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Prediction of outcome using pretreatment 18 F-FDG PET/CT and MRI radiomics in locally advanced cervical cancer treated with chemoradiotherapy

INTRODUCTION

Cervical cancer (CC) is among the most commonly diagnosed cancers for women, with over 500000 new cases annually worldwide resulting in over 270,000 deaths [START_REF] Ferlay | Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012[END_REF]. A significant proportion of patients are diagnosed at a locally advanced stage, and are usually treated with pelvic external beam radiotherapy (EBRT) in association with cisplatin-based chemotherapy and subsequent brachytherapy (BT). Although chemoradiotherapy (CRT) has significantly improved loco-regional control (LRC) and outcome, approximately 40% of patients suffer from recurrence and eventually die of disease. Several clinical and histopathological variables have been identified as prognostic factors in CC patients, including International Federation of Gynecology and Obstetrics (FIGO) stage, histology and lymph node (LN) metastases [START_REF] Rose | Nomograms Predicting Progression-Free Survival, Overall Survival, and Pelvic Recurrence in Locally Advanced Cervical Cancer Developed From an Analysis of Identifiable Prognostic Factors in Patients From NRG Oncology/Gynecologic Oncology Group Randomized Trials of Chemoradiotherapy[END_REF]. Nevertheless, clinical outcomes are markedly variable among patients with similar stage, which cannot be explained by differences in clinico-pathological features only [START_REF] Rose | Nomograms Predicting Progression-Free Survival, Overall Survival, and Pelvic Recurrence in Locally Advanced Cervical Cancer Developed From an Analysis of Identifiable Prognostic Factors in Patients From NRG Oncology/Gynecologic Oncology Group Randomized Trials of Chemoradiotherapy[END_REF]. Yet the treatment modality choice is based on conventional FIGO and N staging, without prior knowledge regarding CRT efficacy. A more tailored approach based on pre-treatment prediction of recurrence and LRC may allow choosing the appropriate treatment for patients with more aggressive CC [START_REF] Moore | Is age a prognostic biomarker for survival among women with locally advanced cervical cancer treated with chemoradiation? An NRG Oncology/Gynecologic Oncology Group ancillary data analysis[END_REF]. [START_REF] Hatt | Accurate automatic delineation of heterogeneous functional volumes in positron emission tomography for oncology applications[END_REF] F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) and magnetic resonance imaging (MRI) play an essential role in the initial staging, therapeutic strategy [START_REF] Herrera | The role of PET/CT in cervical cancer[END_REF] and treatment response assessment [START_REF] Choi | The Role of (18) F-FDG PET/CT in Assessing Therapy Response in Cervix Cancer after Concurrent Chemoradiation Therapy[END_REF]. Recently, in addition to conventional parameters on FDG PET/CT and MRI used to stage disease, plan treatment and assess response there has been a growing interest in the extraction of quantitative features from medical images, denoted radiomics [START_REF] Lambin | Radiomics: extracting more information from medical images using advanced feature analysis[END_REF]. Radiomics features are statistical or model-based metrics to quantify tumor intensity, shape and heterogeneity which have been shown to reflect intratumoral histopathological properties [START_REF] Velazquez | Somatic Mutations Drive Distinct Imaging Phenotypes in Lung Cancer[END_REF] and to provide prognostic information in several pathologies [START_REF] Yip | Applications and limitations of radiomics[END_REF] including CC [START_REF] Ho | A preliminary investigation into textural features of intratumoral metabolic heterogeneity in (18)F-FDG PET for overall survival prognosis in patients with bulky cervical cancer treated with definitive concurrent chemoradiotherapy[END_REF][START_REF] Torheim | Cluster analysis of dynamic contrast enhanced MRI reveals tumor subregions related to locoregional relapse for cervical cancer patients[END_REF][START_REF] Chung | Prognostic value of preoperative intratumoral FDG uptake heterogeneity in early stage uterine cervical cancer[END_REF][START_REF] Guan | Whole-Lesion Apparent Diffusion Coefficient-Based Entropy-Related Parameters for Characterizing Cervical Cancers: Initial Findings[END_REF][START_REF] Reuze | Prediction of cervical cancer recurrence using textural features extracted from 18F-FDG PET images acquired with different scanners[END_REF]. Radiomics on pretreatment PET/CT has been shown to predict response to therapy and risk of pelvic recurrence in CC [START_REF] Ho | A preliminary investigation into textural features of intratumoral metabolic heterogeneity in (18)F-FDG PET for overall survival prognosis in patients with bulky cervical cancer treated with definitive concurrent chemoradiotherapy[END_REF][START_REF] Chung | Prognostic value of preoperative intratumoral FDG uptake heterogeneity in early stage uterine cervical cancer[END_REF][START_REF] Reuze | Prediction of cervical cancer recurrence using textural features extracted from 18F-FDG PET images acquired with different scanners[END_REF] and used to characterize CC lesions from diffusion-weighted MRI (DW-MRI) [START_REF] Guan | Whole-Lesion Apparent Diffusion Coefficient-Based Entropy-Related Parameters for Characterizing Cervical Cancers: Initial Findings[END_REF] or dynamic contrast enhancement MRI (DCE-MRI) [START_REF] Torheim | Cluster analysis of dynamic contrast enhanced MRI reveals tumor subregions related to locoregional relapse for cervical cancer patients[END_REF]. However, a radiomics signature from both FDG-PET and MRI associated with the outcome of patients with locally advanced CC (LACC) has not yet been described.

Our goal was to develop and validate such a PET/MRI signature with prognostic value for LRC and disease-free survival (DFS) in patients with LACC (stage IB1 to IVA) and to assess its incremental value with respect to the standard clinical and imaging features.

MATERIALS AND METHODS

Patients

Patients with histologically proven LACC, staged IB1-IVA (FIGO 2009 definition) and treated with definitive curative CRT and subsequent BT from August 2010 to December 2016 (to ensure a minimum follow-up of 6 months) at our institution were included in this retrospective study (table 1). Patients with stage IB1 and IIA1 were only considered for inclusion if they had positive LN.

All patients were required to have pelvic examination, PET/CT imaging and pelvic MRI at diagnosis, and at least 6-month of follow-up. Exclusion criteria were history of previous chemotherapy or RT and/or metastatic disease.

Collected data included age and date of diagnosis, histology, FIGO stage, presence of positive LN on PET/CT, tumor size as measured on MRI, body mass index (BMI), complete blood counts (CBC) before treatment, EBRT and BT dose, date and status at last follow-up. Date and site of recurrence were also collected. Recurrences were considered as local (vaginal and/or cervical), regional (pelvic/paraaortic), or distant (upper abdominal and/or extra-abdominal) [14].

A total of 102 patients were recruited and split into training -patients treated from 08/2010 to 05/2015, n=69 (68%)-and testing -patients treated after 05/2015, n=33 (32%)-sets. All patients provided signed permission for the use of their clinical data for scientific purposes and informed consent for the anonymous publication of data. Institutional Review Board approved this study.

Imaging

PET/CT

The Philips Gemini (Philips Medical Systems, Cleveland, OH) was used for the 6 first patients and the Siemens Biograph (SIEMENS Healthineers Medical Solutions, Knoxville, TN) for the next 96 patients after a scanner replacement. Patients fasted for 4h before acquisition, and the blood glucose level had to be less than 7 mmol/L before injection of 5 MBq/kg of 18 F-FDG. PET acquisitions were carried out approximately 60min after injection. The CT consisted of a 64-slice multidetector-row spiral scanner with a transverse field of view of 700 mm. Standard CT parameters were used: a collimation of 16×1.2 mm 2 , pitch 1, tube voltage of 120 kV, and effective tube current of 80 mA. Routine clinical image reconstruction protocols were used: for the Philips GEMINI, data were reconstructed using the RAMLA 3D (2 iterations, relaxation parameter 0.05) whereas for the Siemens Biograph, images were reconstructed with Fourier rebinning (FORE) followed by OSEM (2 iterations, 8 subsets). In both cases images were corrected for attenuation using the corresponding CT, reconstructed with a 2×2×2 mm 3 voxels grid and post-filtered with a 5-mm FWHM 3D Gaussian.

MRI

All MRI studies were performed with a 1.5-T unit (Siemens Medical Solutions, Magnetom Aera, Erlangen, Germany or General Electric, Milwaukee, WS) using a phased-array body coil, 2 weeks before the start of CRT with set image protocols. MRI was performed at least 10 days after cone biopsy to avoid false-positive findings due to post-biopsy inflammation. No patient had an absolute contraindication to the MRI examination. The MRI protocol included high-resolution turbo T2weighted sequences in the sagittal, axial, and axial oblique (perpendicular to the long axis of the cervix) planes. T1-weighted and T2-weighted axial images were obtained through the pelvis and up to the level of the renal hilum to assess nodal status. The MRI protocol included also axial TSE T2weighted fat-suppressed and axial oblique and sagittal diffusion-weighted images (DWI) (b values of 0, 400 and 1000) without slices gap. All except two allergic patients (training set) received a 0.1 mmol/kg injection of gadobenate dimeglumine (Multihance; Bracco Diagnostics, Milan, Italy). After 3 min a T1-weighted fat-suppressed sequence (CE-MRI) in the axial and sagittal plane was acquired. MRI sequences are described in more details in the supplemental material table 1.

Treatment

Consortium guidelines were applied to contour the clinical target volume (CTV), the planning target volume (PTV) and organs-at-risk [START_REF] Lim | Consensus guidelines for delineation of clinical target volume for intensity-modulated pelvic radiotherapy for the definitive treatment of cervix cancer[END_REF]. Treatment consisting of three-dimensional conformal radiotherapy (3D-CRT) (n=59 and n=7 respectively in the training and testing sets) or intensitymodulated photon radiotherapy (IMRT) (n=10 and n=26 respectively in the training and testing sets) delivered using a linear accelerator.

All the patients received pelvic EBRT or extended field RT to the para-aortic area using high energy photons (18 MV), depending on their work-up at a dose of 45-50.4 Gy with standard fractionation. In patients with positive pelvic or para-aortic LN, an image-guided targeted boost was delivered to a dose of 50.4-54 Gy to the involved nodes (12 and 3 patients in training and testing sets, respectively). The week after EBRT, patients received 3-4 fractions of MRI-guided high-dose-rate (HDR) intracavitary brachytherapy every 4 days. The prescribed dose was 7 Gy to the high-risk CTV. No patient experienced delays or breaks in RT because of short-term toxicity (median RT duration, 49 days; range, 47-53 days). All patients received 4-6 cycles of concomitant chemotherapy with weekly cisplatin (40 mg/m 2 ) or carboplatin (AUC 2) in case of renal contraindication.

Follow-up

PET/CT (for all patients with the Siemens Biograph) was performed 3 months after treatment completion in order to assess therapeutic response with PERCIST: patients were classified as having complete metabolic response (CMR), partial metabolic response (PMR), stable metabolic disease (SMD), or progressive metabolic disease (PMD) [START_REF] Wahl | From RECIST to PERCIST: Evolving Considerations for PET response criteria in solid tumors[END_REF]. Clinical follow-up consisted of physical examination every third month until 2 years after diagnosis, every sixth month up to 5 years, annually thereafter, and was done alternatively by the radiation oncologist and gynaecologist. Follow-up imaging studies consisted of MRI at 3 months after treatment completion and annually until 2 years after treatment completion, CT every 6 months until 2 years after treatment completion and if clinically indicated after, and/or PET/CT if clinically indicated.

Worflow for multimodal radiomics

Our workflow is illustrated in Figure 1.

Segmentation

Only primary tumors, not pathological lymph nodes, were analyzed. The PET and the MRI images were processed independently by a single expert radiation oncologist (F. Lucia). To reduce userdependency of this step, robust (semi)automated methods were exploited. The metabolically active volumes on PET images were automatically delineated with the fuzzy locally adaptive Bayesian (FLAB) algorithm [START_REF] Hatt | A fuzzy locally adaptive Bayesian segmentation approach for volume determination in PET[END_REF][START_REF] Hatt | Accurate automatic delineation of heterogeneous functional volumes in positron emission tomography for oncology applications[END_REF]. The anatomic volumes were also delineated on i) the ADC map derived from DWI-MRI, ii) CE-MRI and iii) T2. Each sequence was segmented independently because of anatomical changes between each sequence acquisition, using a previously validated semi-automatic approach exploiting 3D Slicer TM and the Growcut algorithm [START_REF] Velazquez | Volumetric CT-based segmentation of NSCLC using 3D-Slicer[END_REF]. This approach only requires painted strokes on the apparent foreground and background as input (examples are provided in supplemental material, figure 2).

Features extraction

Each tumor was characterized with 92 features extracted from four sets of images: the PET component of PET/CT and the 3 MRI sequences (ADC map from DWI, CE-MRI and T2). Amongst these parameters, 19 shape-based features describe the 3D geometry of the segmented volume (e.g. volume or diameter) and 11 first-order statistics are derived from the histogram of voxel intensities (e.g. PET SUV max or SUV mean ). Sixty-two 2 nd (25 features) and 3 rd (37 features) order textures are based on different matrices capturing the spatial intensity distributions at different scales and were calculated in a single matrix considering all 13 orientations simultaneously [START_REF] Zwanenburg | Image biomarker standardisation initiative -feature definitions[END_REF]. For these, three different image intensity quantization methods [START_REF] Desseroit | Comparison of three quantization methods for the calculation of textural features in PET/CT images: impact on prognostic models in Non-Small Cell Lung Cancer[END_REF] were considered: a linear quantization of the histogram into 64 bins (Q L ), histogram equalization into 64 bins (Q E ) or using a variable number of fixed-width bins (of 0.5 SUV for PET and 10 units for T2-and CE-MRI and 10 mm²/s for ADC map) (Q F ). This resulted in 186 different features. In the following these will be denoted as Feature Matrix- Q uantization . All features were implemented according to the current version of image biomarkers standardization initiative (IBSI) guidelines [START_REF] Zwanenburg | Image biomarker standardisation initiative -feature definitions[END_REF] and a full list is provided in the supplemental material, table 2. A total of 864 image features (216 per modality) 8 clinical and histopathological parameters (age, FIGO stage, N stage, BMI, histology, white blood cells, platelets, hemoglobin) and 3 treatment parameters (radiotherapy dose, brachytherapy dose and overall treatment time) were included in the statistical analysis (table 1).

Statistical analysis

Training and testing sets characteristics were compared using Macnemar test for qualitative factors and Student test for quantitative factors. Endpoints were DFS and LRC. For the training set, all parameters including usual confounding factors (e.g. volume, clinical variables, etc.) were tested using univariate Cox proportional hazards modeling, for which statistical significance was corrected for multiple testing with the Bonferroni method to reduce false-positive discovery rate [START_REF] Chalkidou | False Discovery Rates in PET and CT Studies with Texture Features: A Systematic Review[END_REF]. Corrected p-values below α/K (K=875 and α=0.05, i.e. p<0.000057) were considered statistically significant. Cox-regression models with the stepwise method were used for multivariate analysis including only the uncorrelated parameters (r<0.5) found significant in the univariate analysis. In addition, correlations between the parameters identified in the multivariate analysis and standard metrics (e.g. volume, FIGO stage, etc.) were checked to avoid simply deriving surrogates of usual variables. The receiver operating characteristic (ROC) curve was used to determine cut-off values of significant parameters according to the Youden index to generate Kaplan-Meier curves for DFS and LRC. Distributions of survival times were compared using the log-rank test. The best features/models were applied to the testing set for a rigorous evaluation of their accuracy for DFS and LRC, avoiding overfitting on a single cohort. Adjusted hazard ratios (HRs) and the corresponding 95% confidence intervals (CI) were calculated. All statistical analyses were performed using MedCalc Statistical Software version 15.8 (MedCalc Software bvba, Ostend, Belgium; https://www.medcalc.org; 2015). Our study followed the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) guidelines [START_REF] Collins | Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD Statement[END_REF]. The checklist can be found in the supplemental material.

RESULTS

Patient and tumor characteristics

The training and testing sets had similar clinical, treatment and histopathological characteristics, except for EBRT modalities (more IMRT in the validation set, p<0.0001), which have no impact on the effectiveness of treatment however, only on its toxicity [START_REF] Naik | Comparison of dosimetric parameters and acute toxicity of intensity-modulated and three-dimensional radiotherapy in patients with cervix carcinoma: A randomized prospective study[END_REF].

Outcome

Training set

After a median follow-up of 36 months (range, 6-79 months), 17 patients (25%) had died. Progression or disease recurrence occurred in 25 patients (36%). Fourteen patients (20%) had an isolated pelvic recurrence and 11 (16%) a distant recurrence (8 with isolated distant recurrence and 3 with both regional and distant recurrence). Post-CRT PET/CT demonstrated 44 CMR, 22 PMR, no SMD, and 3 PMD. Out of 14 patients without LRC 4 had a CMR and 10 a PMR. Out of 11 patients with distant metastases 3 had a CMR, 5 a PMR, and 3 a PMD. 3-year DFS and LRC were 63%, and 78%, respectively.

Testing set

None of the 33 patients had died after a median follow-up of 17 months (range, 6-30 months). Progression/recurrence occurred in 10 patients (30%): 5 (15%) had an isolated pelvic recurrence and 5 (15%) a distant recurrence (3 isolated and 2 with both regional and distant). Post-treatment PET/CT demonstrated 19 CMR, 11 PMR, 1 SMD, and 2 PMD. Out of 5 patients without LRC 4 had a CMR and 1 a SMD. Out of 5 patients with distant metastases, 3 had a CMR and 2 a PMD. 1-year DFS and LRC were 80% and 90%, respectively

Radiomics signature learning (training set)

DFS

In univariate analysis, most clinical parameters and notably metabolic response (CMR vs. no CMR, p=0.0001) showed association with DFS without however reaching the corrected statistical significance, with HR between 2.3 and 4.3 (table 2). One texture from PET (GLNU GLRLM-Q E ) and 4 from MRI (Inverse variance GLCM-Q F and Entropy GLCM-Q F in ADC maps from DWI, RLVAR GLRLM-Q L in CE-MRI and LZLGE GLSZM-Q F in T2) remained significant (p<0.00001), reaching HR between 5 and 34. Only ADC Entropy GLCM-Q F and CE-MRI RLVAR GLRLM-Q L remained significantly correlated with DFS in multivariate analysis (p<0.0001 and p=0.0001 with hazard ratios of 31 and 11, respectively). The estimated three-year DFS rates between patients with low versus high ADC Entropy GLCM-Q F (cutoff 12.64) were 94% and 14%, respectively, and between patients with low versus high CE-MRI RLVAR GLRLM-Q L (cut-off 0.17) 89% and 6%, respectively (figure 2).

LRC

One texture from PET/CT (GLNU GLRLM-Q E ) and 3 from MRI (Inverse variance GLCM-Q F and Entropy GLCM-Q F in ADC map and RLVAR GLRLM-Q L in CE-MRI) remained significantly correlated with LRC in univariate analysis after correction (p<0.00001, HR from 13 to 33), whereas none of the clinical factors reached statistical significance despite trends (p from 0.02 to 0.0007 and HR from 2 to 6) (table 3). In multivariate analysis only ADC Entropy GLCM-Q F (p=0.0079) and PET GLNU GLRLM-Q E (p=0.0043) remained independent prognostic factors. The estimated three-year LRC rates between patients with low versus high PET GLNU GLRLM-Q E (cut-off 103.71) were 98% and 41%, and with low versus high ADC Entropy GLCM-Q F (cut-off 12.64) were 98% and 45%. The combination of these 2 features provided an even better predictive model for LRC (98% vs. 18%) (figure 3).

Radiomics signature evaluation (testing set)

When applying the selected radiomics features with their optimal cut-off values determined in the training set to the testing set, we obtained promising performance. ADC Entropy GLCM-Q F (cut-off 12.64) reached an accuracy of 94% (sensitivity 90%, specificity 96%) to predict recurrence with a HR of 19.6 (p<0.0001), compared to 60% at best using standard factors (Figure 4). For LRC, PET GLNU GLRLM-Q E (cut-off 103.71) alone and its combination with ADC Entropy GLCM-Q F reached accuracy of 94% (sensitivity 100%, specificity 93%) and 100% respectively (HRs undefined, p=0.0001 and p<0.0001), compared to 56% at best using standard factors (figure 5).

These features differentiate between patients with a high risk to develop distant metastasis and those with a high risk to develop an isolated locoregional relapse. A flowchart for personalized treatment management of these patients can be derived (figure 6).

DISCUSSION

Our results suggest that GLNU GLRLM in FDG PET and/or Entropy GLCM in ADC maps from DWI MRI are powerful predictors of the efficacy of CRT in the treatment of CC. Higher values of these parameters were associated with worse outcome, confirming that more heterogeneous tumor have a poor prognosis. These findings can be acted upon to tailor treatment (figure 6). Following this flowchart, more aggressive loco-regional treatment could be offered to patients with high-risk of an isolated loco-regional relapse whereas for patients with high-risk of distant relapse, a systemic adjuvant treatment would be more beneficial.

To our knowledge, this is the first study evaluating the prognostic value of radiomics exploiting both PET/CT and MRI images in LACC patients. Our results concur with previous studies in CC that exploited either PET or MRI. A first study associated high pretreatment PET GLNU GLRLM with poorer prognosis [START_REF] Ho | A preliminary investigation into textural features of intratumoral metabolic heterogeneity in (18)F-FDG PET for overall survival prognosis in patients with bulky cervical cancer treated with definitive concurrent chemoradiotherapy[END_REF]. Another showed that 18 F-FDG PET/CT features could predict local recurrence of LACC better than SUV max [START_REF] Reuze | Prediction of cervical cancer recurrence using textural features extracted from 18F-FDG PET images acquired with different scanners[END_REF]. A third study showed that DCE-MRI 2 nd -order textures could predict treatment outcome [START_REF] Torheim | Cluster analysis of dynamic contrast enhanced MRI reveals tumor subregions related to locoregional relapse for cervical cancer patients[END_REF]. We showed PET/CT and MRI could provide complementary information when examinations are performed separately, as it is currently done in routine clinical practice. Similar investigations on hybrid imaging PET/MRI systems would be interesting because it would provide better temporal and spatial matching of the tumor volume in the different modalities, which could in addition facilitate its delineation. There is currently only a handful of radiomics studies using PET/MRI [START_REF] Antunes | Radiomics Analysis on FLT-PET/MRI for Characterization of Early Treatment Response in Renal Cell Carcinoma: A Proof-of-Concept Study[END_REF]. Given the small number of available PET/MRI systems, multi-centric investigations to validate radiomics models on these hybrid devices is also more challenging.

Our study has limitations. It was monocentric and retrospective, which is the case of most of radiomics studies [START_REF] Yip | Applications and limitations of radiomics[END_REF], including in CC [START_REF] Ho | A preliminary investigation into textural features of intratumoral metabolic heterogeneity in (18)F-FDG PET for overall survival prognosis in patients with bulky cervical cancer treated with definitive concurrent chemoradiotherapy[END_REF][START_REF] Torheim | Cluster analysis of dynamic contrast enhanced MRI reveals tumor subregions related to locoregional relapse for cervical cancer patients[END_REF][START_REF] Chung | Prognostic value of preoperative intratumoral FDG uptake heterogeneity in early stage uterine cervical cancer[END_REF][START_REF] Guan | Whole-Lesion Apparent Diffusion Coefficient-Based Entropy-Related Parameters for Characterizing Cervical Cancers: Initial Findings[END_REF][START_REF] Reuze | Prediction of cervical cancer recurrence using textural features extracted from 18F-FDG PET images acquired with different scanners[END_REF]. The number of patients was limited and we included a large number of parameters (more than 800), however we performed training and testing evaluation, and statistical significance was corrected for multiple testing in the univariate analysis, in order to avoid both false-discovery and overfitting. Before validating our radiomics signature on an external cohort (with different acquisition protocols), it was first necessary to validate it on patients from the same center. In that regard, the first 6 patients underwent PET/CT in a different scanner than the rest of the cohort. However in all cases the images were reconstructed with the same voxel size and the same post-reconstruction filter. The slice gap on T2-w and CE-MRI could impair 2 nd -and 3 rd -order features extraction. On ADC maps from DWI MRI however, there is no slice gap and this parameter was highlighted as one of the most efficient. In addition, all MRI pre-treatment were realized in the same center and with same acquisition and reconstruction protocols were used (supplemental material table 1) which limits the problems of reproducibility of radiomics features in MRI in particular as regards the geometric distortions. Finally, only primary tumors were characterized.

Beyond these potential sources of bias, radiomics is a promising approach but still suffers from inherent limitations which will need to be addressed before it can be used in clinical practice. Among these, the repeatability and robustness of the procedure has to be improved. Accurate segmentation is an important step of the feature extraction, as radiomics are derived from segmented volumes of interest. Manual delineation is a straightforward solution, but is very time consuming and suffers from high inter-and intra-observer variability [START_REF] Eminowicz | Variability of clinical target volume delineation for definitive radiotherapy in cervix cancer[END_REF]. Validated automatic or semi-automatic segmentation was used in our study to minimize manual input and increase consistency. The volumes derived from each image modality showed no significant differences (supplemental material figure 2C). In addition, the two features retained show low correlation with tumor volume and other clinical factors (supplemental material figure 1). 3D Slicer TM and the Growcut algorithm used are available for free and require minimal inputs from the user [START_REF] Egger | GBM volumetry using the 3D Slicer medical image computing platform[END_REF]. Although FLAB is not freely available, other efficient PET segmentation tools are available in clinical stations, such as adaptive thresholding or gradient-based method [START_REF] Hatt | Classification and evaluation strategies of auto-segmentation approaches for PET: Report of AAPM task group No. 211[END_REF], and our results should therefore be reproducible by others.

The choice of the optimal cut-off to stratify patients into a binary model can impact the results. This choice can be dependent on the training dataset and thus, hardly applicable to an external population. To confirm the predictive value of the features identified in a cohort, validation on an external cohort of patients is considered the gold standard [START_REF] Yip | Applications and limitations of radiomics[END_REF][START_REF] Hatt | Characterization of PET/CT images using texture analysis: the past, the present... any future?[END_REF]. If this type of validation is not feasible, the best approach is to divide the available patients into training and testing sets, as we did. Validation of our findings is currently underway in a cohort of patients from a different clinical center.

Other factors such as image acquisition parameters [START_REF] Galavis | Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters[END_REF], tumor volume [START_REF] Hatt | 18F-FDG PET uptake characterization through texture analysis: investigating the complementary nature of heterogeneity and functional tumor volume in a multi-cancer site patient cohort[END_REF], grey-level discretization and other pre-processing steps [START_REF] Yip | Applications and limitations of radiomics[END_REF][START_REF] Hatt | Characterization of PET/CT images using texture analysis: the past, the present... any future?[END_REF] can influence radiomics findings. Acquisition parameters for both PET and MRI images were the same for all patients. One of the most important confounding factors in radiomics studies is the volume (i.e. the number of voxels). For PET radiomics specifically, textural features are unlikely to provide complementary information with respect to volume for the smallest lesions, due to the combination of the limited spatial resolution of PET imaging with the large voxel size sampling, leading to a small number of voxels to perform texture analysis. Although it has been suggested that a lower limit could be as high as 45 cm 3 based on entropy GLCM [ref Brooks], later studies have shown that this lower limit actually varies depending on the feature and the methodological choices for its calculation, such as the grey-levels discretization method or the texture matrices design, suggesting a lower limit around 5 to 10 cm 3 instead, although this may not be applicable to all cases. Therefore it is rather recommended to include volume in the multivariate analysis, to report correlations and investigate the potential bias of the inclusion of the smallest volumes in the analysis [ref 29 , 31]. In our study, the range of considered volumes was 5-97 cm 3 with rather large mean and median values of 33 and 27 cm 3 respectively, which corresponds to 625 voxels for the smallest volume but a mean and median number of 4171 and 3381 voxels respectively. In addition, GLNU GLRLM -Q E showed limited correlation with PET volume and had similar value in both training and testing sets for tumors below or above thresholds of 45 or 20 cm 3 (supplemental table 3 and supplemental figures 3 and 4). Although tumor volume or intensity-based measurements from both PET and MRI sequences were correlated with the endpoints they had insufficient predictive power compared to higher order radiomics features to be retained in the univariate analysis. In addition, the levels of correlation the retained features exhibit with volume or other confounding factors demonstrate they are not merely surrogates of usual variables (see supplemental material). This shows that the radiomics features we identified provide complementary information with respect to volume in both PET and MRI and that there is no bias in our results coming from the inclusion of the smallest lesions.

In most studies, the number of features is often far greater than the number of patients included, potentially leading to a high risk of false positive-rate, as recently highlighted [START_REF] Yip | Applications and limitations of radiomics[END_REF][START_REF] Chalkidou | False Discovery Rates in PET and CT Studies with Texture Features: A Systematic Review[END_REF][START_REF] Hatt | Characterization of PET/CT images using texture analysis: the past, the present... any future?[END_REF]. There is no consensus about the unsupervised approach to obtain the best results. A recent study investigated a large panel of machine-learning approaches for radiomics-based survival prediction, considering both features selection and classification methods [START_REF] Parmar | Machine Learning methods for Quantitative Radiomic Biomarkers[END_REF]. Their variability analysis pointed out that the choice of the classification method has the highest impact on performance variation in predicting the OS (more than 30% of the total variation), with respect to the choice of features selection method (only 6% of variation). In our study we could obtain near-perfect accuracy by using only the one or two parameters that remained significant after correction for multiple testing, and the use of advanced machine learning was thus deemed not necessary.

We identified features with high predictive power regarding tissue response to radiation, however the biological interpretation of these features remains an area of active investigations [START_REF] Incoronato | Radiogenomic Analysis of Oncological Data: A Technical Survey[END_REF][START_REF] Smith | Integrated genomic and molecular characterization of cervical cancer[END_REF]. As first elements of interpretation, PET GLNU GLRLM-Q E and ADC Entropy GLCM-Q F are both computed on functional imaging. Entropy GLCM-Q F calculated on the ADC map derived from DWI MRI could be linked to a cellularity heterogeneity and expression of growth factor. PET GLNU GLRLM-Q E might be associated to a necrosis heterogeneity and expression of vascular growth factor. More comprehensive assessment of the molecular features of patients based on tumor specimen characterization and noninvasive molecular imaging approaches are required to further investigate these hypotheses [START_REF] Incoronato | Radiogenomic Analysis of Oncological Data: A Technical Survey[END_REF][START_REF] Smith | Integrated genomic and molecular characterization of cervical cancer[END_REF].

CONCLUSIONS

Radiomics features such as GLNU GLRLM on 18 F-FDG PET and Entropy GLCM on ADC maps derived from DW-MRI were independent prognostic factors for disease outcome in LACC patients undergoing CRT, with significantly higher value than conventional factors. The identification of high-risk patients at diagnosis can allow tailored treatments involving higher doses of radiation boost, consolidation chemotherapy, and/or adjuvant hysterectomy, when indicated, and should be confirmed in external cohorts and prospective studies. The biological interpretation of radiomics remains an open question warranting further investigation.
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 2 Figure 2: Kaplan-Meier estimates of disease-free survival (training set) according to (A) ADC Entropy GLCM , (B) CE-MRI RLVAR GLRLM , (C) FIGO stage, (D) tumor size, (E) N stage and (F) metabolic response from PET/CT (assessed 2 to 3 months after treatment completion). (G) Comparison of ROC curves for ADC Entropy GLCM in comparison with clinico-pathological features.A
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 456 Figure 4: Prediction of disease-free survival in the testing set according to ADC Entropy GLCM with (A) ROC curve and (B) resulting Kaplan-Meier curve. A

Table 1 : Patients' characteristics

 1 

	Training set		Testing set	Difference
				(p-value)
	n=69	%	n=33	%

Table 2 : Univariate and multivariate analysis for disease-free survival

 2 

	Variables		Univariate analysis		Multivariate analysis
		HR	95% CI	p	HR	95% CI	p
	Histology (SCC vs. no SCC)	2.34	0.82-6.68	0.04	-	-	-
	FIGO stage (I-II vs. III-IV)	3.33	1.29-8.62	0.0014	-	-	-
	Tumor size (≤4.8 cm vs. >4.8 cm)	2.83	1.29-6.21	0.014	-	-	-
	Nodal stage (N1 vs. N0)	3.21	1.47-7.04	0.0081	-	-	-
	Post-treatment metabolic response	4.31	1.82-10.26	0.0001	-	-	-
	(CMR vs. no CMR)						
	Volume PET (≤30 cc vs. >30 cc)	2.09	0.94-4.62	0.06	-	-	-
	Volume DWI-MRI (≤31 cc vs. >31 cc)	2.38	0.97-4.91	0.06	-	-	-
	SUV min (≤5.9 vs. >5.9)	0.8	0.53-1.64	0.16	-	-	-
	SUV max (≤23 vs. >23)	0.53	0.23-1.24	0.2	-	-	-
	ADC min (≤91 vs. >91)	1.73	0.71-3.67	0.1	-	-	-
	ADC max (≤2389 vs. >2389)	1.89	0.79-3.81	0.09	-	-	-
	ADC Entropy GLCM-Q F	34.18	13.85-84.34 <0.00001 30.95 7.01-136.59 <0.00001
	CE-MRI RLVAR GLRLM-Q L	16.64	5.95-46.53 <0.00001 11.33 3.29-39.03	0.0001
	PET GLNU GLRLM-Q E	5.39	2.33-12.47	<0.00001	-	-	-
	T2 LZLGE GLSZM-Q F	5.08	2.11-11.93	<0.00001	-	-	-
	ADC Inverse variance GLCM-Q F	5.03	2.05-11.78	<0.00001	-	-	-

Table 3 : Univariate and multivariate analysis for loco-regional control

 3 

	Variables		Univariate analysis		Multivariate analysis
		HR	95% CI	p	HR	95% CI	p
	Histology (SCC vs. non SCC)	2.48	0.64-9.61	0.09	-	-	-
	FIGO stage (I-II vs. III-IV)	3.27	0.95-11.28	0.019	-	-	-
	Tumor size (≤4.8 cm vs. >4.8 cm)	4.73	1.57-14.21	0.0037	-	-	-
	Nodal stage (N1 vs. N0)	3.35	1.17-9.55	0.048	-	-	-
	Post-treatment metabolic response	5.87	1.87-18.45	0.0007	-	-	-
	(CMR vs. no CMR)						
	Volume PET (≤30 cc vs. >30 cc)	2.49	0.66-9.63	0.08	-	-	-
	Volume DWI-MRI (≤31 cc vs. >31 cc)	2.59	0.73-9.81	0.06	-	-	-
	SUV min (≤5.9 vs. >5.9)	1.21	0.49-7.13	0.22	-	-	-
	SUV max (≤23 vs. >23)	1.04	0.37-6.85	0.29	-	-	-
	ADC min (≤91 vs. >91)	2.26	0.51-9.46	0.11	-	-	-
	ADC max (≤2389 vs. >2389)	2.38	0.57-9.55	0.1	-	-	-
	ADC Entropy GLCM-Q F	28.10	9.11-86.66	<0.00001 16.35 2.10-126.94 0.0079
	CE-MRI RLVAR GLRLM-Q L	13.22	3.71-47.11	<0.00001	-	-	-
	PET GLNU GLRLM-Q E	33.11	10.34-106.06	<0.00001	20.01	2.59-154.89	0.0043
	ADC Inverse variance GLCM-Q F	11.53	3.50-44.84	<0.00001	-	-	-
	Abbreviations: FIGO=International Federation of Gynecology and Obstetrics, SCC= Squamous cell
	carcinoma, CMR=Complete metabolic response, GLCM=Grey-level Co-occurrence Matrix, GLRLM=
	Grey-level Run-Length matrix, GLSZM= Grey-level Size Zone matrix, RLVAR=Run Length Variance,
	GLNU=Grey-level non-uniformity, LZLGE= Large Zone Low Grey-Level Emphasis, vs= versus,	
	HR=Hazard ratio, CI=Confidence Interval, MRI= magnetic resonance imaging, CE-MRI=contrast	
	enhancement magnetic resonance imaging, PET= positron emission tomography , ADC=Apparent
	Diffusion Coefficient						

Hazard ratio = 2.8 95% CI [1.3-6.2] P = 0.014
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Kaplan-Meier estimates of locoregional control (training set) according to (A) PET GLNU GLRLM , (B) the combination of ADC Entropy GLCM and PET GLNU GLRLM , (C) FIGO stage, (D) tumor size, (E) N stage and (F) metabolic response from PET/CT (assessed 2 to 3 months after treatment completion). (G) Comparison of ROC curves for PET GLNU GLRLM in comparison with clinico- pathological features.
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  The first step separates patients into two groups: low (first group) and high risk of relapse thanks to ADC Entropy GLCM from DWI MRI. The second step further discriminates within the high-risk group between metastatic (second group) or pelvic (third group) relapse. The first group would not require additional treatment. The second group could benefit from a complementary systemic treatment, and the third group could be treated with an additional locoregional treatment (like surgery or additional boost in brachytherapy).
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