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Abstract: The intensity of a Gibbs point process is usually an intractable
function of the model parameters. For repulsive pairwise interaction point
processes, this intensity can be expressed as the Laplace transform of some
particular function. Baddeley and Nair (2012) developped the Poisson-
saddlepoint approximation which consists, for basic models, in calculat-
ing this Laplace transform with respect to a homogeneous Poisson point
process. In this paper, we develop an approximation which consists in cal-
culating the same Laplace transform with respect to a specific determinan-
tal point process. This new approximation is efficiently implemented and
turns out to be more accurate than the Poisson-saddlepoint approximation,
as demonstrated by some numerical examples.
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1. Introduction

Due to their simple interpretation, Gibbs point processes and in particular pair-
wise interaction point processes play a central role in the analysis of spatial point
patterns (see van Lieshout (2000); Møller and Waagepetersen (2004); Baddeley
et al. (2015)). In a nutshell, such models (in the homogeneous case) are defined
in a bounded domain by a density with respect to the unit rate Poisson point
process which takes the form

f(x) ∝ β|x|
∏
u∈x

g(v − u),

where x is a finite configuration of points, where β > 0 represents the activity
parameter, |x| is the number of elements of x and where g : Rd → R+ is the
pairwise interaction function.

However, many important theoretical properties of these models are in gen-
eral intractable, like for instance the simplest one, the intensity λ ∈ R+, rep-
resenting the mean number of points per unit volume. It is known (see e.g.
Section 2.2) that

λ = β E

(∏
u∈x

g(u)

)
.

Such an expectation is in general intractable. As clearly outlined by Baddeley
and Nair (2012), this intractability constitutes a severe drawback. For exam-
ple, simulating a Gibbs point process with a prescribed value of λ cannot be
done beforehand even for simple models such as Strauss models. Baddeley and
Nair (2012) suggest to evaluate the expectation with respect to a homogeneous
Poisson point process with intensity λ. This results in the Poisson-saddlepoint
approximation, denoted by λps, obtained as the solution of

log λps = log β − λpsG

where G =
∫
Rd(1− g(u)) du (provided this integral is finite).

The general idea of the present paper is to evaluate the same expectaction
with respect to a determinantal point process (with intensity λ). Determinantal
point processes (DPP), see e.g. Lavancier et al. (2015), are a class of repulsive
models which is more tractable than Gibbs models. For example all moments
are explicit. If g ≤ 1 and has a finite range R > 0, our approximation denoted
by λdpp is the solution of

log λdpp = log β + (1 + λdppG/κ) log

(
1− λdppG

1 + λdppG/κ

)
.

where

κ = max

(
|B(0, δ)|∫
(1− g)2

,

∫
(1− g)2

|B(0, R)|

)
,
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|A| denotes the volume of some bounded domain A ⊂ Rd, B(0, ρ) is the Eu-
clidean ball centered at 0 with radius ρ and δ ≥ 0 is some possible hard-core
distance.

Both approximations λdpp and λps can be obtained very quickly with a unit-
root search algorithm. Figure 1 reports λdpp and λps as well as the true intensity
λ (obtained by Monte-Carlo simulations) for Strauss models in terms of the in-
teraction parameter γ1 ∈ [0, 1]. This setting is considered by Baddeley and Nair
(2012). The DPP approximation outperforms the Poisson-saddlepoint approxi-
mation especially when γ1 is close to zero, i.e. for very repulsive point processes.
More numerical illustrations are displayed in Section 4.
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(a) Strauss: R = 0.05, β = 100
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(b) Strauss: R = 0.1, β = 100

Fig 1. Comparison of the exact intensity (small boxplots), the Poisson-saddlepoint approxi-
mation (dashed line) and the DPP approximation (solid line) for homogeneous Strauss models
with activity parameter β and range of interaction R. Curves and boxplots are reported in
terms of the interaction parameter γ1 ∈ [0, 1].

The rest of the paper is organized as follows. Section 2 provides necessary
notation and background material on point processes, Gibbs point processes
and determinantal point processes. Intensity approximations are discussed in
detail in Section 3. Finally, Section 4 presents numerical experiments for several
classes of pairwise interaction point processes.

2. Gibbs point processes and determinantal point
processes

2.1. Background and Poisson point processes

For d ≥ 1, let X be a spatial point process defined on Rd, which we see as a
random locally finite subset of Rd. Local finiteness of X means that XB = X∩B
is finite almost surely (a.s.), that is the number of points N(B) of XB is finite
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a.s., whenever B ⊂ Rd is bounded. We let N stand for the state space consisting
of the locally finite subsets (or point configurations) of Rd. Let B(Rd) denote
the class of bounded Borel sets in Rd. For any B ∈ B(Rd), we denote by |B| its
Lebesgue measure. A realization of XB is of the form x = {x1, . . . , xm} ⊂ B
for some nonnegative finite integer m and we sometimes denotes its cardinal by
|x|. For further details about point processes, we refer to Daley and Vere-Jones
(2003) and Møller and Waagepetersen (2004).

A spatial point process is said to have an nth order intensity function ρ(n) if
for any nonnegative measurable function h : (Rd)n → R+, the following formula
referred to as Campbell-Mecke formula holds

E

6=∑
u1,...,un∈X

h(u1, . . . , un) =

∫
Rd

. . .

∫
Rd

h(u1, . . . , un)ρ(n)(u1, . . . , un) du1 . . . dun,

(2.1)

where the sign 6= over the sum means that u1, . . . , un are pairwise distinct. Then,
ρ(n)(u1, . . . , un) du1 · · · dun can be interpreted as the approximate probability
for X having a point in each of infinitesimally small regions around u1, . . . , un of
volumes du1, . . . dun, respectively. We also write ρ(u) for the intensity function
ρ(1)(u). A spatial point process X in Rd is said to be stationary (respectively
isotropic) if its distribution is invariant under translations (respectively under
rotations). When X is stationary, the intensity function reduces to a constant
denoted by λ in the rest of this paper. As a matter of fact, λ measures the mean
number of points per unit volume.

The Poisson point process, often defined as follows (see e.g. Møller and
Waagepetersen (2004)), serves as the reference model.

Definition 2.1. Let ρ be a locally integrable function on S, for S ⊆ Rd. A point
process X satisfying the following statements is called the Poisson point process
on S with intensity function ρ:

• for any m ≥ 1, and for any disjoint and bounded B1, . . . , Bm ⊂ S, the
random variables XB1 , . . . ,XBm are independent;

• N(B) follows a Poisson distribution with parameter
∫
B
ρ(u) du for any

bounded B ⊂ S.

Among the many properties of Poisson point processes, it is to be noticed
that the nth order intensity function writes ρ(n)(u1, . . . , un) =

∏n
i=1 ρ(ui), for

any pairwise distinct u1, . . . , un ∈ S.
Let Z be a unit rate Poisson point process on S, which means that its intensity

is constant and equal to one. Assume, first, that S is bounded (|S| < ∞). We
say that a spatial point process X has a density f if the distribution of X is
absolutely continuous with respect to the one of Z and with density f . Thus, for
any nonnegative measurable function h defined on N , Eh(X) = E(f(Z)h(Z)).
Now, suppose that f is hereditary, i.e., for any pairwise distinct u0, u1, . . . , un ∈
S, f({u1, . . . , un}) > 0 whenever f({u0, u1, . . . , un}) > 0. We can then define
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the so-called Papangelou conditional intensity by

λ(u,x) = f(x ∪ u)/f(x) (2.2)

for any u ∈ S and x ∈ N , setting 0/0 = 0. By the interpretation of f , λ(u,x) du
can be considered as the conditional probability of observing one event in a
small ball, say B, centered at u with volume du, given that X outside B agrees
with x. When f is hereditary, there is a one-to-one correspondence between f
and λ.

Because the notion of density for Z when S = Rd makes no sense, the Pa-
pangelou conditional intensity cannot be defined through a ratio of densities in
Rd. But it still makes sense as the Papangelou conditional intensity can actually
be defined at the Radon-Nykodym derivative of P!

u the reduced Palm distribu-
tion of X with respect to P, the distribution of X (see Daley and Vere-Jones
(2003)). We do not want to enter in too much detail here and prefer to refer the
interested reader to Coeurjolly et al. (2017).

Finally, we mention the celebrated Georgii-Nguyen-Zessin formula (see Georgii,
1976; Nguyen and Zessin, 1979), which states that for any h : Rd×N → R (such
that the following expectations are finite)

E
∑
u∈X

h(u,X \ u) =

∫
Rd

E (h(u,X)λ(u,X)) du. (2.3)

By identification of (2.1) and (2.3), we see a link between the intensity function
of a point process and the Papangelou conditional intensity: for any u ∈ Rd

ρ(u) = E (λ(u,X)) ,

which in the stationary case reduces to

λ = E (λ(0,X)) . (2.4)

2.2. Gibbs point processes

For a recent and detailed presentation, we refer to Dereudre (2017). Gibbs pro-
cesses are characterized by an energy function H (or Hamiltonian) that maps
any finite point configuration to R∪{∞}. Specifically, if |S| <∞, a Gibbs point
process on S associated to H and with activity β > 0 admits the following
density with respect to the unit rate Poisson process:

f(x) ∝ β|x|e−H(x), (2.5)

where ∝ means “proportional to”. This definition makes sense under some reg-
ularity conditions on H, typically non degeneracy (H(∅) < ∞) and stability
(there exists A ∈ R such that H(x) ≥ A|x| for any x ∈ N ). Consequently,
configurations x having a small energy H(x) are more likely to be generated
by a Gibbs point process than by a Poisson point process, and conversely for
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configurations having a high energy. In the extreme case where H(x) =∞, then
x cannot, almost surely, be the realization of a Gibbs point process associated
to H.

In this paper, we focus on pairwise interaction point processes. To be close to
the original paper by Baddeley and Nair (2012) the present contribution is based
on, we use their notation: a Gibbs point process in S is said to be a pairwise
interaction point process with pairwise interaction function g : Rd → R+, if its
density writes

f(x) ∝ β|x|
∏
u,v∈x

g(u− v).

If |S| = ∞, this definition and more generally Definition (2.5) do not make
sense since H(x) can be infinite or even undefined if |x| = ∞. In this case,
Gibbs point processes have to be defined via their conditional specifications
and for pairwise interactions Gibbs point processes, restrictions on g have to
be imposed for existence (see again Dereudre (2017) and the references therein
for details). Nonetheless, as mentioned in the previous section, the concept of
Papangelou conditional intensity applies whenever |S| <∞ or |S| =∞, and in
either case it has the explicit form

λ(u,x) = β
∏
v∈x

g(u− v), (2.6)

for any u ∈ S. Note that when S = Rd, a pairwise interaction Gibbs point
process is stationary if g is symmetric and it is further isotropic if g(u − v)
depends simply on ‖u− v‖.

From (2.4), we deduce that the intensity parameter of a stationary pairwise
interaction process writes

λ = E (λ(0,X)) = β E

(∏
v∈x

g(v)

)
. (2.7)

Let us give a few examples (which are in particular well-defined in Rd). Many
other examples can be found e.g. in the recent monograph by Baddeley et al.
(2015).

• Strauss model: let γ ∈ [0, 1] and 0 < R <∞

g(u) =

{
γ if ‖u‖ ≤ R
1 otherwise. (2.8)

• Strauss Hard-core model: let γ ∈ R+ and 0 < δ < R <∞

g(u) =

 0 if ‖u‖ < δ
γ if δ ≤ ‖u‖ ≤ R
1 otherwise.
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• Piecewise Strauss Hard-core model:

g(u) =

 0 if ‖u‖ < δ
γi if Ri ≤ ‖u‖ ≤ Ri+1, i = 1, . . . , I
1 otherwise,

where I ≥ 1, 0 ≤ R1 = δ < R2 < · · · < RI+1 = R < ∞ and γ1, . . . , γI ∈
R+ if δ > 0, otherwise γ1, . . . , γI ∈ [0, 1].

• Diggle-Graton model: let γ ∈ [0, 1]

g(u) =

{ (
‖u‖
R

)1/γ

if ‖u‖ ≤ R
1 otherwise,

where for t ∈ (0, 1), t∞ = 0 and 1∞ = 1 by convention.

Let us note that a Strauss model with γ = 0 and radius R is actually a
hard-core model with radius R. The Diggle-Graton potential can be found in
Baddeley et al. (2015) in a slightly different parameterization. The one chosen
here makes comparisons with the Strauss model easier. For instance, when γ = 0
the model reduces to a Strauss model with γ = 0 and radius R. When γ = 1,
the function g grows linearly from 0 to 1. Figure 2 depicts the form of some of
the pairwise interaction functions presented above.
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(a) Strauss model
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(b) Piecewise Strauss hard-
core model
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(c) Diggle-Graton model

Fig 2. Examples of pairwise interaction functions for the Strauss model (γ = 0.5, R = 0.15),
the piecewise Strauss hard-core model (δ = R1 = 0.05, R2 = 0.1, R3 = R = 0.15, γ1 = 0.8,
γ2 = 0.2), and the Diggle-Graton model (γ = 0.05, 0.3 and 1, R = 0.15).

A Gibbs point process has a finite range R if for any u ∈ Rd and x ∈ N ,
λ(u,x) = λ(u,x ∩B(u,R)). For pairwise interaction point processes, this prop-
erty translates to g(u) = 1 for any u ∈ Rd such that ‖u‖ > R. All previous mod-
els have a finite range R <∞. An example of infinite range pairwise interaction
point process which will not be considered in this paper is the Lennard-Jones
model (see e.g. Ruelle (1969); Baddeley et al. (2015)).
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2.3. Determinantal point processes

Determinantal point processes (DPPs) are models for inhibitive point patterns.
We refer to Lavancier et al. (2015) for their main statistical properties. They
are defined through a kernel function K which is a function from S×S to C. A
point process is a DPP on S with kernel K, denoted by DPP(K), if for any n,
its nth order intensity function takes the form

ρ(n)(u1, . . . , un) = det[K](u1, . . . , un), (2.9)

for every (u1, . . . , un) ∈ Sn, where [K](u1, . . . , un) denotes the matrix with
entries K(ui, uj), 1 ≤ i, j ≤ n. In particular, the intensity function of DPP(K)
is K(u, u).

Conditions on the kernel K are required to ensure the existence of DPP(K).
For our purpose, we will only consider DPPs on a compact set. So let us assume
that S is compact and suppose that K is a continuous real-valued covariance
function on S × S. In this setting, by the Mercer theorem (see Riesz and Nagy
(1990)), K admits the spectral expansion

K(u, v) =

∞∑
i=1

λiφi(u)φi(v), ∀u, v ∈ S, (2.10)

where {φi}i≥1 is an orthonormal basis of L2(S) and where λi, i ≥ 1, are referred
to as the eigenvalues of K. Under the above assumptions, DPP(K) exists if and
only if λi ≤ 1 for all i.

Due to their tractability, DPPs have many interesting properties. Many of
them have been obtained by Shirai and Takahashi (2003), from which we derive
the following key-equation used by our intensity approximation.

Proposition 2.2. Let X be a DPP on a compact set S with kernel K. As-
sume that K is a continuous real-valued covariance function on S×S whose all
eigenvalues are not greater than 1. For any function g : S → [0, 1]

E

(∏
v∈X

g(v)

)
=
∏
i≥1

(1− λ̃i) (2.11)

where λ̃i, for i ≥ 1, are the eigenvalues of the kernel K̃ : S × S → R given by

K̃(u, v) =
√

1− g(u)K(u, v)
√

1− g(v).

Proof. Note that

E

(∏
v∈X

g(v)

)
= LX(− log g)

where LX denotes the Laplace transform of X. From Theorem 1.2 in Shirai and
Takahashi (2003), for any nonnegative measurable function f on S

LX(f) = Det(I − K̃)
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where Det denotes the Fredholm determinant of an operator and K̃ is the integral
operator associated to the kernel

K̃(u, v) =
√

1− exp(−f(u))K(u, v)
√

1− exp(−f(v)).

On the other hand, see for instance (2.10) in Shirai and Takahashi (2003),

Det(I − K̃) = exp

(
−
∞∑
n=1

1

n
Tr (K̃n)

)
,

where Tr denotes the trace operator. The result follows from the fact that for
any n ≥ 1

Tr (K̃n) =

∫
Sn

K̃(u1, u2) · · · K̃(un, u1)du1 · · · dun =
∑
i≥1

λ̃ni .

3. Intensity approximation

3.1. Poisson-saddlepoint approximation

We remind that the intensity parameter of a Gibbs point process, and in particu-
lar a pairwise interaction point process satisfies (2.7). The expectaction in (2.7)
is to be regarded with respect to P the distribution of the Gibbs point pro-
cess X. Baddeley and Nair (2012) suggest to replace P by a simpler distribution,
say Q, for which the right-hand-side of (2.7) becomes tractable. The Poisson-
saddlepoint approximation consists in choosing Π(λ), the Poisson distribution
with parameter λ, as distribution Q. As a result, the Poisson-saddlepoint ap-
proximation consists in resolving the equation

λ = β EΠ(λ)

(∏
v∈Y

g(v)

)
= β EΠ(λ)

(
exp

(∑
v∈Y

log g(v)

))
, (3.1)

with the convention that log 0 = −∞ and where, to avoid any ambiguity, we
denote by Y a Poisson point process with intensity λ defined on Rd and stress
also this by indexing the E with the distribution Π(λ). It turns out that if g(u) ∈
[0, 1] for any u ∈ Rd, the right-hand side of (3.1) is the Laplace transform of
some Poisson functional and equals β exp(−λG) where G =

∫
Rd(1−g(u)) du, see

e.g. Møller and Waagepetersen (2004, Proposition 3.3). As noticed in Baddeley
and Nair (2012), this formula extends to more general functions g, provided
G > −∞. Hence, the Poisson-saddlepoint approximation, denoted by λPS in
this paper, is defined as the solution of

λps = β exp(−λpsG) ⇐⇒ λps =
W (βG)

G
(3.2)

imsart-ejs ver. 2014/10/16 file: appIntDPP.tex date: December 1, 2017



Coeurjolly and Lavancier/Intensity approximation using DPP 10

where W is the inverse function of x 7→ x exp(x).
For stationary pairwise Gibbs models with finite range R, and such that

λ(u,x) ≤ β (or equivalently such that g ≤ 1), then 0 ≤ G ≤ |B(0, R)|. In this
case, Baddeley and Nair (2012) prove, among other properties, that λps exists
uniquely and is an increasing function of β. From a numerical point of view,
λPS can be very efficiently and quickly estimated using root-finding algorithms.

3.2. DPP approximation

Following the same idea as the Poisson-saddlepoint approximation, for a re-
pulsive stationary pairwise interaction point process with pairwise interaction
function g ≤ 1 having a finite range R, we suggest to substitute the measure
P involved in the expectation (2.7) by the measure Q corresponding to a DPP
defined on B(0, R) with some kernel K (to be chosen) and intensity λ, i.e.
K(u, u) = λ. Similarly to the previous section, by letting DPP(K;λ) denote the
distribution of such a DPP and Y ∼ DPP(K;λ), the DPP approximation of
the intensity λ is the solution of

λ = β EDPP(K;λ)

(∏
v∈Y

g(v)

)
. (3.3)

From Proposition 2.2 and in particular from (2.11), this yields the estimating
equation

log λ = log β +
∑
i≥1

log(1− λ̃i),

where the eigenvalues λ̃i of K̃ are related to λ by the relation

K̃(u, v) =
√

1− g(u)K(u, v)
√

1− g(v) with K(u, u) = λ.

To complete this approximation, the eigenvalues λ̃i need to be specified.
In the following we choose the eigenvalues λ̃i to be zero except a finite number

N of them that are all equal. Given that∑
i≥1

λ̃i =

∫
Rd

K̃(u, u)du =

∫
Rd

(1− g(u))K(u, u)du = λG,

this means that for some N ≥ λG,

λ̃i =
λG

N
, for i = 1, . . . , N (3.4)

and λ̃i = 0 for i ≥ N + 1. With this choice, the integer N remains the single
parameter to choose in our approximation. Note that N ≥ λG is a necessary
condition to ensure λ̃i ≤ 1 and so the existence of a DPP with kernel K̃, but
it is in general not sufficient to ensure the existence of the relation between K̃
and K where K defines a DPP. This will be clearly illustrated below when g is
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the Strauss interaction function. For the choice (3.4), the DPP approximation
of the intensity, denoted by λdpp, becomes the solution of

log λdpp = log β +N log

(
1− λdppG

N

)
⇐⇒ λdpp = β

(
1− λdppG

N

)N
. (3.5)

To motivate (3.4) and how we should setN , assume for a moment that g is the
interaction function of a Strauss model with range R and interaction parameter
γ ∈ [0, 1], see (2.8). In this case K̃(u, v) = (1− γ)K(u, v) for any u, v ∈ B(0, R)
and the eigenvalues λi ofK satisfy λ̃i = (1−γ)λi. In the approximation (3.3), we
start by choosing a kernel K with a finite number of non-vanishing eigenvalues
λi that are all equal. In view of

∑
λi =

∫
K(u, u)du = λb, where b denotes

the volume of B(0, R), this leads to λi = λb/N for i = 1, . . . , N and N ≥ λb.
Note that the latter inequality is necessary to ensure the existence of DPP(K).
Going back to λ̃i, this means that (3.4) follows with the necessary and sufficient
condition N ≥ λb = λG/(1− γ) which is greater than λG.

In order to set N precisely for the Strauss model, remember that a homoge-
neous DPP is more repulsive when its eigenvalues are close to 1, see Lavancier
et al. (2015); Biscio and Lavancier (2016), and at the opposite a DPP is close to
a Poisson point process when its eigenvalues are all close to 0. This suggests that
in order to make the approximation (3.3) efficient, we should choose λi close to 1
when the Gibbs process we want to approximate is very repulsive, that is when
γ is close to 0. Moreover the eigenvalues should decrease to 0 when γ increases
to 1. If λi = λb/N , this is equivalent to choosing N an integer that increases
from λb to infinity when γ increases from 0 to 1. A natural option is thus to
choose N as the smallest integer larger than λb/(1 − γ). Our final choice for
the Strauss model is therefore N = dλb/(1 − γ)e, where d.e denotes the ceiling
function, which we may write, for later purposes, N = dλG/(1− γ)2e.

However, with the latter choice, the function in the right-hand side of equation
(3.5) is not continuous in λ, which may lead to none or several solutions to this
equation. As a last step in our approximation, we therefore consider the upper
convex envelope of this function, ensuring a unique solution to (3.5). This finally
leads for the Strauss interaction process to the approximation λdpp defined as
the solution of

log λdpp = log β + (1 + λdppG/(1− γ)2) log

(
1− λdppG

1 + λdppG/(1− γ)2

)
.

Let us now discuss the case of a general pairwise interaction function g.
In this setting, it is in general not possible to relate the eigenvalues λi of K
with the eigenvalues λ̃i of K̃. Motivated by the Strauss case, we choose λ̃i
as in (3.4) where N = dλG/κe and κ ∈ [0, 1] is a parameter that takes into
account the repulsiveness encoded in g. In general κ must be close to 0 when
g is close to 1 (the Poisson case), and close to 1 when g is close to a pure
hard-core interaction. We decide to quantify the repulsiveness of the model by
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b−1
∫

(1 − g)2, in agreement with our choice for the Strauss model for which
κ = (1− γ)2. Note that for a pairwise interaction g with range R and involving
a possible hard-core distance δ, we have |B(0, δ)| ≤

∫
(1− g)2 ≤ |B(0, R)| where

the left or right equality occurs for a pure hard-core interaction (if δ > 0), a
situation where κ must be 1. This leads us to the choice

κ = max

(
|B(0, δ)|∫
(1− g)2

,

∫
(1− g)2

|B(0, R)|

)
. (3.6)

Plugging N = dλG/κe into (3.5) and considering the upper convex envelope to
ensure the existence of a unique solution, we finally end up with our general
DPP approximation being the solution of

log λdpp = log β + (1 + λdppG/κ) log

(
1− λdppG

1 + λG/κ

)
(3.7)

⇐⇒ λdpp =
Wκ (βG/κ)

G/κ
, (3.8)

where κ is given by (3.6) and where Wκ is the inverse function of

x 7→ x
(

1− κx
1+x

)−1−x
.

In view of (3.7)-(3.8) and similarly to λps, the approximation λdpp can be
very efficiently implemented using root-finding algorithms. We further have the
following properties.

Theorem 3.1. Consider a stationary pairwise interaction process in Rd with
Papangelou conditional intensity given by (2.6) which is purely inhibitory, i.e.
g(u) ≤ 1 for all u ∈ Rd and with finite range R. Then, λdpp exists uniquely, is
an increasing function of β and is such that λdpp ≤ λps.

Proof. Let fps and fdpp denote the two real-valued functions given by

fps(λ) = β exp(−λG) and fdpp(λ) = β

(
1− λG

1 + λG/κ

)1+λG/κ

.

The approximations λps and λdpp are defined by the fixed point equations λps =
fps(λps) and λdpp = fdpp(λdpp). Since for any x ∈ [0, 1), log(1 − x) ≤ −x, we
have for any λ

0 ≤ fdpp(λ) ≤ β exp(−λG) = fps(λ). (3.9)

In particular 0 ≤ limλ→∞ fdpp(λ) ≤ limλ→∞ fps(λ) = 0. In addition, fdpp(0) =
β and it can be verified that fdpp is a decreasing function. Hence the solution
to (3.7) exists uniquely. The function Wκ can also be shown to be increasing on
R+ for any κ ∈ [0, 1], so we deduce from (3.8) that λdpp is an increasing function
of β. Finally, (3.9) shows that λdpp ≤ λps.
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4. Numerical study

In this section, we focus on the planar case to investigate the performances
of the DPP approximation and compare it with the initial one proposed by
Baddeley and Nair (2012). All computations were performed in the R language
(R development core team, 2011). The Poisson-saddlepoint approximation as
well as the DPP approximation are implemented using root-finding algorithms
and in particular we use the R function uniroot for this task.

We have considered 14 different numerical experiments involving Strauss
models (S), Strauss hard-core models (SHC), Diggle-Graton models (DG), piece-
wise Strauss models (PS) and piecewise Strauss hard-core (PSHC) models. The
pairwise interaction functions of these models are detailed in Section 2.2. To
sum up here are the parameters, that include a continuously varying parameter
γ1 ∈ [0, 1]:

• Strauss (S): β = 100 with R = 0.05 or 0.1; β = 50 with R = 0.1 or 0.15;
β = 200 with R = 0.05. For all these models γ = γ1.

• Strauss hard-core (SHC): β = 200, δ = 0.025, R = 0.05. For this model
γ = γ1.

• Diggle-Graton (DG): β = 200, R = 0.025, 0.05 or 0.075 and β = 50 and
R = 0.15. For all these models γ = γ1.

• Piecewise Strauss and Strauss hard-core (PS and PSHC): β = 200, δ = 0
or 0.025, γ = (γ1, γ2) with γ2 = 0 or 0.5. The vector of breaks is R =
(0.05, 0.1).

For each numerical experiment, we therefore obtain curves of intensity ap-
proximation in terms of γ1. For γ1 varying from 0 to 1 by step of 0.05 (the
value 0 is exluded for DG models to save time), the true intensity λ is esti-
mated by Monte-Carlo methods. For each set of parameters m realizations of
the model are generated on the square [−2R, 1 + 2R]2 and then clipped to the
unit square. That strategy is detailed and justified by Baddeley and Nair (2012).
Specifically, the number of points in each realization is averaged to obtain the
estimated intensity and its standard error. The simulation results for the Strauss
models with β = 50 or 100 were obtained by Baddeley and Nair (2012), where
m = 10000 realizations were generated and the exact simulation algorithm was
used, implemented in the R function rStrauss of the spatstat package (see
Baddeley et al. (2015)). For the Strauss models with β = 200, SHC models, PS
and PSHC models, we generate m = 1000 replications and use the rmh function
in the spatstat package which implements a Metropolis-Hastings algorithm.
Even if we use 106 iterations of the algorithm, the results may be slightly bi-
ased. For the DG models, the R package spatstat provides an exact simulation
algorithm (function rDiggleGraton) and for such models we generate 10000
replications when β = 200 and R = 0.025, 0.05 and when β = 50 and R = 0.15.
We used 1000 replications when β = 200 and R = 0.075 to save time.

All results can be found in Figures 3, 4 and 5. Plots provide the same in-
formation: we depict intensity approximation λ based on different methods in
terms of γ1. The dashed curve represents the Poisson-saddlepoint approximation
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proposed by Baddeley and Nair (2012) and detailed in Section 3.1. The solid
curve is the DPP approximation we propose in this paper and is given by (3.8).

Let us first comment Figure 3 dealing with Strauss models. As expected the
Poisson-saddlepoint approximation is not efficient when γ1 is small, i.e. for very
repulsive models. This is very significant in particular for the Strauss hard-core
model, see Figure 3 (f). The DPP aproximation we propose is more likely able
to capture the repulsiveness of the Strauss models. Figure 4 also clearly shows
that our approximation is particulalry efficient and outperforms unamibigously
the Poisson-saddlepoint approximation. Note that replications for the Diggle-
Graton models are generated using an exact algorithm; so the numerical results
seem to be exact, except the slight bias induced by clipping the pattern from
[−2R, 1 + 2R]2 to the unit square.

We finally comment Figure 5. When γ2 = 0.5, i.e. Figures 5 (a)-(b), the
results are very satisfactory. Our approximation is able to approximate λ very
efficiently for any value of γ1. For Figures 5 (c)-(d), γ2 = 0 which means that
points within a distance comprised between 0.05 and 0.1 are forbidden. Such a
parameterization tends to create repulsive clusters. When γ1 = 1 and δ = 0, such
a piecewise Strauss model was called annulus model by Stucki and Schuhmacher
(2014). This model demonstrates the limitations of our approximation even if
when γ1 is close to zero which means that the model is close to a hard-core
process with radius 0.1 our approximation remains satisfactory.
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(a) S: R = 0.05, β = 100
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(d) S: R = 0.15, β = 50
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(e) S: R = 0.05, β = 200
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(f) SHC: δ = 0.025, R = 0.05, β = 200

Fig 3. Comparison of the exact intensity (small boxplots obtained by Monte-Carlo method),
the Poisson-saddlepoint approximation (dashed line) and the DPP approximation (solid line)
for homogeneous Strauss and Strauss hard-core models with activity parameter β, range of
interaction R and eventually hard-core distance δ. Curves and boxplots are reported in terms
of the interaction parameter γ1 ∈ [0, 1].
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(a) DG: R = 0.025, β = 200
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(b) DG: R = 0.05, β = 200

0.0 0.2 0.4 0.6 0.8 1.0

50
60

70
80

90
10

0
11

0

γ1

λ

(c) DG: R = 0.075, β = 200
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(d) DG: R = 0.15, β = 50

Fig 4. Comparison of the exact intensity (small boxplots obtained by Monte-Carlo method),
the Poisson-saddlepoint approximation (dashed line) and the DPP approximation (solid line)
for Diggle-Graton models. Curves and boxplots are reported in terms of the interaction pa-
rameter γ1 ∈ [0, 1].
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(a) PS: R = (0.05, 0.1), β = 200, γ2 = 0.5
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(b) PSHC: δ = 0.025, R = (0.05, 0.1), β =
200, γ2 = 0.5
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(c) PS: R = (0.05, 0.1), β = 200, γ2 = 0
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(d) PSHC: δ = 0.025, R = (0.05, 0.1), β =
200, γ2 = 0

Fig 5. Comparison of the exact intensity (small boxplots obtained by Monte-Carlo method),
the Poisson-saddlepoint approximation (dashed line) and the DPP approximation (solid line)
for piecewise Strauss and piecewise Strauss hard-core models. Curves and boxplots are reported
in terms of the (remaining) interaction parameter γ1 ∈ [0, 1].
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