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Abstract  

 

Introduction: Automatic functional volume segmentation in PET images is a challenge that has been 

addressed using a large array of methods. A major limitation for the field has been the lack of a 

benchmark dataset that would allow direct comparison of the results in the various publications. In 

the present work, we describe a comparison of recent methods on a large dataset following 

recommendations by the American Association of Physicists in Medicine (AAPM) task group (TG) 211, 

which was carried out within a MICCAI (Medical Image Computing and Computer Assisted 

Intervention) challenge. 

Materials and methods: Organization and funding was provided by France Life Imaging (FLI). A 

dataset of 176 images combining simulated, phantom and clinical images was assembled. A website 

allowed the participants to register and download training data (n=19). Challengers then submitted 

encapsulated pipelines on an online platform that autonomously ran the algorithms on the testing 

data (n=157) and evaluated the results. The methods were ranked according to the arithmetic mean 

of sensitivity and positive predictive value. 

Results: Sixteen teams registered but only four provided manuscripts and pipeline(s) for a total of 10 

methods. In addition, results using two thresholds and the Fuzzy Locally Adaptive Bayesian (FLAB) 

were generated. All competing methods except one performed with median accuracy above 0.8. The 

method with the highest score was the convolutional neural network-based segmentation, which 

significantly outperformed 9 out of 12 of the other methods, but not the improved K-Means, 

Gaussian Model Mixture and Fuzzy C-Means methods. 

Conclusion: The most rigorous comparative study of PET segmentation algorithms to date was 

carried out using a dataset that is the largest used in such studies so far. The hierarchy amongst the 

methods in terms of accuracy did not depend strongly on the subset of datasets or the metrics (or 

combination of metrics). All the methods submitted by the challengers except one demonstrated 

good performance with median accuracy scores above 0.8. 

Keywords: PET functional volumes ; image segmentation ; MICCAI challenge ; Comparative study. 
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Introduction 

Positron Emission Tomography (PET) / Computed Tomography (CT) is established today as an 

important tool for patients management in oncology, cardiology and neurology. In oncology 

especially, fluorodeoxyglucose (FDG) PET is routinely used for diagnosis, staging, radiotherapy 

planning, and therapy monitoring and follow-up (Bai et al., 2013). After data acquisition and image 

reconstruction, an important step for exploiting the quantitative content of PET/CT images is the 

region of interest (ROI) determination that allows extracting semi-quantitative metrics such as mean 

or maximum standardized uptake values (SUV). SUV is a normalized scale for voxel intensities based 

on patient weight and injected radiotracer dose (other variants of SUV normalization exist) (Visser et 

al., 2010).  

More recently, the quick development of the radiomics field in PET/CT imaging also involves the 

accurate, robust and reproducible segmentation of the tumor volume in order to extract numerous 

additional features such as 3D shape descriptors, intensity- and histogram-based metrics and 2nd or 

higher order textural features (Hatt et al., 2017b). 

Automatic segmentation of functional volumes in PET images is a challenging task, due to their low 

signal-to-noise ratio (SNR) and limited spatial resolution associated with partial volume effects, 

combined with small grid sizes used in image reconstruction (hence large voxel sizes and poor spatial 

sampling). Manual delineation is usually considered poorly reproducible, tedious and time-

consuming in medical imaging, and this is especially true in PET and for 3D volumes (Hatt et al., 

2017a). This imposed the development of auto-segmentation methods. Before 2007, most of these 

methods were restricted to selecting some kind of binary threshold of PET image intensities, such as 

for example a percentage of the SUVmax, absolute threshold of SUV, or adaptive thresholding 

approaches taking into account the background intensity and/or the contrast between object and 

background (Dewalle-Vignion et al., 2010). Adding dependency on the object volume resulted in the 

development of iterative methods (Nehmeh et al., 2009). However, most of these approaches were 

designed and optimized using simplistic objects (mostly phantom acquisitions of spherical 

homogenous objects in homogeneous background) and usually fail to accurately delineate real 

tumors (Hatt et al., 2017a). After 2007 studies began investigating the use of other image processing 

and segmentation paradigms to address the challenge and over the last 10 years, dozens of methods 

have been published relying on various image segmentation techniques or combinations of 

techniques from broad categories (thresholding, contour-based, region-based, clustering, statistical, 

machine learning…) (Foster et al., 2014; Hatt et al., 2017a; Zaidi and El Naqa, 2010). One major issue 

that has been identified is the lack of a standard (or benchmark) database that would allow 
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comparing all methods on the same datasets (Hatt et al., 2017a). Currently, most published methods 

have been optimized and validated on a specific, usually home-made, dataset. Such validations, 

considering only a single class of data amongst clinical, phantom or simulated images is lacking rigor 

due to the imperfections inherent for each class: unreliable ground-truth (e.g. manual delineation of 

a single expert or CT-derived volumes in clinical images) or unrealistic objects (perfect spheres, very 

high contrast, low noise, no uptake heterogeneity) (Hatt et al., 2017a). Typically, no evaluation of 

robustness versus scanner acquisition or reconstruction protocols and no evaluation of repeatability 

are performed (Hatt et al., 2017a). The reimplementation of methods by other groups can also be 

misleading (Hatt and Visvikis, 2015). 

As a result, there is still no consensus in the literature about which methods would be optimal for 

clinical practice, and only a few commercial products include more advanced techniques than 

threshold-based approaches (Hatt et al., 2017a). In order to improve over this situation, task group 

n° 2111 (TG211) of the American Association of Physicists in Medicine (AAPM) has worked since 2011 

on the development of a benchmark as well as on proper validation guidelines, suggesting 

appropriate combination of datasets and evaluation metrics in its recently published report (Hatt et 

al., 2017a). Another paper was also published to describe the design and the first tests of such a 

benchmark that will eventually be available to the community (Berthon et al., 2017). 

To date there has been a single attempt at a challenge for PET segmentation. It was organized by 

Turku University Hospital (Finland) and the results were published as a comparative study (Shepherd 

et al., 2012). Although 30 methods from 13 institutions were compared, the dataset used had limited 

discriminative power as it contained only 7 volumes from 2 images of a phantom using glass inserts 

with cold walls, which can lead to biased results (Berthon et al., 2013; Hofheinz et al., 2010; van den 

Hoff and Hofheinz, 2013) and 2 patient images. On the other hand, MICCAI (Medical Image 

Computing and Computer Assisted Intervention) has organized numerous segmentation challenges2 

over the years, but none of them addressed tumor delineation in PET images. 

France Life Imaging (FLI)3, a national French infrastructure dedicated to in vivo imaging, decided to 

sponsor two segmentation challenges for the MICCAI 2016 conference. One was dedicated to PET 

image segmentation for tumor delineation. It was funded by FLI and jointly organized with TG211 

members, who provided datasets from the future AAPM benchmark as well as evaluation guidelines. 

One novel aspect of these FLI-sponsored challenges was the development and exploitation of an 

online platform to autonomously run the algorithms and generate segmentation results 

                                                           
1
 https://aapm.org/org/structure/default.asp?committee_code=TG211 

2
 https://grand-challenge.org/All_Challenges/ 

3
 https://www.francelifeimaging.fr/ 

https://aapm.org/org/structure/default.asp?committee_code=TG211
https://grand-challenge.org/All_Challenges/
https://www.francelifeimaging.fr/
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automatically without user intervention. The main goals of this challenge was to compare state-of-

the-art PET segmentation algorithms on a large dataset following recommendations by the TG211 in 

terms of datasets and evaluation metrics, and to promote the online platform developed by FLI. 

The present paper aims at presenting this challenge and its results. 

Materials and methods 

1. Challenge organization and sponsorship 

The sponsorship and funding source for the challenge and the development of the platform used was 

the IAM (Image Analysis and Management) taskforce of FLI. Members of TG211 provided 

methodological advice, evaluation guidelines, as well as training and testing datasets. A 

scientific/clinical advisory board and a technical board were appointed (table 1). 
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Table 1: members of the scientific/clinical and technical boards. 

Name Institution 

Scientific / clinical advisory board 

Dimitris Visvikis INSERM, Brest, France - TG211 and FLI 

Mathieu Hatt INSERM, Brest, France - TG211 and FLI 

Assen Kirov MSKCC, New-York, USA (Chair of TG211) 

Federico Turkheimer King’s College, London, UK 

Technical board 

Frederic Cervenansky Université Claude Bernard, Lyon, France 

Tristan Glatard CNRS, Lyon, France (VIP) 

Concordia University, Montreal, Canada 

Michael Kain INRIA, Rennes, France - FLI-IAM 

Baptiste Laurent INSERM, Brest, France - FLI-IAM 

 

A web portal4 was built to present and advertise the challenge and to allow participants to register 

and download training data. Shanoir (SHAring NeurOImaging Resources)5 served as central database 

to store all datasets, all processed results and scores. Shanoir is an open source platform designed to 

share, archive, search and visualize imaging data (Barillot et al., 2016). It provides a user-friendly 

secure web access and a workflow to collect and retrieve data from multiple sources, with a specific 

extension to manage PET imaging developed for this challenge. The pipeline execution platform was 

developed within the Virtual Imaging Platform6 (VIP) (Glatard et al., 2013) by FLI-IAM engineers. VIP 

is a web portal for medical simulation and image data analysis. In this challenge, it provided the 

ability to execute all the applications and the metrics computation in the same environment, 

ensuring equity among challengers and results reproducibility.  

                                                           
4
 https://portal.fli-iam.irisa.fr/petseg-challenge/overview 

5
 https://shanoir-challenges.irisa.fr 

6
 https://www.creatis.insa-lyon.fr/vip/ 

https://portal.fli-iam.irisa.fr/petseg-challenge/overview
https://shanoir-challenges.irisa.fr/
https://www.creatis.insa-lyon.fr/vip/
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2. Datasets and evaluation methodology 

2.1 Overall objectives and methodology 

The present challenge was focused on PET-only segmentation (no PET/CT multimodal segmentation) 

and on the evaluation of the accuracy (not robustness or repeatability) in delineating isolated solid 

tumor (no diffuse, multi-focal disease). It was also focused on static PET segmentation (no dynamic 

PET). 

TG211 recommends the combined use of three types of datasets for PET segmentation validation: 

synthetic and simulated images, phantom acquisitions, and real clinical images (Berthon et al., 2017; 

Hatt et al., 2017a). Each category of image has a specific associated ground-truth (or surrogate of 

truth), with advantages and drawbacks, which make them complementary for a comprehensive and 

rigorous evaluation of the methods accuracy (table 2). 

Table 2: A summary of the types of PET images used for validation. 

Type of images Associated 

ground-truth 

or surrogate of 

truth 

Realism of 

image 

characteristics 

Realism of 

tumors 

Computati

onal time 

Convenience 

Synthetic 

images (no 

simulation of 

physics beyond 

addition of blur 

and noise to the 

ground-truth) 

Perfect (voxel-

by-voxel) 

Low Low to high. 

Depends on 

the digital 

phantom 

used. 

Low Easy to produce 

in large 

numbers. 

Simulated 

images (e.g. 

with GATE (Le 

Maitre et al., 

2009; 

Papadimitroulas 

et al., 2013) or 

SIMSET 

Perfect (voxel-

by-voxel) 

Medium to 

High 

Low to high. 

Depends on 

the digital 

phantom 

used. 

High Implementation 

is not 

straightforward. 

Time 

consuming. 

A proprietary 

reconstruction 
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(Aristophanous 

et al., 2008)) 

algorithm is not 

easily available. 

Physical 

phantom 

acquisitions 

Imperfect 

(relies on 

known 

geometrical 

properties + 

associated high 

resolution CT). 

High (real) Usually 

simplified 

objects. 

Depends on 

the physical 

phantom 

used. 

N/A Requires access 

to a real scanner 

and phantom. 

Can be time 

consuming. 

Clinical images Approximate High (real) High (real) N/A Rare datasets, 

difficult to 

generate. 

Digitized 

histopathology 

measurements 

are full of 

potential errors. 

Approximate 

(Consensus of 

manual 

delineations by 

several 

experts). 

High (real). High (real). N/A At least three 

manual 

contours are 

recommended. 

Time 

consuming. 

 

With the help from contributing members of TG211, the following dataset was assembled: 70 

synthetic and simulated (GATE, SIMSET) images (Aristophanous et al., 2008; Le Maitre et al., 2009; 

Papadimitroulas et al., 2013), 75 physical zeolites physical phantom images (different acquisitions of 

the same phantom containing 11 different zeolites, for which the ground-truth is obtained by 

thresholding the associated high resolution CT) (Zito et al., 2012) and 25 clinical images, 19 with 

volumes reconstructed from histopathology slices (Geets et al., 2007; Wanet et al., 2011) and 6 with 

statistical consensus (generated with the STAPLE algorithm (Warfield et al., 2004)) of three manual 

delineations (Lapuyade-Lahorgue et al., 2015). All the 176 tumors were isolated in a volume of 
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interest (VOI) containing only the tumor and its immediate surrounding background. For simulated 

cases as well as for clinical cases with manual segmentation, the ground-truth was generated for the 

metabolically active volume, i.e. excluding areas with uptake similar as the background or without 

uptake. The training dataset contained such cases. Table 3 provides more details for each category. 

Table 3: Details of the dataset 

Type of 

images 

Number of 

images 

Details Provided by 

Training 

19 

Testing 

157 

Synthetic 

and 

simulated  

2 12 Synthetic  M. Hatt and D. Visvikis, LaTIM, 

France 

2 10 Simulated with GATE 

(Papadimitroulas et al., 2013)  

M. Hatt and D. Visvikis, LaTIM, 

France 

2 48 Simulated with SIMSET 

(Aristophanous et al., 2008)  

M. Aristophanous, MD 

Anderson, Texas, USA 

Physical 

phantom 

9 

(3×3) 

66 

(6×11) 

Six different acquisitions of 11 

zeolites (no cold walls) of various 

shapes and sizes (Zito et al., 

2012)  

E. De Bernardi, Italy 

Clinical 

images 

3 16 Images of head and neck or lung 

tumors with histopathology 

(Geets et al., 2007; Wanet et al., 

2011)  

J. A. Lee, UCL, Belgium 

1 5 Images of lung tumors with  

consensus of manual 

delineations (Lapuyade-Lahorgue 

et al., 2015)  

Catherine Cheze Le Rest, CHU 

de Poitiers, France 
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2.2 Challengers pipelines integration 

Contrary to testing data which was never available to challengers, a training subset representative of 

the whole dataset (6 synthetic and simulated, 9 phantom and 4 clinical images provided with their 

associated ground-truth) was made available for download to all registered participants so they 

could evaluate and optimize their algorithm(s) offline, on their own systems. All submitted methods 

had to be fully automated, including for parameters initialization, as they had to be run automatically 

without user intervention on the platform. 

Pipeline integration and validation in VIP happened as follows. First, challengers bundled their 

applications in Docker containers7 (Merkel, 2014), to facilitate installation on the remote platform 

and to ensure reproducibility. Docker containers were annotated with JSON (JavaScript Object 

Notation) files complying with the Boutiques format8. JSON is a versatile format, allowing for a 

standard description of the command line used to launch applications, enabling thus their automated 

integration in VIP. The VIP team transferred input data from the Shanoir database9 and executed the 

pipelines on training data (available to the challengers) to ensure that the results were consistent 

with the ones computed by the challengers in their own environments. Finally, the VIP team 

executed the pipelines on the evaluation data without intervention from the challengers, computed 

the associated accuracy metrics, and transferred the results back to the Shanoir database. Data were 

transferred between VIP and Shanoir because VIP was exploited as a computing platform. Figure 1 

illustrates the overall workflow. 

                                                           
7
 https://docker.com 

8
 http://boutiques.github.io 

9
 https://shanoir.irisa.fr/Shanoir/ 

https://docker.com/
http://boutiques.github.io/
https://shanoir.irisa.fr/Shanoir/
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Figure 1: Illustration of the overall challenge workflow. In red, the preparation of the data by the FLI and VIP engineers. In blue, the training phase (challengers 

download training data and train algorithms). In green, the actual testing phase: challengers encapsulate their algorithm(s) to be run on the platform, which 

automatically extracts the segmentation results and evaluates them with the various metrics, then uploads them back into Shanoir. 
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2.3 Accuracy evaluation and comparison of methods 
In order to evaluate the accuracy of each method, numerous metrics can be considered, including 

volume difference, barycenter distance, Jaccard and Dice coefficients, contour mean distance (CMD), 

or the combination of sensitivity (SE) and positive predictive value (PPV). As recommended by the 

TG211 we used the combination of SE and PPV as it provides the most comprehensive information 

on location, size and shape, as well as information regarding false positives and false negatives, for a 

moderate complexity (Hatt et al., 2017a). 

Without consideration for a specific clinical application, both SE and PPV are equally important. 

Creating a single accuracy score to rank the methods thus led us to use the score=0.5×SE+0.5×PPV. 

On the other hand, the use of PET functional volumes for different clinical applications could lead to 

consider either SE or PPV to be more important (Hatt et al., 2017a). For instance, in radiotherapy 

planning, the objective is to reduce the risk of missing the target, even if it means delivering higher 

dose to the surrounding healthy tissues and organs-at-risk. Therefore in that case SE could be 

considered more important than PPV. We thus considered an alternative scoreRT=0.6×SE+0.4×PPV. 

On the contrary, for therapy follow-up the goal is to obtain consistent volume measurements in 

sequential PET scans and to avoid including background/nearby tissues in the quantitative 

measurements used to quantify the tumor characteristics, even if it means risking under-evaluation 

of the true spatial extent of the volume of interest. As a result, PPV could be considered more 

important than SE, and we thus considered a third score denoted scoreFU=0.4×SE+0.6×PPV. The 

values 0.4 and 0.6 were chosen arbitrarily on the basis that 0.45 and 0.55 would not lead to 

substantial changes in the scores, whereas 0.35 and 0.65 or 0.3 and 0.7 would put too much 

emphasis on one metric. Since neither of these 3 scores have clinical backing at present, they should 

be regarded as examples for potential clinically derived scores in analogy with the medical 

consideration functions (Kim et al., 2015). Results according to these alternate weights, as well as 

Jaccard, Dice and CMD are provided in the appendix (table A1). 

The following analyses were carried out: comparing the methods on the entire dataset, as well as 

separately on each category of images (simulated, phantom, clinical), according to score, SE and PPV. 

Finally, two different consensuses of the segmentations were generated through majority voting and 

STAPLE (Dewalle-Vignion et al., 2015; McGurk et al., 2013). 

Ranking of the methods and statistical superiority was determined with the Kruskal-Wallis test. This 

is an extension of the Man-Whitney rank-sum tests for more than 2 groups that does not assume a 

normal distribution and is not based only on the mean or median accuracy but takes into account the 

ranking of all points. Hence methods can be ranked higher even with a slightly lower mean or median 
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accuracy, if they achieve more consistent (tighter distributions) accuracy. P-values below 0.01 were 

considered significant. 

3. Challengers and methods 

Sixteen different teams from 7 countries initially registered and downloaded the training dataset. 

Only 4 teams from 4 countries (2 from France, 1 from Poland, and 1 from China and USA) submitted 

papers and thereby provided a commitment to continue with the testing phase (table 4). Out of the 

12 teams that did not continue after the training phase, 5 justified their choice by the fact they did 

not have the time and/or manpower to deal with the pipeline integration and following up the 

various tasks. The 7 others did not provide explanation. Some teams submitted several different 

methods and as a result 10 pipelines were integrated. In addition, the results of three additional 

methods were generated (in fully automatic mode without user intervention for a fair comparison) 

for reference: two fixed thresholding at 40% and 50% of the maximum, and the fuzzy locally adaptive 

Bayesian (FLAB) algorithm (Hatt et al., 2009, 2010). FLAB was included in addition to both fixed 

thresholds in order to provide a comparison with a well-known method that has previously 

demonstrated higher accuracy than fixed-thresholds, as it was not possible to include an adaptive 

threshold method due to the heterogeneity of the datasets in terms of image characteristics. In total, 

the results of 13 methods were produced and compared in the present analysis.  

Table 4: Team members, affiliations, country and implemented methods. 

Team Members Institution(s) Country Implemented methods 

1 A. Ouahabi 

V. Jaouen 

M. Hatt 

D. Visvikis 

H. Fayad 

LaTIM, INSERM UMR 

1101, Brest 

France Ant colony optimization 

(ACO) algorithm (Fayad et al., 

2015) 

With two different 

initialization schemes 

2 S. Liu 

X. Huang 

L. Li 

Key Laboratory of Image 

Processing and Intelligent 

Control of Ministry of 

Education of China. 

School of Automation, 

China 

USA 

Random forest (RF) exploiting 

image features 

(Breiman, 2001) 
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W. Lu 

S. Tan 

Huazhong University of 

Science and Technology, 

Wuhan 430074 

Memorial Sloan-Kettering 

Cancer Center, New-York 

Adaptive region growing 

(ARG) 

(Tan et al., 2017) 

3 V. Jaouen 

M. Hatt 

H. Fayad 

C. Tauber 

D. Visvikis 

LaTIM, INSERM UMR 

1101, Brest 

France Gradient-aided region-based 

active contour (GARAC)  

(Jaouen et al., 2014) 

4 J. Czakon 

F. Drapejkowski 

G. Żurek 

P. Giedziun 

J. Żebrowski 

W. Dyrka 

Stermedia Sp. z o. o., ul. 

A. Ostrowskiego 13, 

Wroclaw 

Lower Silesian Oncology 

Center, Department of 

Nuclear Medicine - PET-

CT Laboratory, Wroclaw 

Poland Spatial distance weighted 

fuzzy C-Means (SDWFCM) 

(Guo et al., 2015) 

Convolutional neural network 

(CNN) 

(Duchi et al., 2011; Krizhevsky 

et al., 2012) 

Dictionary model (DICT) 

(Dahl and Larsen, 2011) 

Gaussian mixture model 

(GMM)  

(Aristophanous et al., 2007) 

K-Means (KM) clustering 

(Arthur and Vassilvitskii, 

2007) 
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FLI  B. Laurent LaTIM, INSERM UMR 

1101, Brest 

France Fixed threshold at 40 and 

50% of SUVmax 

FLAB 

(Hatt et al., 2009, 2010) 

 

3.1 Short description of each method 

3.1.1 Methods implemented by challengers 

a. Ant colony optimization (ACO) 

ACO is a population-based model that mimics the collective foraging behavior of real ant colonies. 

Artificial ants explore their environment (in the present case the PET volume) in quest for food (the 

aimed functional volume) and exchange information through iterative update of pheromone 

quantitative information, which attracts other ants along their path. The food source was initialized 

in two different ways. The ACO(s) is the static version initializing the food as a r-radii neighborhood 

Nr(o) around voxels of intensity 70% of the maximum of the SUV. The ACO(d) is the dynamic version 

of the algorithm relying on the Otsu thresholding (Otsu, 1979) for the initialization to extract a case-

specific food comparison value (70% in the case of the static version). Unlike global thresholding, 

local neighborhood analysis is exploited to enhance the spatial consistency of the final volume. After 

convergence, a pheromone map is obtained with highest density in the estimated volume. The 

method was initially developed using 2 classes (Fayad et al., 2015), which was the version entered in 

the present challenge. The algorithm was applied with its original parametrization without 

optimization on the training data, which was simply analyzed to verify the algorithm generated 

expected results. 

b. Random forest (RF) on image features 

This is a supervised machine learning algorithm using Random Forest (RF). The core idea is to 

consider the PET segmentation problem as a two-class classification problem, in which each voxel is 

classified as either the tumor or the background based on image features. The RF is a combination of 

tree predictors such that each tree depends on the values of a random vector sampled 

independently and with the same distribution for all trees in the forest (Breiman, 2001). The 

algorithm follows three steps: feature extraction, training and classification. A total of 30 features 

were extracted for each voxel from its 27-neighborhood including one 27-dimension gray-level 

feature (concatenating intensities of its 27-neighborhood), one 27-dimension gradient feature 
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(concatenating the gradient magnitude of its 27-neighborhood) and 28 textural features (the mean 

and standard deviation of 14 attributes, i.e. Angular Second Moment (Energy), Contrast, Correlation, 

Variance, Inverse Difference Moment (Homogeneity), Sum Average, Sum Variance, Sum Entropy, 

Entropy, Difference Variance, Difference Entropy, Information Measure of Correlation I and II, 

Maximal Correlation Coefficient) (Haralick et al., 1973). The building and training of the RF was 

performed using the training dataset. 

c. Adaptive region growing (ARG) 

ARG is an adaptive region-growing algorithm specially designed for tumor segmentation in PET (Tan 

et al., 2017). Particularly, the ARG repeatedly applies a confidence connected region-growing (CCRG) 

algorithm with an increasing relaxing factor f. A maximum curvature strategy is used to automatically 

identify the optimal value for f as the transition point on the f-volume curve, where the volume just 

grows from the tumor into the surrounding normal tissues. This algorithm was based only on the 

assumption of a relatively homogeneous background without any assumptions regarding uptake 

within the tumor, and did not require any phantom calibration or any a priori knowledge. It is also 

insensitive to changes in the discretization step ∆f. In the present challenge, the ∆f was set to be 

0.001. There was therefore no specific tuning or training using the training dataset. 

d. Gradient-aided region-based active contour (GARAC) 

The GARAC model is a hybrid level-set 3D deformable model driven by both global region-based 

forces (Chan and Vese, 2001) and Vector Field Convolution (VFC) edge-based force fields (EBF) (Li and 

Acton, 2007). The originality of the approach lies in a local and dynamic weighting of the influence of 

the EBF term according to a blind estimation of its relevance for allowing the model to evolve toward 

the tumor boundary. Due to their local nature, EBF are more sensitive to noise and are thus not well 

defined everywhere across the PET image domain. The EBF term is locally weighted proportionally to 

the degree of collinearity between inner and outer net edge forces in the vicinity of each node of the 

discretized interface. By doing so, the model takes advantage of both global statistics for increased 

robustness while making a dynamic use of the more local edge information for increased precision 

around edges (Jaouen et al., 2014). For all images, the model was initialized as an ellipsoid located at 

the center of the field of view. The lengths of its semi-principal axes were set to one third of the 

corresponding image dimension. It was observed on the training data that the method tends to 

underestimate volumes resulting in high PPV but low SE. A 1-voxel dilatation of the resulting contour 

was considered but finally not implemented for the challenge. 

e. Spatial distance weighted fuzzy C-Means (SDWFCM) 
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The SDWFCM method is a 3D extension of the spatial fuzzy C-means algorithm (Guo et al., 2015). In 

contrast to the regular fuzzy C-means, SDWFCM adjusts similarities between each voxel and class 

centroids by taking into account their spatial distances. The initialization was naive random. 

Parameters of the algorithm, including number of clusters c=2, degree of fuzzy classification m=2, 

weight of the spatial features λ=0.5, and size of the spatial neighborhood nb=1 (Guo et al., 2015) 

were tuned by maximizing the DSC in the training set.  

f. Convolutional neural network (CNN) 

CNN is a variant of the multilayer perceptron network specialized for image processing and widely 

used in deep learning  (Krizhevsky et al., 2012; LeCun et al., 2015). Informally, CNN classifies an input 

image based on higher-level features extracted from the input using several layers of convolutional 

filters. In the current work, the input of the network is a 3D patch from the image. To account for a 

relatively small number of samples, the training dataset was artificially augmented with rotationally 

transformed samples. The network was trained using the AdaGrad stochastic gradient descent 

algorithm (Duchi et al., 2011). The final binary segmentation was reconstructed from binary labels of 

the overlapping 3D patches using the Otsu thresholding (Otsu, 1979). The best network architecture 

was selected in the 5-fold cross-validation process maximizing the DSC in the training dataset. 

g. Dictionary model (DICT) 

The DICT model is a 3D extension of a method for learning discriminative image patches (Dahl and 

Larsen, 2011). The core of the model is the dictionary of patch-label pairs learned by means of the 

vector quantization approach. The labeling algorithm assigns each image patch the binarized label of 

the most similar dictionary patch. In the present implementation, the labeling window walks voxel by 

voxel, hence the final label of each voxel is the binarized average from all labels overlapping the 

voxel. 

h. Gaussian mixture model (GMM) 

The GMM model is a well-established probabilistic generalization of the K-means clustering, which 

assumes that each class is defined by a Gaussian distribution (Aristophanous et al., 2007). 

Parameters of the distributions are estimated using the Expectation-Maximization (EM) algorithm. 

Means of the n=4 distributions were initialized using the K-means algorithm in four tries. Then, the 

EM procedure updated the distribution means during at most 100 iterations. At the end of the 

process the single most intense class was labeled as the tumor. 

i. K-Means (KM) 
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The K-means clustering algorithm was implemented with 2 clusters (k=2). The cluster means were 

initialized using the K-means++ algorithm (Arthur and Vassilvitskii, 2007). Then, the EM procedure 

was repeated 10 times for at most 100 iterations to find the best fit in terms of inertia (the within-

cluster sum-of-squares).  

Note: In the SDWFCM, DICT, GMM and KM pipelines, images with sharp intensity peaks were 

considered grainy. They were pre-processed with the Gaussian filter (except GMM) and post-

processed with the binary opening and closing, the approach which was found to maximize DSC in 

the training set. 

3.1.2 Additional methods implemented by FLI engineers for comparison 

a. Fixed threshold at 40% and 50% of the maximum 

Simple binary thresholds of intensities at respectively 40% or 50% of the single maximum value in the 

tumor. SUVmax was chosen over SUVpeak as the use of SUVmax is still more widely used in the literature 

and clinical practice. 

b. Fuzzy locally adaptive Bayesian (FLAB) 

FLAB relies on a combination of Bayesian-based statistical segmentation and a fuzzy measure to take 

into account both the spatial blur and noise characteristics of PET images when classifying a voxel in 

a given class (e.g. tumor and background). The algorithm relies on a fuzzy C-means initialization 

followed by an iterative estimation of the parameters of each class (mean and standard deviation of 

the Gaussian distribution of each class and fuzzy transition, as well as local spatial correlation 

between neighboring voxels). FLAB was initially published as a 2-class version (Hatt et al., 2009) and 

then expanded to 3 classes for highly heterogeneous lesions (Hatt et al., 2010). Most of previous 

studies relied on the user for the choice of 2 or 3 classes. In the present work, an automated 

detection of the number of classes was implemented so it could be run without user intervention, as 

the other methods implemented as pipelines. The algorithm was applied with the original 

parametrization (Hatt et al., 2010) without re-optimization using the training data. 

Results 

The quantitative results are presented with raw data (all points) over box-and-whisker plots that 

provide values for minimum and maximum, median, 75 and 25 percentiles, as well as outside values 

(below or above lower/upper quartile ± 1.5 × interquartile range) and far out values (below or above 
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lower/upper quartile ± 3 × interquartile range) that appear in red in the graphs. Results in the text 

are provided as “mean±standard deviation (median)”. 

We present the results according to accuracy score (figure 2), SE (figure 3) and PPV (figure 4). The 

results by image category are provided for each metric in figures 2b, 3b and 4b. Figure 5 shows the 

results of the two consensuses with respect to the best method. Figure 6 shows visual examples. 

Table A1 in the appendix contains statistics for all the metrics including Dice and Jaccard coefficients, 

CMD, ScoreRT and ScoreFU. 

Ranking according to accuracy score, SE and PPV 
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(a) 

 

(b) 

Figure 2: Ranking of the 13 methods according to score=0.5×SE+0.5×PPV for (a) the entire dataset and (b) by 

data category. The methods are ranked from highest to lowest performance from left to right according to 

the Kruskal-Wallis test result. Lines on top of (a) show the statistically significant superiority (p<0.01).  
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(a) 

 

(b) 

Figure 3: Ranking of the 13 methods according to SE for (a) the entire dataset and (b) by data category. The 

methods are ranked from highest to lowest performance from left to right according to the Kruskal-Wallis 

test result. Lines on top of (a) show the statistically significant superiority (p<0.01). 
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(a) 

 

(b) 

Figure 4: Ranking of the 13 methods according to PPV for (a) the entire dataset and (b) by data category. The 

methods are ranked from highest to lowest performance from left to right according to the Kruskal-Wallis 

test result. Lines on top of (a) show the statistically significant superiority (p<0.01). 
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Table 5 shows the ranking of the 13 methods according to SE, PPV and accuracy score. 

According to accuracy score, CNN was ranked first, and had a significantly higher score than the nine 

methods ranked 5th to 13th. KM, GMM and SWDFCM had slightly lower scores than CNN, but the 

difference was not significant. Both significantly outperformed ARG, RF, ACO(d), GARAC and the 

thresholds, but not SDWFCM, ACO(s), DICT and FLAB. The first four best methods had no accuracy 

result below 0.45 in the entire testing dataset and provided consistent accuracy, whereas most of the 

other methods were penalized by low accuracy for several cases and exhibited much larger spread. 

Regarding the MICCAI challenge, the methods implemented by team 4 trusted the first four places. 

Team 1 came second with ACO(s), followed by team 2 with ARG and RF and team 3 was last with 

GARAC that performed better than T50 but not T40. 

As shown in figures 3 and 4, the low accuracy of GARAC and thresholds is explained by a high PPV at 

the expense of a low SE. The most accurate methods reached a better compromise between both 

metrics. Except thresholds in the first two places, the method with the highest PPV was GARAC 

(significantly higher than all methods below except FLAB, ranked 4th). SWDFCM, KM and GMM were 

ranked 6th, 7th and 8th with significantly higher PPV than the other methods ranked below. ACO (both 

versions), RF and ARG came last in terms of PPV. The ranking according to SE was almost exactly the 

opposite of PPV, with thresholds and GARAC having the lowest values, whereas ACO(s) and CNN 

ranked 1st and 2nd, with statistically higher performance than the 10 methods below. FLAB and 

SWDFCM were in 12th and 11th position, with statistically lower SE than all methods above, but 

significantly higher than GARAC and the thresholds. 

Interestingly, the outliers and cases for which each method provided the lowest accuracy in each 

data category were almost never the same, highlighting different behaviors of the methods in their 

failures, and hinting at the potential interest of a consensus approach. Some methods also 

completely failed in some cases, which was mostly due to unexpected configurations compared to 

the training data, leading to failed initialization and/or empty (or filled) segmentation maps, leading 

to 100% specificity and 0% sensitivity (or vice-versa). 

Table 5: Ranking of the 13 methods according to SE, PPV, and accuracy score. 

Methods Ranking 

SE PPV Score 

CNN 2 8 1 
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KM 8 6 2 

GMM 7 7 3 

SDWFCM 9 5 4 

DICT 6 9 5 

ACO(s) 1 13 6 

FLAB 10 4 7 

ARG 4 11 8 

RF 5 12 9 

ACO(d) 3 10 10 

T40 11 2 11 

GARAC 12 3 12 

T50 13 1 13 

 

Consensus 

The majority voting consensus was just above the best method with a score of 0.835±0.109 (0.853) 

vs. 0.834±0.109 (0.852) for CNN. The statistical consensus using STAPLE (Warfield et al., 2004) led to 

an accuracy of 0.834±0.114 (0.848), with a slightly better ranking according to Kruskal-Wallis test 

compared to majority voting, thanks to a larger standard deviation despite slightly smaller median 

and mean values. However, both differences were small and not statistically significant (p>0.9). 
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Figure 5: Comparison of the consensuses using majority voting and STAPLE, with the best method (CNN). The 

results are ranked from highest to lowest performance from left to right according to the Kruskal-Wallis test 

result. 

Ranking of methods by data category 

As shown in figure 2b, the methods reached the highest accuracy on the simulated images (despite 

some outliers with very low accuracy in some instances), whereas lower performance was observed 

on phantom images (although with a smaller spread due to the smaller range of size and shapes 

included) and even lower performance on clinical images, with the largest spread. For example, CNN 

accuracy in simulated, phantom and clinical images was 0.901±0.074 (0.921), 0.818±0.076 (0.835) 

and 0.665±0.091 (0.678) respectively, with significant differences between the three (p<0.0001). 

Similar observations (p≤0.0007 between simulated and phantom, p<0.0001 for clinical with respect 

to both phantom and simulated) were made for all methods except two (ACO(d) and GARAC) for 

which the differences in accuracy between simulated and phantom images were not significant. 

ACO(d) had accuracy 0.781±0.156 (0.843) on simulated and 0.791±0.075 (0.806) on phantom 

(p=0.13). GARAC similarly exhibited levels of accuracy that were not significantly different between 

simulated and phantom datasets (0.710±0.206 (0.775) vs. 0.750±0.059 (0.756), p=0.19). In both cases 

however, the level of accuracy achieved in clinical images (0.633±0.104 (0.628) for ACO(d) and 

0.633±0.111 (0.632) for GARAC) was significantly lower (p≤0.0008) than in both simulated and 

phantom datasets. 
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The hierarchy between the methods observed on the entire dataset remained the same whatever 

category of images was considered, although on clinical images the differences were less striking 

because of the larger variability of accuracy. Although some methods exhibited similar (ACO(s) and 

DICT) or even better (GARAC and ACO(d)) sensitivity for clinical images than on phantom and 

simulated ones, all methods exhibited low PPV on clinical images.  

The disagreement amongst the methods was quantified with the standard deviation (SD) of the 

accuracy score. Across the entire dataset this SD was 0.098±0.066 (0.075) and again varied strongly 

between simulated, phantom and clinical images: it was the highest and with the largest spread for 

simulated images (0.123±0.080 (0.097)), whereas for phantom images the disagreement was the 

lowest and also much tighter (0.069±0.022, (0.066)). For clinical images it was intermediate but with 

a larger spread (0.108±0.074, (0.102)). Figure 5 shows representative examples of segmentation 

results with low, intermediate and high disagreement between methods that correspond to 

phantom, clinical and simulated cases respectively. 

Ranking of methods according to other performance metrics 

The hierarchy amongst methods was not strongly altered when considering Dice and Jaccard 

coefficients or CMD (see appendix table A1 for statistics). According to accuracy score with 

alternative weights (scoreRT and scoreFU for emphasis on SE or PPV respectively), the hierarchy 

between the methods remained the same although the differences between methods were either 

increased or reduced, methods with high PPV being favored according to scoreFU whereas those with 

high SE were favored according to scoreRT. 

Qualitative visual comparison 

 

 

 

Methods (a) (b) (c) 

ACO(s) 
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Consensus (majority) 

   

Consensus (STAPLE) 

   

Figure 6: Visual examples of segmentation (green contours) results from all methods and the two 

consensuses on cases with (a) high (simulated), (b) intermediate (clinical) and (c) low (phantom) 

disagreement. The red contours correspond to the ground-truth. 

Runtime 

The pipelines were not optimized for fast execution since it was not an evaluation criterion for the 

challenge. In order to accurately measure execution times, a benchmark in controlled conditions 

after the end of the challenge was conducted: a server with 1 Intel Xeon E5-2630L v4 processor 

(1.8GHz, 10 cores, 2 threads per core) and 64GB of RAM was dedicated to the benchmark. All 

pipelines were executed on all images of the testing dataset. Pipelines were executed sequentially to 

ensure no interference or overlap between executions. Execution time, CPU utilization and peak 

memory consumption were measured using Linux command "/bin/time". Tables A2, A3 and A4 in the 

appendix show the corresponding statistics. The average execution time by image across all pipelines 

was 18.9s. However, the execution time across images varied substantially as shown by the min and 

max values. On average, KM was the fastest method and ARG was the slowest. Memory 

consumption remained reasonable, although RF used more than 2 GB of RAM. ACO, on the contrary, 

used only 4MB. CPU utilization shows that some pipelines were able to exploit multiple CPU cores. 

Overall, all pipelines can run on a state-of-the-art computer. 

Discussion 

This challenge was the first to address the PET segmentation paradigm using a large dataset 

consisting of a total of 168 images including simulated, phantom and clinical images with rigorous 

associated ground-truth, following an evaluation protocol designed according to recent 
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recommendations by the TG211 (Berthon et al., 2017; Hatt et al., 2017a). Despite the small number 

of challengers, several observations can be derived from the results. 

All the methods under comparison but three performed quite well (median accuracy scores above 

0.8) given the size, heterogeneity and complexity of the testing dataset. GARAC, T40 and T50 were 

the only methods with median accuracy scores below 0.8 (0.747, 0.786 and 0.685 respectively). This 

relatively poorer performance was explained by very high PPV at the expense of low SE. Although 

some methods were clearly superior to others, overall all methods implemented by challengers 

provided satisfactory segmentation in most cases, which is encouraging regarding their potential 

transfer to clinical use. One particularly important point is that the disagreement between the 

methods was high for simulated images, but lower for clinical images. For phantom cases that are 

mostly small homogeneous uptakes, the agreement amongst methods was the highest, as could be 

expected. Our results highlight the limited performance of fixed thresholds. We hope it will 

contribute in convincing clinicians and researchers to stop using them and rely instead on more 

sophisticated methods already available in clinical practice, such as gradient-based contours and 

adaptive thresholding approaches. Amongst the best methods in the present comparative study, 

some are quite complex to implement (e.g. CNN), but for others (e.g. GMM or KM with associated 

pre- and post-processing steps) the implementation is quite straightforward. These could be made 

rapidly available to the clinical community to favourably replace basic thresholds currently still widely 

used in clinical workstations. Nonetheless, the variable level of accuracy across cases observed for all 

methods including the best ones, suggests that expert supervision and guidance is still necessary in a 

clinical context (Hatt et al., 2017a). The present results cannot be used to directly discuss a clinical 

impact of the differences between accuracy levels achieved by the methods, as this would require a 

“level III analysis”, i.e. with metrics that evaluate the clinical relevance of the disagreement between 

segmentation and ground-truth, such as the dosimetry impact in radiotherapy planning (Berthon et 

al., 2017).  

It is important to emphasize that the methods accuracy was seen to decrease along with the 

reliability of ground truth (and as the realism increased), with overall better performance on 

simulated images, compared to phantom acquisitions, and clinical images. This can be related with 

the relatively higher realism and complexity of shapes and heterogeneity of clinical images, and the 

small size of zeolites in the phantom images, compared to simulated cases. At the same time the 

relatively lower reliability of the associated ground-truth (or surrogate of truth in the case of clinical 

images) information for phantom and clinical images compared to simulated ones surely also played 

a role in this trend. In particular, the surrogate of truth from the histopathology in some of the 

clinical images appears clearly to be off with respect to the actual voxels grey-levels distribution (see 
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for example in figure 6 where the contour does not seem to accurately cover the uptake of the tumor 

especially at the borders), and it is thus not fair to expect an automatic algorithm to reach a high 

accuracy in such cases. The definition of the ground-truth for simulated and clinical cases with 

manual delineation excluded areas with uptake similar as (or lower than) the background uptake. 

Thus for the few cases with necrotic cores or areas with low uptake, methods that were able to 

exclude such areas were at an advantage. Note that the training dataset contained such a case, so 

challengers had the opportunity to take this into account. The dataset nonetheless allowed to 

highlight statistically significant differences between most of the methods. The resulting hierarchy 

did not strongly depend on either the metrics used, on the alternative weights for sensitivity and 

positive predictive values, or on the category of images (although the differences were less 

pronounced for clinical data).  

Some of the best performing methods were not necessarily the most complex ones, as SWDFCM, 

GMM and KM can be considered older and less complex than CNN, RF, FLAB or ACO. However these 

were not the “standard” versions of the algorithms, as additional pre- and post-processing steps 

(filtering before segmentation and morphological opening/closing operations after segmentation) 

were implemented and parameters were optimized on the training dataset, which was 

representative of the testing data. According to training data, the methods that benefited the most 

from these additional steps were KM and GMM that lack spatial consistency modeling. Similar 

improvements could be applied to the more sophisticated methods. For example, GARAC with a 

simple 1-voxel expansion in all directions led to significantly improved accuracy scores of 

0.765±0.192 (0.811), vs. 0.717±0.152 (0.747) (p<0.0001). This simple post-processing step would 

allow the method to rank in 8th position (just below FLAB) instead of 12th. Ideally, a more explicit 

modelling of partial volume effects in the method’s functions could lead to similar or even better 

improvement. Similarly, it was observed that the CNN segmentation results sometimes presented 

holes or irregular contours, owing to its lack of explicit spatial consistency constraints, however this 

occurred in a small number of cases and closing these holes had no statistically significant impact on 

its score. 

The various methods under comparison often provide different segmentation results for a given case 

(figure 6). Therefore the approaches combining various different segmentation paradigms, either 

through consensus (McGurk et al., 2013) or by learning automatically to choose the most appropriate 

method on a case-by-case basis such as in the ATLAAS (automatic decision tree-based learning 

algorithm for advanced image segmentation) method (Berthon et al., 2016), appear as promising 

developments for the future. In order to provide insights regarding the potential of the consensus 

approach, we generated a consensus using majority voting and STAPLE. Both were ranked just above 
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the best method and STAPLE was slightly better than majority voting, in line with previous 

observations (Dewalle-Vignion et al., 2015). However, the differences were not significant, 

highlighting the fact that although complementary, the best methods may already be close to the 

accuracy limits for the present dataset, which can also be related to the limited reliability of the 

ground-truth in some cases, especially the clinical data with histopathology surrogate of truth. It 

would also be interesting in the future to investigate if the use of the alternative approach (ATLAAS) 

could improve the results over a simple consensus. We determined that if an algorithm similar to 

ATLAAS could perfectly select the best method amongst the 13 in each case, this would lead to an 

accuracy of 0.885±0.096 (0.894), significantly higher than CNN alone or both consensuses (p<0.0001). 

We would like to emphasize that only a small subset of existing methods for PET segmentation 

(Foster et al., 2014; Hatt et al., 2017a) have been evaluated and our results do not presume about 

the potential performance of other, recently developed approaches. We can only regret that so few 

challengers confirmed their initial registration to the challenge, and we hope that in the near future 

the benchmark developed by the TG211, which will contain the same dataset as the present 

challenge, but also additional data, will provide the means for a more comprehensive evaluation and 

comparison with other methods. Although the present challenge was organized with the help of the 

TG211, the future benchmark will likely not be organized as a challenge, but rather as a tool provided 

to the community to facilitate development, evaluation and comparison of segmentation methods. 

This benchmark is expected to continuously evolve with the contributions of the community (new 

methods, data and/or evaluation metrics). Nonetheless its development will benefit from lessons 

learned in this challenge. 

The present challenge was the first to allow for running the methods on a platform without the 

possibility for the challengers to tamper with the results or optimize parameters on case-by-case 

basis, thereby ensuring a high reliability of the comparison results and conclusions. It was also 

guaranteed that the challengers’ pipelines would be run without modifications, due to their 

execution in Docker containers in a remote platform, allowing for a most rigorous comparative study. 

This obviously penalized methods that may benefit from user-intervention, such as FLAB for the 

choice of the number of classes that had to be automatized for the present implementation. ACO on 

the other hand was implemented with 2 classes only which may have hindered its performance on 

the most heterogeneous cases. Other methods could also benefit from user-guidance, especially 

regarding initialization of parameters and exclusion of non-tumor uptakes in the background. 

However, this would also introduce some user-dependency and thus potentially reduce 

reproducibility. 
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The present challenge had some limitations. Algorithms had to be implemented as non-interactive, 

automatic pipelines, which is much more time-consuming than simply downloading data for 

processing them in-house. This discouraged several challengers who had initially registered. It is also 

possible that some teams renounced participation in the challenge after observing poor performance 

of their methods on the training set. As a result, only 13 methods were included in the present 

comparative study. This is less than the previous comparative study that included 30 methods 

(Shepherd et al., 2012). However, this previous comparison was carried out on only 7 volumes from 2 

images of a phantom with cold walls glass inserts and 2 clinical images. In addition, the 30 methods 

actually consisted mostly of variants of distinct algorithm types, including for example 13 variants of 

thresholding.  

We could not include adaptive thresholds that usually provide more reliable segmentation than fixed 

thresholds because they require optimization for each specific configuration of scanner model, 

reconstruction algorithm, reconstruction parameters and acquisition protocol, which was not 

possible here given the high heterogeneity of the evaluation dataset. The future developments of the 

benchmark by the TG211 will provide new opportunities to carry out further comprehensive 

comparisons of existing methods, on an even larger training/testing database. 

Although we focused on the combination of PPV and SE to evaluate accuracy, other quantitative 

metrics were calculated and are provided in the appendix for completeness, although they did not 

lead to important changes in the ranking. Alternative metrics (Shepherd et al., 2012) or alternative 

combinations of the available metrics could be further explored in future attempts to even better 

discriminate methods.  

The present comparative analysis was also limited to accuracy evaluation, as we did not include 

evaluation of robustness and repeatability. In order to investigate these two criteria rigorously, 

numerous acquisitions of the same object with varying levels of noise, different scanner models and 

reconstruction algorithms are needed (Berthon et al., 2017; Hatt et al., 2017a). Although data exist 

that could form the basis of such benchmark, it is still insufficient at the moment to carry out a 

rigorous and comprehensive comparison like the one performed here for accuracy. For instance, the 

66 images of zeolites used in the present analysis are 6 different acquisitions of the same 11 zeolites. 

We included all 66 images in order to increase the testing samples without specifically exploiting 

them to evaluate robustness. Similarly, this was a single phantom acquired in a single scanner, and 

other types of phantom acquired in several scanners models could thus provide additional data for a 

more complete evaluation. Regarding repeatability, although we do not have specific results for 

analysis and this would require an additional study, the pipelines were all run several times each on 
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the online platform for practical reasons, as well as to measure runtimes, and no significant 

differences in performance were measured from one run to the next. 

Finally, all algorithms were run without any user intervention on images that were pre-cropped, 

containing the tumor only. In most cases, the PET segmentation algorithms assume that such a pre-

selection of the tumor to segment in the whole-body image has been performed by an expert as a 

pre-processing step, and this usually involves graphical interface and user intervention for tumor 

detection and isolation in a 3D region of interest. The present challenge did not address the issue of 

determining this ROI (automatically or manually), or the impact of the variability of its determination 

on the segmentation end results, which remains very important for clinical implementation and 

usability of the methods (Hatt et al., 2017a). Some of the methods performance could be enhanced 

by additional user intervention in defining the initial VOI, for instance to exclude nearby non-tumor 

uptake that can end up as part of the final segmented volume (see examples in figure 6). 

Conclusions  

The MICCAI 2016 PET challenge provided an opportunity to carry out the most rigorous comparative 

study of recently developed PET segmentation algorithms to date on the largest dataset (19 images 

in training and 157 in testing) so far. The hierarchy amongst the methods in terms of accuracy did not 

depend strongly on the subset of datasets or the metrics (or combination of metrics) used to 

quantify the methods accuracy. All the methods submitted by the challengers but one demonstrated 

good accuracy (median accuracy above 0.8). The CNN-based method won the challenge by achieving 

a sensitivity of 0.88±0.09 (0.90) and a positive predictive value of 0.79±0.22 (0.88). We hope the 

present report will encourage more teams to participate in future comparisons which will rely on the 

benchmark currently developed by the TG211 to better understand the advantages and drawbacks 

of the various PET segmentation strategies available to date. Such standardization is a necessary step 

to tackle more successfully the difficult problem of segmenting PET images. 
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Appendix 

Table A1: Statistics for SE, PPV, score, scoreRT, scoreFU, Dice and Jaccard coefficients and CMD. 

Methods Teams 

Sensitivity Positive predictive value Score ScoreRT ScoreFU Dice Jaccard Contour mean distance (mm) 

Mean SD Median Mean SD Median Mean SD Median Mean SD Median Mean SD Median Mean SD Median Mean SD Median Mean SD Median 

ACO (static) 

1 

0.887 0.152 0.934 0.698 0.222 0.769 0.792 0.141 0.825 0.811 0.134 0.837 0.773 0.152 0.822 0.754 0.185 0.822 0.637 0.214 0.698 2.20 2.27 1.32 

ACO (dynamic) 0.860 0.139 0.907 0.670 0.316 0.779 0.765 0.131 0.803 0.784 0.104 0.809 0.746 0.164 0.797 0.681 0.237 0.781 0.561 0.251 0.640 3.22 3.93 1.63 

RF 

2 

0.806 0.189 0.869 0.695 0.262 0.756 0.750 0.196 0.800 0.761 0.189 0.806 0.739 0.205 0.781 0.720 0.234 0.783 0.608 0.259 0.643 3.20 3.27 2.10 

ARG 0.804 0.230 0.886 0.722 0.233 0.784 0.763 0.167 0.823 0.772 0.169 0.829 0.755 0.170 0.807 0.721 0.208 0.802 0.598 0.216 0.670 3.63 4.21 2.26 

GARAC 3 0.556 0.202 0.563 0.877 0.232 0.988 0.717 0.152 0.747 0.685 0.151 0.712 0.749 0.159 0.796 0.641 0.193 0.691 0.497 0.179 0.527 2.56 1.95 1.95 

SWDFCM 

4 

0.777 0.124 0.776 0.838 0.229 0.941 0.807 0.107 0.823 0.801 0.093 0.812 0.813 0.126 0.843 0.773 0.156 0.806 0.652 0.179 0.675 1.70 1.53 1.31 

CNN 0.881 0.091 0.903 0.787 0.215 0.882 0.834 0.109 0.852 0.844 0.093 0.851 0.825 0.128 0.858 0.807 0.158 0.847 0.702 0.189 0.734 1.89 2.20 1.03 

DICT 0.793 0.227 0.861 0.763 0.258 0.878 0.778 0.202 0.818 0.781 0.200 0.827 0.775 0.207 0.826 0.752 0.217 0.806 0.638 0.215 0.675 2.23 2.68 1.36 

GMM 0.816 0.132 0.852 0.821 0.239 0.936 0.818 0.114 0.826 0.818 0.100 0.816 0.819 0.134 0.845 0.782 0.170 0.810 0.669 0.201 0.681 1.81 1.78 1.29 

KM 0.819 0.113 0.821 0.828 0.228 0.926 0.823 0.111 0.837 0.822 0.095 0.829 0.824 0.130 0.848 0.793 0.161 0.823 0.682 0.190 0.700 1.65 1.66 1.18 

T40 

Reference 

0.634 0.204 0.635 0.898 0.214 0.994 0.766 0.140 0.786 0.740 0.142 0.753 0.793 0.145 0.812 0.705 0.189 0.745 0.575 0.214 0.594 2.12 2.15 1.58 

T50 0.458 0.219 0.414 0.925 0.209 1.000 0.691 0.154 0.685 0.645 0.158 0.623 0.738 0.156 0.745 0.572 0.214 0.555 0.433 0.219 0.384 2.81 2.54 2.45 

FLAB 0.738 0.146 0.768 0.848 0.258 0.965 0.793 0.139 0.819 0.782 0.126 0.794 0.804 0.158 0.835 0.751 0.188 0.793 0.632 0.209 0.657 1.87 1.87 1.33 

Majority voting 

Consensus 

0.852 0.112 0.885 0.818 0.211 0.905 0.835 0.109 0.853 0.839 0.096 0.851 0.832 0.125 0.856 0.810 0.152 0.839 0.704 0.185 0.723 1.67 1.89 1.11 

STAPLE 0.889 0.087 0.913 0.782 0.228 0.865 0.834 0.114 0.848 0.846 0.096 0.857 0.825 0.134 0.847 0.805 0.171 0.839 0.701 0.201 0.723 1.64 1.77 1.14 



44 
 

 

 



45 
 

Table A2: pipeline CPU usage per image. Values above 100 % indicate that the pipeline used multiple 

computing cores.  

Pipeline (method) 

CPU usage (%) 

Average Min Max 

RF 83 81 87 

GARAC 98 74 135 

DICT 99 97 99 

ACO 99 99 99 

ARG 100 84 104 

KM 119 95 317 

GMM 264 149 672 

SWDFCM 312 111 511 

CNN 515 291 847 

 

Table A3: pipeline execution time per image. 

Pipeline (method) 
Execution time (seconds) 

Average Min Max 

KM 2.1 1.8 3.3 

GMM 2.5 1.9 5.4 

SWDFCM 7.7 2.4 53.7 

ACO 8.6 0.9 83.9 

RF 10.5 9.3 13.6 

DICT 12.6 3.6 110.2 

GARAC 15.7 7.0 159.5 

CNN 25.5 16.6 78.5 

ARG 84.9 14.4 699.4 
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Table A4: pipeline peak RAM use per image. 

Pipeline (method) 
Peak RAM usage (Mbytes) 

Average Min Max 

ACO 4.5 4.1 8.7 

GMM 102.3 99.9 114.9 

KM 103.1 101.4 126.4 

SWDFCM 104.1 101.9 114.0 

CNN 128.7 127.0 139.2 

DICT 152.5 152.3 152.9 

GARAC 169.4 160.9 177.9 

ARG 220.3 211.1 251.9 

RF 2 280.0 1 430.8 3 159.8 

 


