) (4.14) + 2k 2 β {0<|u-v|<k} h n (u)h n (v)|c(x)| 2 (1 + |u| + |v|) 2τ (|∇u| + |∇v|) 2-p dx,
where lim

n ω k (n) = 0. We now prove that (4.15) |c(x)| 2 (1 + |u| + |v|) 2τ (|∇u| + |∇v|) 2-p ∈ L 1 (Ω),
so that we can pass to the limit in (4.14) as n → +∞. By Hölder inequality we get

Ω h n (u)h n (v)|c(x)| 2 (1 + |u| + |v|) 2τ (|∇u| + |∇v|) 2-p dx (4.16) ≤ {|u|<2n, |v|<2n} h n (u)h n (v)|c(x)| t dx 2 t × {|u|<2n, |v|<2n} h n (u)h n (v)(1 + |u| + |v|) ν dx 2τ ν × {|u|<2n, |v|<2n} h n (u)h n (v)(|∇u| + |∇v|) µ dx 2-p µ with (4.17) 1 t + 2τ ν + 2 -p µ ≤ 1, ν < N(p -1) N -p , µ < N(p -1) N -1 ,
This choice is possible since (4.2) holds and in view of (2.17) and (2.18) of Proposition 2.4 we have

(1 + |u| + |v|) ν ∈ L 1 (Ω), (|∇u| + |∇v|) µ ∈ L 1 (Ω).
Passing to the limit as n goes to +∞, assumption (2.6) on c and Fatou Lemma yield that

|c(x)| 2 (1 + |u| + |v|) 2τ (|∇u| + |∇v|) 2-p ∈ L 1 (Ω).
Then we can pass to the limit as n → +∞ in (4.14), and dividing (4.14) by k 2 and using Fatou Lemma we get

1 k 2 Ω |∇T k (u -v)| 2 (|∇u| + |∇v|) 2-p dx (4.18) ≤ 1 β 2 {0<|u-v|<k} |c(x)| 2 (1 + |u| + |v|) 2τ (|∇u| + |∇v|) 2-p dx .
Recalling that χ {0<|u-v|<k} converges to 0 a.e. as k goes to zero, Lebesgue dominated Theorem and (4.15) allow one to conclude that (4.6) holds.

Step 2. We prove that either

     u = v a.e. in Ω, u < v a.e. in Ω, u > v
a.e. in Ω.

Observe that for k < n

h n (u) T k (u -v) k = h n (u) T k (T 3n (u) -T 3n (v)) k ∈ L ∞ (Ω) ∩ W 1,p (Ω).
Then by Poincaré-Wirtinger inequality, we get

Ω h n (u) T k (u -v) k -med h n (u) T k (u -v) k p dx (4.19) ≤ C Ω ∇ h n (u) T k (u -v) k p dx.
Let us evaluate the integral at the right-hand side. We show that it goes to zero first as k → 0 and then as n → +∞. Since

∇ h n (u) T k (u -v) k (4.20) = h ′ n (u)∇u T k (u -v) k + h n (u) ∇T k (u -v) k a.e. in Ω, T k (u -v) k ≤ 1 and h ′ n (u) ≤ 1 n , we get Ω ∇ h n (u) T k (u -v) k p dx (4.21) ≤ 1 n p Ω |∇T 2n (u)| p dx + 1 k p Ω h n (u) p |∇T k (u -v)| p dx .
Let us evaluate the second integral in the right hand side of (4.21). By Hölder inequality we obtain

1 k p Ω h n (u) p |∇T k (u -v)| p dx ≤ 1 k 2 Ω |∇T k (u -v)| 2 (|∇u| + |∇v|) 2-p dx p 2 Ω h n (u) 2p 2-p χ {|u-v|<k} (|∇u| + |∇v|) p dx 2-p 2 ≤ C 1 k 2 Ω |∇T k (u -v)| 2 (|∇u| + |∇v|) 2-p dx p 2 Ω (|∇T 2n (u)| p + |∇T 2n+k (v)| p ) dx 2-p 2 , that is, if n is fixed, 1 k p Ω h n (u) p |∇T k (u -v)| p dx ≤ C n 1 k 2 Ω |∇T k (u -v)| 2 (|∇u| + |∇v|) 2-p dx p 2
, where C n > 0 is a constant depending on n (and independent of k). Therefore, by Step 1, we deduce that

lim k→0 1 k p Ω h n (u) p |∇T k (u -v)| p dx = 0 . (4.22) Since T k (u -v) k converges to sign(u -v) in L ∞ (Ω)
weak- * , we deduce from (4.20) and (4.22) that for fixed n, as k → 0

∇ h n (u) T k (u -v) k -→ h ′ n (u)∇u sign(u -v) , in (L p (Ω)) N .
We now pass to the limit as n → +∞. By the definition of h n we have

Ω |h ′ n (u)∇u| p dx ≤ 1 n p Ω |∇T 2n (u)| p dx
so that (2.13) and (4.22) lead to

lim n→+∞ lim k→0 Ω ∇ h n (u) T k (u -v) k p dx = 0.
Therefore using (4.19), we deduce that

lim n→+∞ lim k→0 Ω h n (u) T k (u -v) k -med h n (u) T k (u -v) k p dx = 0. (4.23) Since h n (u) T k (u-v) k ≤ 1, we obtain med h n (u) T k (u -v) k ≤ 1 , k > 0.
It follows that, up to a subsequence

lim n→+∞ lim k→0 med h n (u) T k (u -v) k = γ .
for a suitable constant γ ∈ R, |γ| ≤ 1.

On the other hand since u is finite a.e. we have

lim k→0 h n (u) T k (u -v) k = h n (u) sign(u -v) , a.e. and L ∞ (Ω) weak- * , lim n→+∞ h n (u) sign(u -v) = sign(u -v) , a.e. and L ∞ (Ω) weak- * .
Then, up to subsequence, by (4.23) we get

Ω |sign (u -v) -γ| p dx = 0.
This implies

γ = 0 or γ = -1 or γ = 1,
and means that either u = v , a.e. in Ω or u < v , a.e. in Ω or u > v , a.e. in Ω .

Step 3. We prove that u < v , a.e. in Ω or u > v , a.e. in Ω can not occur. We assume that (4.24) u > v , a.e. in Ω and we prove that this yields a contradiction. The arguments used in Step 3 of Theorem 3.1 allow us to prove that "u and v have the same sign".

Let us consider the test function

(4.25) w n,k,δ = h n (u) T k (u -v) k T δ (u + ) δ - T δ (v -) δ ,
for fixed n > 0, k > 0, δ > 0, where

u + = max{0 , u} , v -= max{0 , -v}. Observe that, since for k < n h n (u) T k (u-v) k ∈ L ∞ (Ω) ∩ W 1,p (Ω) we have w n,k,δ ∈ L ∞ (Ω) ∩ W 1,p (Ω).
We now evaluate the gradient of w n,k,δ :

∇w n,k,δ = ∇ h n (u) T k (u -v) k T δ (u + ) δ - T δ (v -) δ (4.26) +h n (u) T k (u -v) k ∇u δ χ { 0<u<δ} - ∇v δ χ { -δ<v<0} a.e.
in Ω.

and we study the limit as δ → 0, k → 0 and then n → +∞. We firstly show that med(w n,k,δ ) = 0. Let η such that 0

< η < 1 2 . {x ∈ Ω : w n,k,δ (x) > η} = {x ∈ Ω : w n,k,δ (x) > η, 0 < u < 2n} ⊂ x ∈ Ω : T δ (u + ) δ > η = {x ∈ Ω : u + > ηδ}.
Since med(u) = 0, we have meas{x ∈ Ω : u(x) > ηδ} < meas(Ω) 2 .

It follows that ∀η < 

≤ C 1 n p Ω |∇T 2n (u)| p dx + 1 k p Ω h p n (u) |∇T k (u -v)| p dx + 1 δ p k p Ω h p n (u) |T k (u -v)| p ∇T δ (u + ) + ∇T δ (v -) p dx .
We now prove that (4.28) lim

n→+∞ 1 n p Ω |∇T 2n (u)| p dx = 0, (4.29) lim k→0 1 k p Ω h p n (u) |∇T k (u -v)| p dx = 0, (4.30) lim δ→0 1 δ p k p Ω h p n (u) |T k (u -v)| p ∇T δ (u + ) p dx = 0, (4.31) lim δ→0 1 δ p k p Ω h p n (u) |T k (u -v)| p ∇T δ (v -) p dx = 0.
Clearly (4.28) is a consequence of (2.13) in Definition 2.2. As far as (4.29) is concerned, by Hölder inequality we have

1 k p Ω h p n (u) |∇T k (u -v)| p dx ≤ 1 k 2 {0<|u-v|<k} |∇u -∇v| 2 (|∇u| + |∇v|) 2-p dx p 2 × {0<|u-v|<k} h 2p 2-p n (u)(|∇u| + |∇v|) p dx 1 2
and in view of the definition of h n , if n is fixed, for any k < 1 we have

{0<|u-v|<k} h 2p 2-p n (u)(|∇u| + |∇v|) p dx ≤ Ω (|∇T 2n (u)| + |∇T 2n+1 (v)|) p dx. ≤ C n ,
where C n > 0 is a constant depending on n (and independent of k). From (4.6) it follows that for any fixed n > 0 (4.29) holds.

We now turn to (4.30) and (4.31). Observe that

1 k p δ p |T k (u -v)| p ∇T δ (u + ) p = 1 k p δ p |T k (u -v)| p |∇u| p χ { 0<u<δ}
a.e. in Ω. Since u > v a.e. in Ω and meas{x ∈ Ω : u > 0, v < 0} = 0 , we get This implies that χ {u>0} = χ {v<0} a.e. in Ω; this yields a contradiction since we have proved that u and v have the same sign.

|T k (u -v)| p χ {0<u<δ} ≤ δ p ,
The same arguments yield that we can not have u < v a.e. in Ω. The conclusion follows.

Proof of Theorem 4.2. Arguing as in the previous theorem we obtain (4.5) and we proceed by dividing the proof by steps. The main difference with respect to the proof of Theorem 4.1 is that for p > 2 we have to control quadratic terms in u -v (see (4.32)) while u and v are solutions to a p-growth problem.

Step 1. By passing to the limit in (4.5) first as n → +∞, then as k → 0 this step is to devoted to prove that (4.32) lim

k→0 1 k 2 Ω |∇T k (u -v)| 2 dx = 0.
We pass to the limit in (4.5) first as n → +∞, then as k → 0. Arguing as in Step 1 of the previous theorem we get that

lim n→+∞ Ω h ′ n (u)h n (v)T k (u -v) × (a(x, ∇u) + Φ(x, u) -a(x, ∇v) -Φ(x, v)) • ∇u dx = 0 lim n→+∞ Ω h n (u)h ′ n (v)T k (u -v)
× (a(x, ∇u) + Φ(x, u)a(x, ∇v) -Φ(x, v)) • ∇v dx = 0 .

Then, using the assumptions on the strong monotonicity on the operator (2.4), the local Lipschitz condition on Φ (2.7) with τ which satisfies (3.3) and Young inequality we get

β 2 Ω h n (u)h n (v)(1 + |∇u| + |∇v|) p-2 |∇T k (u -v)| 2 dx ≤ ω k (n) + k 2 2β {0<|u-v|<k} h n (u)h n (v)|c(x)| 2 (1 + |u| + |v|) 2τ dx,
where lim n ω k (n) = 0. We then obtain 

β 2 Ω h n (u)h n (v)|∇T k (u -v)| 2 dx ≤ ω k (n) + k 2 2β {0<|u-v|<k} h n (u)h n (v)|c(x)| 2 (1 + |u| + |v|) 2τ dx. ( 4 
(1 + |u| + |v|) 2τ ∈ L 1 (Ω).
We can pass to the limit as n → +∞ in (4.33), then using Fatou Lemma we get

(4.36) 1 k 2 Ω |∇T k (u -v)| 2 dx ≤ 1 β 2 {0<|u-v|<k} |c(x)| 2 (1 + |u| + |v|) 2τ dx .
Recalling that χ {0<|u-v|<k} converges to 0 a.e. as k goes to zero Lebesgue dominated Theorem and (4.35) allow one to conclude that (4.32) holds.

Step 2. We prove that either

     u = v a.e. in Ω, u < v a.e. in Ω, u > v
a.e. in Ω.

Let us consider the function h

n (u) T k (u-v) k and observe that for k < n h n (u) T k (u -v) k = h n (u) T k (T 3n (u) -T 3n (v)) k ∈ L ∞ (Ω) ∩ W 1,p (Ω). Since p ≥ 2 the function h n (u) T k (u-v) k belongs to H 1 (Ω) by Poincaré- Wirtinger inequality we get Ω h n (u) T k (u -v) k -med h n (u) T k (u -v) k 2 dx ≤ C Ω ∇ h n (u) T k (u -v) k 2 dx.
(4.37)

Let us evaluate the integral at the right-hand side. We show that it goes to zero first as k → 0 then as n → +∞. Since

∇ h n (u) T k (u -v) k = h ′ n (u)∇u T k (u -v) k +h n (u) ∇T k (u -v) k a.e. in Ω and T k (u -v) k ≤ 1 we get Ω ∇ h n (u) T k (u -v) k 2 dx (4.38) ≤ Ω |h ′ n (u)∇u| 2 dx + 1 k 2 Ω h n (u) 2 |∇T k (u -v)| 2 dx .
It is easy to verify that for fixed n, as k → 0 

∇ h n (u) T k (u -v) k -→ h ′ n (u)∇u sign(u -v) , in (L 2 (Ω)) N

Moreover by the definition of h

n Ω |h ′ n (u)∇u| 2 dx ≤ 1 n 2 Ω |∇T 2n (u)|
∇ h n (u) T k (u -v) k 2 dx = 0 .
Then, using (4.37), we deduce

lim n→+∞ lim k→0 Ω h n (u) T k (u -v) k -med h n (u) T k (u -v) k 2 dx = 0. (4.39) Since h n (u) T k (u-v) k ≤ 1, we obtain med h n (u) T k (u -v) k ≤ 1 , k > 0.
It follows that, up to a subsequence, by (4.39)

lim n→+∞ lim k→0 med h n (u) T k (u -v) k = γ .
for a suitable constant γ ∈ R, |γ| ≤ 1.

On the other hand since u is finite a.e. This means that either u = v , a.e. in Ω or u < v , a.e. in Ω or u > v , a.e. in Ω .

lim k→0 h n (u) T k (u -v) k = h n (u) sign(u -v) ,

Arguing as in

Step 3 of the previous theorem, we can prove that the last two possibilities can not occur. Then conclusion follows.

Remark 4.3. As in the case of weak solutions, the existence of renormalized solutions hold for a class of more general problems (3.25) where f belongs to L 1 (Ω), Φ verifies growth conditions and a(x, r, ξ) is a Leray-Lions operator which depends on x, s and ξ (see [START_REF] Betta | Neumann problems for nonlinear elliptic equations with L 1 data[END_REF]). Due to the lack of regularity of u in the L 1 case by using the techniques developped in the present paper it seems not possible to obtain uniqueness result when a verifies 2(N-p) + h(x) , with λ > 1 2 , h ≥ 0 and h ∈ L 2 (Ω), then the renormalized solution u with null median of (3.25) is unique. It is worth noting that (4.42) and (4.43) are similar except in the power of |s| and |r| and the regularity of h. The main reason is that for p ≥ 2 we use quadratic method for a p-growth equation.

N p- 1 Remark 3 . 4 .

 134 (Ω) assumption which guarantees the existence of a solution. If p > N +2 2 the uniqueness result holds if c belongs to L 2 (Ω), which means that uniqueness result holds under a stronger assumption on the summability of c. Let us observe that the bounds on τ in the two theorems overlaps when p = 2.

1 -p 2

 12 which implies (3.6) by(3.10).

  a.e. and L ∞ (Ω) weak- * , lim n→+∞ h n (u) sign(u -v) = sign(u -v) , a.e. and L ∞ (Ω) weak- * Then, up to subsequence, by (4.39) we get Ω |sign (u -v) -γ| 2 dx =

1 k 2 Ω

 12 (3.26)-(3.29). Let us explain the main obstacle in the case p = 2 and what kind of stronger assumptions on a insures the uniqueness of the renormalized solution. In view of the proof of Theorem 4.1 and Theorem 4.2 the only new difficulty when a depends on x, r, ξ is to prove Step 1 which is when p = 2(4.40) lim k→0 |∇T k (u -v)| 2 dx = 0.In Step 2 and Step 3 the structure of the operator does not play any role. Equation (4.5) in which we pass to the limit first as n → +∞ and then as k → 0 to derive (4.40) becomesΩ h n (u)h n (v)(a(x, u, ∇u)a(x, v, ∇v)) • ∇T k (u -v) dx (4.41) + Ω h n (u)h n (v)(Φ(x, u) -Φ(x, v)) • ∇T k (u -v) dx + Ω h ′ n (u)h n (v)T k (u -v)(a(x, u, ∇u) + Φ(x, u)a(x, v, ∇v) -Φ(x, v)) • ∇u dx + Ω h n (u)h ′ n (v)T k (u -v)(a(x, u, ∇u) + Φ(x, u)a(x, v, ∇v) -Φ(x, v)) • ∇v dx = 0 .Since the operator is pseudo-monotone the main obstacle is the control of the first term of (4.41).Ω h n (u)h n (v)(a(x, u, ∇u)a(x, v, ∇v)) • ∇T k (u -v) dx = Ω h n (u)h n (v)(a(x, u, ∇u)a(x, u, ∇v)) • ∇T k (u -v) dx + Ω h n (u)h n (v)(a(x, u, ∇v)a(x, v, ∇v)) • ∇T k (u -v) dx ≥ β Ω h n (u)h n (v) |∇T k (u -v)| 2 dx + Ω h n (u)h n (v)(a(x, u, ∇v)a(x, v, ∇v)) • ∇T k (u -v) dx ≥ β 2 Ω h n (u)h n (v) |∇T k (u -v)| 2 dx -{|u-v|<k} h n (u)h n (v) |a(x, u, ∇v)a(x, v, ∇v))| 2 dx.Passing first as n → +∞ and then as k → 0 requires to haveχ {0<|u-v|<k} |a(x, u, ∇v)a(x, v, ∇v))| 2 ∈ L 1 (Ω). If a verifies | a(x, s, ξ)a(x, r, ξ)| ≤ |s -r||ξ|, then χ {0<|u-v|<k} |a(x, u, ∇v)a(x, v, ∇v))| 2 ≤ k 2 |∇v| 2and we cannot expect to have |∇v| 2 ∈ L 1 (Ω) for L 1 data. However by assuming a stronger control of the Lipschitz coefficient of a(x, r, ξ)with respect to r, namely| a(x, s, ξ)a(x, r, ξ)| ≤ |s -r| (1 + |s| + |r|) λ |ξ|, with λ > 1 2 , we have χ {0<|u-v|<k} |a(x, u, ∇v)a(x, v, ∇v))| 2 ≤ k 2 |∇v| 2 (1 + |v|) 2λand since 2λ > 1, estimate (2.16) implies thatχ {0<|u-v|<k} |a(x, u, ∇u)a(x, v, ∇v))| 2 ∈ L 1 (Ω).It follows thatχ {0<|u-v|<k} 1 k 2 |a(x, u, ∇v) -a(x, v, ∇v))| 2 → 0, in L 1 (Ω).Since the other terms in (4.41) can be controlled by similar methods to the one used in Theorem 4.2 we are able to conclude that (4.40) holds and then that u = v a.e. in Ω.We now give the complete version of Theorem 4.1 and 4.2 for problem(3.25). As in the weak case we assume that a(x, r, ξ) is a Carathéodory function which verifies(3.26), (3.27), (3.28), f ∈ L 1 (Ω) and Φ verifies (2.5) and (2.7). When 1 < p < 2, if τ ≤ p -3 2 and if a(x, r, ξ) satisfies (4.42) | a(x, s, ξ)-a(x, r, ξ)| ≤ C |s -r| (1 + |s| + |r|) λ |ξ| p-1 + |s| p-1 + |r| p-1 + h(x) , with λ > 1 2 , h ≥ 0 and h ∈ L p ′ (Ω), then the renormalized solution u with null median of (3.25) is unique. When p ≥ 2 if τ ≤ N(p -1) a(x, r, ξ) satisfies | a(x, s, ξ)a(x, r, ξ)| (4.43) ≤ C |s -r| (1 + |s| + |r|) λ |ξ| p-1 + |s| p(N-1) 2(N-p) + |r| p(N-1)

  Proof of Theorem 4.1. Let u and v be two renormalized solutions to (2.1). Let h n defined by(2.19). Since for any k

	(4.3)	τ ≤	N(p -1) N -p	1 2	-	1 t
	(4.4)	t ≥ max 2,	N p -1	
	and (2.8), (4.1) hold. If u, v are two renormalized solutions to problem
	(2.1) having med(u) = med(v) = 0, then u = v a.e. in Ω.

1) N -p and (2.8), (4.1) hold. If u, v are two renormalized solutions to problem (2.1) having med(u) = med(v) = 0, then u = v a.e. in Ω. Theorem 4.2. Let p ≥ 2. Assume that (2.2)-(2.7) with

  1 dx

				p-1	1
				p	|∇u| p dx	p	.
				{|u|≤2n}
	Using (2.2) and (2.13) we deduce that
	(4.11)	lim n→+∞	1 n {|u|≤2n}	|∇u| p dx = 0.

  and then1 k p δ p |T k (u -v)| p ∇T δ (u + )

					p ≤	1 k p |∇u| p χ {0<u<δ} .
	The Lebesgue dominated Theorem gives for fixed k > 0,
	1 k	|∇u|χ {0<u<δ} → 0	strongly in L p (Ω), as δ → 0.
	We deduce (4.30). In analogous way we get (4.31).
	By collecting (4.30), (4.31), (4.29), (4.28) and (4.27) we can conclude
	that			
		lim n→+∞	lim k→0	lim δ→0 Ω	|w n,k,δ | p dx = 0 ,
	which gives, via Lebesgue dominated Theorem,
		sign (u -v) χ {u>0} -χ {v<0} = 0 .
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