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ATTRACTED BY AN ELLIPTIC FIXED POINT

B. FAYAD, J.-P. MARCO, D. SAUZIN

ABSTRACT. We give examples of symplectic diffeomorphisms of RS
for which the origin is a non-resonant elliptic fixed point which
attracts an orbit.

1. INTRODUCTION

Consider a symplectic diffeomorphism of R?" (for the canonical sym-
plectic form) with a fixed point at the origin. We say that the fixed
point is elliptic of frequency vector w = (wy,...,w,) € R™ if the lin-
ear part of the diffeomorphism at the fixed point is conjugate to the
rotation map

S, (R*)™ o, Su(S1,.y8n) = (Ryy(s1)y- -+, R, (Sn))-

Here, for 8 € R, Rg stands for the rigid rotation around the origin
in R? with rotation number 3. We say that the frequency vector w is
non-resonant if for any k € Z" — {0} we have (k,w) ¢ Z, where (-, )
stands for the Euclidean scalar product.

It is easy to construct symplectic diffeomorphisms with orbits at-
tracted by a resonant elliptic fixed point. For instance, the time-1 map
of the flow generated by the Hamiltonian function H(x,y) = y(z* + y?)
in R? has a saddle-node type fixed point, at which the linear part is
zero, which attracts all the points on the negative part of the x-axis.
The situation is much subtler in the non-resonant case.

The Anosov-Katok construction [AKT0] of ergodic diffeomorphisms
by successive conjugations of periodic rotations of the disc gives ex-
amples of smooth area preserving diffeomorphisms with non-resonant
elliptic fixed points at the origin that are Lyapunov unstable. The
method also yields examples of ergodic symplectomorphisms with non-
resonant elliptic fixed points in higher dimensions.

These constructions obtained by the successive conjugation tech-
nique have totally degenerate fixed points since they are C'°-tangent

to a rotation S, at the origin.
1
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In the non-degenerate case, R. Douady gave examples in of
Lyapunov unstable elliptic points for smooth symplectic diffeomor-
phisms for any n > 2, for which the Birkhoff normal form has non-
degenerate Hessian at the fixed point but is otherwise arbitrary. Prior
examples for n = 2 were obtained in [DLC83|] (note that by KAM
theory, a non-resonant elliptic fixed point of a smooth area preserving
surface diffeomorphism that has a non zero Birkhoff normal form is
accumulated by invariant quasi-periodic smooth curves (see [Mo73]).
Hence in the one dimensional case, non-degeneracy implies that the
point is Lyapunov stable).

In both of the above examples, no orbit distinct from the origin
converges to it. Indeed, in the Anosov-Katok examples, a sequence of
iterates of the diffeomorphism converges uniformly to Identity, hence
every orbit is recurrent and no orbit can converge to the origin, besides
the origin itself. As for the non-degenerate examples of Douady and
Le Calvez, their Lyapunov instability is deduced from the existence
of a sequence of points that converge to the fixed point, and whose
orbits travel, along a simple resonance, away from the fixed point. By
construction, these examples do not have a single orbit besides the
origin that converges to it.

Our goal in this paper is to construct an example of a Lyapunov un-
stable fixed point for a Gevrey diffeomorphism with an orbit converging
to it. Recall that, given a real a > 1, Gevrey-a regularity is defined by
the requirement that the partial derivatives exist at all (multi)orders ¢
and are bounded by CM!¥ |[¢]1* for some C and M (when o = 1, this
simply means analyticity); upon fixing a real L > 0 which essentially
stands for the inverse of the previous M, one can define a Banach
algebra (G*E(R?™), || . |la,).

We set X := (R?)? and denote by UL the set of all Gevrey-(a, L)
symplectic diffeomorphisms of X which fix the origin and are C'*-
tangent to Id at the origin. We refer to Appendix [Al for the precise
definition of U** and of a distance dist(®,¥) = |® — ¥|,  which
makes it a complete metric space. We will prove the following.

Theorem A. Fixa > 1 and L > 0. For each v > 0, there exist a non-
resonant vector w € R3, a point z € X, and a diffeomorphism ¥ € U**
such that |V —1d|ar < v and T = Vo S, satisfies T"(z) — 0.

n—+oo

We do not know how to produce real analytic examples. Recall that
not even one example of a real analytic symplectomorphism with a
Lyapunov unstable non-resonant elliptic fixed point is known.
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For other instances of the use of Gevrey regularity with symplectic
or Hamiltonian dynamical systems, see e.g. [Po04], [MS03], [MS04],

Our construction easily extends to the case where X = (R?)" with
n = 3, however we do not know how to adapt the method to the case
n = 2. As for the case n = 1, there may well be no regular examples at
all. Indeed if the rotation frequency at the fixed point is Diophantine,
then a theorem by Herman (see [FKQ9]) implies that the fixed point
is surrounded by invariant quasi-periodic circles, and thus is Lyapunov
stable. The same conclusion holds by Moser’s KAM theorem if the
Birkhoff normal form at the origin is not degenerate [Mo73]. In the
remaining case of a degenerate Birkhoff normal form with a Liouville
frequency, there is evidence from [AFLXZ] that the diffeomorphism
should then be rigid in the neighborhood of the origin, that is, there
exists a sequence of integers along which its iterates converge to Identity
near the origin, which clearly precludes the convergence to the origin
of an orbit.

Similar problems can be addressed where one searches for Hamil-
tonian diffeomorphisms (or vector fields) with orbits whose a-limit or
w-limit have large Hausdorff dimension (or positive Lebesgue measure)
and in particular contain families of non-resonant invariant Lagrangian
tori instead of a single non-resonant fixed point. A specific example for
Hamiltonian flows on (T x R)3 is displayed in [KSI2], while a more
generic one has been announced in [KGI4]. In these examples, the
setting is perturbative and the Hamiltonian flow is non-degenerate in
the neighborhood of the tori. The methods involved there are strongly
related to Arnold diffusion and are completely different from ours.

2. PRELIMINARIES AND OUTLINE OF THE STRATEGY

From now on we fix o > 1 and L > 0. We also pick an auxiliary
Ly > L. For 2 € R? and v > 0, we denote by B(z,v) the closed ball
relative to | .|| centred at z with radius v. Since a > 1, we have

Lemma 2.1. There is a real ¢ = c(a, L) > 0 such that, for any z € R?
and v > 0, there exists a function f,, € G (R?) which satisfies

e 0< f., <1,
e f.,=1on B(z,v/2),
e f., =0 on B(z,v)",

o | faw
Proof. Use Lemma 3.3 of [MS04]. O

la.z, < exp(c I/iﬁ).
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We now fix an arbitrary real R > 0 and pick an auxiliary function
nr € GYL1(R) which is identically 1 on the interval [-2R,2R], iden-
tically 0 outside [—3R, 3R], and everywhere non-negative. We then
define gr: R? — R by the formula

(2.1) gr(r,y) = zynr(r) nr(y).

The following diffeomorphisms will be of constant use in this paper:

Definition 2.1. For (i,7) € {1,2,3}, z € R? and v > 0, we denote
by ®; ;.. the time—ogle map of the Hamiltonian flow generated by the
function exp(—cv™a=1)f, , ®;; gr, where f,, ®;;j gr: X — R stands
for the function

s = (81,82, 83) = fzu(5:)gr(S;)-

In the above definition, our convention for the Hamiltonian vector

field generated by a function H is Xy = Z(_%&a—m + g—gg—%). Note

that the Hamiltonian exp(—c If%) f2v ®i; gr has compact support,
hence it generates a complete vector field and Definition 2.1 makes
sense. Actually, any H € G*%(X) has bounded partial derivatives,
hence Xy is always complete; the flow of Xy is made of Gevrey maps
for which estimates are given in Appendix [A.2] In the case of @, .,
for v small enough we have

(22) Dijw € Ut and @iz — Id|a,r < Kexp(—c I/iﬁ)’

with K := C|gg|la.r,, where C is independent from i, j, z, v and stems
from ([A.G). Here are the properties which make the ®; ;. ,’s precious.
To alleviate the notations, we state them for ®; ., but similar prop-
erties hold for each diffeomorphism ®; ;. ..

Lemma 2.2. Let z € R? and v > 0. Then ®y, ., satisfies:
(a) For every (s1, s2,$3) € X such that sy € B(z,v)¢,

(I)2,1,z,u(317 S2, 83) = (81, $2, 53)-

(b) For every z1 € R, sy € R? and s3 € R?,

Qo1 .((21,0), 52, 83) = ((¥1,0), 89, 83) with |2Z1] < |aq].

(c) For every z1 € [-2R,2R], sy € B(z,v/2) and s3 € R?,

@2717Z7,,((£L'1, 0), S92, 83) = ((%1, 0), S2, 83) wzth |%1| <K |£L’1| s

where k=1 — % exp(—c zfﬁ).
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Proof. The dynamics of the flow generated by f., ®21 gr can easily
be understood from those of the flows generated by f,, alone on the
second factor R? and by gg alone on the first factor R?. Indeed

Dy 1g(21,22) = (BT9(2y), DI ()

where ®" denotes the time one map associated to the Hamiltonian h.
The properties (a)-(b)-(c) immediately follow from the latter expres-
sion. U

From now on, we denote simply by |.| the | .|, norm in R? or in
X =R% and by B(s, p) the corresponding closed ball centred at s with
radius p (the context will tell whether it is in R? or RY).

Here is a brief outline of the strategy for proving Theorem [Al and
obtaining, inductively, the required ¥, z and w:

e The diffeomorphism ¥ in Theorem [A] will be obtained as an
infinite product (for composition) of diffeomorphisms of the
form ®; ; . ,, with smaller and smaller values of v so as to derive
convergence in UL from ([2.2)).

e On the other hand, R will be kept fixed and the initial condi-
tion z will be obtained as the limit of a sequence contained in
the ball B(0,R) < X.

e As for the non-resonant frequency vector w in Theorem [A] it
will be obtained as a limit of vectors with rational coordinates
with larger and larger denominators, so as to make possible a
kind of “orbit synchronization” at each step of the construction.

3. THE ATTRACTION MECHANISM

Starting from a point z = ((x1,0), (z2,0), (23,0)), the mechanism of
attraction of the point to the origin is an alternation between bringing
closer to zero the x1,79 or x3 coordinates when all the coordinates of
the point come back to the horizontal axes. The main ingredient is the
following lemma, where we use shortcut notation ®; ;. , for @;; ..0).
and, for two integers ()1, )2, the notation @1|Q stands for “@); divides

Q2"

Lemma 3.1. Let w = (P/Q1, P»/Qo, P3/Qs3) € Q3 with P;, Q; coprime
positive integers and

z = ((x1,0), (x2,0), (z3,0)) € B(0, R).
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Set
Th = P2105,05 © Puan 0 © S
15 = (I)3,2,:v3,Q§3 © (I)271,902,QE3 © S
T = 0150007 © Pa2s,05% © S
Then the following properties hold.

I) ]fQ3|Q1 and Q1|Q2; and
r = 1/Q1, x2=0, x3=>1/Qs,
then there exists N such that
T1N<Z) = ((i17 0)7 (':%27 0)7 (3%37 O))
with
0<i’1<l’1/2, 0<i’2=l’2, 0<i’3<l’3,
and |T7"(2);| < x; for allm e {0,..., N}.
II) If Q1|Q2 and Q2|Q3; and
2120, 23>1/Qs, x3=>1/Qs,
then there exists N such that
Ty7(2) = ((21,0), (22,0), (23,0))
with
0<Z; <z, 0<2y<wx/2, 0<3=us,
and |T3"(2):| < x; for allm e {0,...,N}.
HI) If Q2|Q3 and Q3|Q1; and
r = 1/Q, 22=0, z3=>1/Qs,
then there exists N such that
T;V<Z) = ((i17 0)7 (':%27 0)7 (3%37 O))
with
Ogi’lzl’l, 0<i’2<l’2, Ogi’ggl’g/z
and [T (2);| < x; for allm e {0,..., N}.
Proof. We will prove the Lemma for 75 since it will be the first map

that we will use in the sequel. The proof for the maps 77 and T3 follows
exactly the same lines.

The hypothesis xo = 1/Q)5 implies that the orbit of z5 = (x5, 0) under
the rotation R, enters the 5 neighborhood of z, only at times that
are multiples of Q. Moreover R{9>(z5) = 2. A similar remark holds
for zs.
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Since Q3 > (2, we consider the action of T = ®,, o3 0 5, first.
Since Q1 | Q2, if s = (s1, 89, s3) with s; = (u1,0) and sy = (u9,0), by
Lemma

T (s) = (51,m> R (s2), R (s3)) for all m e N,
with
[s1,m| < 1]

Consider now the orbit of z under the full diffeomorphism 75. Since

Q2 | @3, the previous remark shows that one has to take the effect of

®3’27m37Q;3 into account only for the iterates of order m = Q3. One
therefore gets

17" (2) = (21,m, 22,m, Ry (23)), for allme N,

where in particular 2o g, = (2240, 0) with

6
0< L2,(0+1)Qs3 < (1 - %eXp(_CQ§71>>I27ZQ37

and where

22,0Qs+0 = Rf}z (2274623)’ 1<l < QS -1,

|21m| < 21, for all meN.

We let L be the smallest integer such that 0 < x9 10, < x2/2 and get
the conclusion with N = LQ)s. O

4. PROOF OF THEOREM [Al

The proof is based on an iterative process (Proposition .2]) which is
itself based on the following preliminary result. For positive integers
¢1, G2, q3, the notation g¢s|qi|ga means “gs divides ¢; and ¢; divides ¢”.

Proposition 4.1. Let w = (p1/q1,p2/q2,p3/93) € Q. with gs|qi]ge and
z = ((x1,0), (x2,0), (z3,0)) € B(0, R) with x1, x5, x3 > 0 and x5 = 1/q5.
Then, for any n > 0, there exist
(@) W = (P1/@1.P2/Ta Ds/qs) such that Gs[q,[qy, the orbits of the
translation of vector @ on T are n-dense and |[w — w| < n;
() z = ((71,0), (T2,0), (73,0)) such that 0 < T; < x;/2 for every
i€{1,2,3} and Ty = 1/q,;
(c) 2e X, z1e (T + %,xl) and N € N, such that |2 — z| < n and
the diffeomorphism

T =150 © Prasar © Pa2ead;? © Potang® © 0w

satisfies

TN =2
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and |[T™(2')i| < (1+n)z; forme{0,...,N}.
Moreover, §,, Gy and G5 can be taken arbitrarily large.

Proof of Proposition[{.1. We divide the proof into three steps.

1. First choose coprime integers p3 and g3 with g3 large multiple of ¢s,
so that

~ 1 1 1
(4.1) ¢1921G5, Ty = —, T3 = =, = <
a2 q3 q3

and the new rotation vector
o= (pl/%apz/%,ﬁ?)/as)
satisfies |W — w| < n. Set

f2:q) SOS@.

~—3 O _
37271'37‘13 q)27171'27QQ

By Lemma B II), there exist N € N and 2 = ((21,0), (2,0), (33,0))
such that T (z) = 2, with

Ty < a1, To <292, 3= as,

and )ﬁm(z)z < x; for all me {0,..., N}.

2. Next, consider a vector of the form
@ = (P1/q1, P2/ 92, P3/33)
with coprime p; and ¢, and

1 a3

(4.2) 3lq1, T > =, ~ <1,
a1 q1
so that in particular
7 1
(4.3) 5 > 7
Set R
15 = (1)17372175;3 o (1)372@3@373 o Sy.

By Lemma BIIIIT), there exist N € N and 2 = ((31,0), (32, 0), (¥3,0))
such that ﬁN(E) = Z with

(44) %1 =£/L'\1, %2 <£/L'\2 <ZL’2/2, %3 <£/L'\3/2=l’3/2,
and )Tg”"b(,?)Z < I forallme {0,..., N}.
Define now
T =035 590 Ps50,6°0 Potgygy © 5%
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Choosing ¢; in ([A2)) large enough and p; properly, one can assume that
& is arbitrarily close to @, so that Sy is arbitrarily C°-close to Sz on the
ball B = B(0, |2 + 1), and moreover that ®, ;5 .—s is arbitrarily CO-
close to Id onAB. As a consequence, one can assume that T is arbitrarily
C%close to Ty on B. Hence one can choose @ with |& — w| < 7 such
that there exists z with |z — z| <7 which satisfies

TV(z) =2, |T™2)| < (1 +n)z; forallme{0,...,N}.
Moreover, using Lemma [2.2, one proves by induction that:
T"(2); € B(xs,35°),  T"(3) =15 () forallme{0,...,N}.
As a consequence o i
TV (z) =T (3) = 2
and |T™(z);| < (1 4+ n)x; for all m € {0, ..., N + N},

3. It remains now to perturb T in the same way as above to bring the
first component of Z closer to the origin. Consider coprime integers p,
and @, such that

~

q1

(4.5) 017, Ty = 1/q,, Ty = 1/q,, o <,
and such that the vector
(4.6) W = (P1/q1,D2/qa D3/ 1)
satisfies |w — w| < n. Set now
T = q>2,1,:?2,a;3 © q>1,3,£1,a;3 © q)3,2,x3,§g3 © (I)2,l,x27q;3 o Sz

As above, a proper choice of p, and g, satisfying (LI) makes T
arbitrarily C? close to T and yields the existence of a 2z’ € X such that
|2" — z| <, satisfying
TV =2 [T )i < A+ )z forallme {0,..., N + N}
Set

T, =®

Using Lemma 2.2 and Lemma [B]T), one proves by induction that now
for m = 0:

© ®1737£17_73 © Sw'

~ ——3
27175527‘12 qq

—m

T"(2)2 € Blw2,q,°)",  T"(2)s€ Blas,35°)  T"(E) =Ty (3).
By Lemma BIT) there exists N such that

=N

T, (2) =2z =((71,0),(72,0), (73,0))
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with
f1<§1/2<l’1/2, §2=§2<$2/2, fg<%3<$3/2,
and }(Tlm(,?)l} < 7; < x; for all m e {0,...,N}. As a consequence,
setting N = N + N +N:
TVN() = %, [T™(2"):| < (1 +mn)x; forallme{0,...,N}.
We finally change the notation of (A6]) and write
W = (W1,Ws,W3) = (P1/Q1,P2/T2, D3/ T3),
so that in particular §; = @, g3 = g5 and
s | @, 0 | G-
Hence the orbits of S5 are gy-periodic. Moreover, from (A3]) and the
equality 7; = T4, one deduces
1

Z/L'\l — T > —=.
7
Note finally that the last conditions in (d.1]), (4.2]) and (£35]) now read
1 _ _
— < 7, @ < 7, ? < UR
d3 1 )

Fix (0y,0,,03) € T? and recall that g; | g, and g, | g,- By the first
inequality one can first find f3 € N such that Rf%(()) is n-close to fs.
Then, by the second inequality there is an ¢; € N such that Réllqﬁ& (0) is
n-close to #,. Finally, by the last inequality there is an /5 € N such that

szzaﬁéﬁﬁ&(o) is n-close to #y. This proves that Séﬁl”lﬁg*@(o, 0,0) is
n-close to (61,605, 05), so that the orbits of Sy are n-dense on T?. This
concludes the proof. O

Definition 4.1. Given z = (21, 22, 23) € X, we say that a diffeomor-
phism ® of X is z-admissible if & = 1d on

{se X :|si| < Bz],i=1,23}

Proposition 4.2. Let w = (p1/q1,p2/02,p3/q3) € Q% with g3|q1|q2 and
z = ((x1,0), (x2,0), (23,0)) € B(0, R) with x1, x5, 23 > 0 and xo = 1/gs.
Suppose ® € U is z-admissible and |91 2y,g720P—1d[a,L <€, wheree
is defined by Lemmal[A 3, and let

T = @271’ 30doS,.

2,49

Assume that zg € X and M > 1 are such that TM(z) = z. Then, for
any n > 0, there exist
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translation of vector @ on T? are n-dense and [0 — w| < n;
(b) z = ((71,0), (%2,0), (73,0)) such that 0 < T; < x;/2 for every
i€{1,2,3} and Ty = 1/qy;
(c) Zo € X such that |z — z| < n, and M > M, and ® € U™F
Z-admissible, so that the diffeomorphism
T := @2717527653 oo S,

satisfies TM(EO) = Z and ‘Tm(io)i‘ < (1 + n)x; for all m €
(M,....30).

(d) Moreover, |®, - ~s0® —® —30®|,p <1

2717527‘12 27175527‘12
Proof of Proposition[].3 Take w, z, N, 2',z; as in Proposition [4.1] and
let

T=2 0P 355002

so that TN(2') = z and |[T™(2');] < (1 +n)z; for all m € {0,..., N}. If
we define

T= (I)z,l,@,af oD,

A~ =3
»9,T1,4

(@) @271@27(1;3 @] Sw

P ——3
27171'27‘12 37275537‘13

© 3205557 © P2a0q5% 0 PO

then, since ® is z-admissible and |z — 2| <75, we get T™(2') =T (#)
for all m € {0,..., N}, hence TN(z’) = zand [T ()| < (1 + n)a; for
all me {0,..., N}.

Let

(4.7) B i= B,y 0Dy

so that, indeed, T = Py 170350 © ® o S;. Notice that we can write
Dy 17y g5 0 © = @ 0 @20 " oW (notation of Lemma [A.2), where
U = @2’17%(];3 o ® and the Gevrey-(«a, L1) norms of uy, us, ug are
controlled by Lemma 2T} we thus get (d) by applying (A.S), choosing
Gy Gy, G5 sufficiently large.

Comparing T and T' in C%norm in the ball B(0,|z| + 1), since we
can take w arbitrarily close to w and the g;’s arbitrarily large, we can
find Zyp € X such that |Zp — 29| < 7 and TM(ZO) = 2/. We thus take
M = M + N, so that TM(ZO) =z and [T"(2):| < (1 + n)a; for all
me{M,...,M}.

To finish the proof of (c), just observe that ® € YL and ® is z-
admissible since 7; < z;/2 and g;° < 71/10, g5° < x3/10 (possibly
increasing g, and @; if necessary). O
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Clearly, Proposition is tailored so that it can be applied induc-
tively. The gain obtained when going from 7" to T is twofold : on the
one hand the orbit of the new initial point Z; is pushed further close
to the origin, and on the other hand the rotation vector at the origin
is changed to behave increasingly like an non-resonant vector.

Proof of Theorem[4l Let v > 0. We pick

w® = (pl /Ch 7p2 /Q2 7p3 /Q3 )e@i

with Q3 |€I1 |Q2 , and 3;’1 ,xgo),xg > 0 so that :c 1/q§0) and

0 0 0 0
%) = <<x§>,o>,<a:§>,o>,<a:§,>,o>>eB(O,R/2>.
Let ®© :=Id and M(© := 0. Define
7O .= gO o Sy  with vO) .= P,
Choosing qéo) sufficiently large, we have |[U(®) —Id|,.; < min{e/2,~/2}
by (Z2). The hypotheses of Proposition B2 hold for 2 = zéo).

We apply Proposition inductively by choosing inductively a se-
quence (n™),~, such that

n : €
n( ) S mln{2n+1’ on+1’ 1/10} Z n _(n

k=n+1

(0)
1,25 1/(¢{”)3 o .

(where @é") is determined at the nth step of the induction). We get
sequences (w™),20, (2720, (2™ )ns0, (T™)nz0, (M™),0, with
Z(n) ((xgn)’ 0) (xén)’ 0) (xén)’ O)), 0 < x('n+1) < xl('n)/2

and T = ¥™o S ) with U™ = e, ™) 1 /(g3 o™ e Y*! so that

< ,r](nJrl)’

H\I](n+1) o \Ij(n)HmL < n(n+1)‘

(4.8) ‘w(nJrl) B w(n)‘ < n(nJrl), ‘Z(()nJrl) _ Z((]n)

We also have

(49) (T EY))| < 10129

for all m e {MY ... MUY} with j <n
In view of (4.8), the sequences (zé")), (w™) and (U™) are Cauchy. We
denote their limits by zi’, w® and ¥*. Notice that |[¥* —Id|, . < 7.
We obtain that T = ¥* o S« satisfies |T™(z)| — 0, because
m——+00
the ball B(0, R) is a compact subset of X which contains all the points
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T("+1)m(z((]"+1)) and on which 7 — T in the C° topology, hence

n—-+0o0

T("+1)m(z((]"+1)) —> T™(zy) for each m and, in ([@3), we can first

n—+00
let n tend to oo and then use the fact that a:l(]) 1 0and MY 1 o0 as j
tends to oo.

The orbits of the translation of vector w™ on T? being 7™-dense

and qé")-periodic, we see that w® defines a minimal translation on T3.
Indeed, given 6 € T? and € > 0, We can choose n,m € N so that

7™ < ¢/2, dist(mw™ —0,73) < n™ and m < q2 . Then,

dist(mw® — 6, Z%) < n™ +m w*® — w(")} m g Z n*

k=n+1
which is < e. Hence the orbit of 0 under the translation of vector w®
is e-dense for every €, which entails that w® is non-resonant.

The proof of Theorem [A]is thus complete. O

APPENDIX A. GEVREY FUNCTIONS, MAPS AND FLOWS

A.1. Gevrey functions and Gevrey maps. We follow Section 1.1.2
and Appendix B of [LMSIS], with some simplifications stemming from
the fact that here we only need to consider functions satisfying uniform
estimates on the whole of a Euclidean space.

The Banach algebra of uniformly Gevrey-(«, L) functions. Let N > 1
be integer and o > 1 and L > 0 be real. We define

GE(RY) = {f € C*(RY)

L|£\a
= Z /o H(/ fHCO(RN

(eNN

We have used the standard notations [f| = 014 -+ Cy, 0 = (1] . . Ly,
ol = 551 .00 and
N:={0,1,2,...}.

TN
The space G*L(RY) turns out to be a Banach algebra, with
(A.1)

for all f,g e G*L(RY), and there are “Cauchy—Gevrey inequalities”: if
0 < L' < L, then all the partial derivatives of f belong to G* (R")
and, for each p € N,

(A.2) D

meNN; [ml|—p

‘e
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(see [MS03]).

The Banach space of uniformly Gevrey-(c, L) maps. Let N, M > 1 be
integer and o > 1 and L > 0 be real. We define
GL(RY RMY = {F e C*(RY,RM) | | F|laz < 0},
| Fllar = [Flla + -+ [ 1]l a.z-
This is a Banach space.

When N = M = 2n, we denote by Id + G*L(R?", R?") the set of
all maps of the form ¥ = Id + F with F' € G*F(R?",R?*"). This
is a complete metric space for the distance dist(Id + Fy,1d + Fy) =
|5 — Fi|a.L. We use the notation

diSt(\Ifl, \112) = H\Ifg — \IllHa,L
as well. We then define
ua,L cId + Ga,L<R2n’R2n)

as the subset consisting of all Gevrey-(«, L) symplectic diffeomorphisms
of R?" which fix the origin and are C°-tangent to Id at the origin. This
is a closed subset of the complete metric space Id + G*L(R?*™ R?").

Composition with close-to-identity Gevrey-(a,, L) maps. Let N > 1 be
integer and o > 1 and L > 0 be real. We use the notation (NV)* =
N¥ < {0} and define

. L\Z|a .
a,L(.f) = Z o Ha fHCO(RN)>

Le(NINV)*
so that | fla.r = | flcomny + N;L(f)'

Lemma A.0. Let Ly > L. There exists €. = e.(N, «, L, Ly) such that,
for any f e G*M(RY) and F = (Fpy, ..., Finy) € G*H (RN, RY), of

Na L (Fay)s - NG L (Fiv) < e,
then fo(ld+ F) e GO"L(RN) and | fo(Id+ F)|lar < |fla.r,-

Proof. Since L < Ly, we can pick p > 1 such that pL® < L{; we then
choose @ > 0 such that (1 +a)*! < p and set A :== (N(1 + 1/a))a_l.
We will prove the lemma with €. := (L — uL*)/A.

Let f and F be as in the statement, and g := fo(Id+ F'). Computing
the Taylor expansion of g(x + h) = f(x + h + F(x + h)) at h = 0, we
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1
get, for each k e NV, E(}’“g =

o Fy;
(2“7 f) o (1d + F) M ! :
/ln! Z
2,m,neNN kL, ke (NNy*
m+n==k kly. .kl =m

N
=1 b1+ +li—1<p<li+-+4;

JRTIRALT

with the convention that an empty sum is 0 and an empty product
is 1. Note that if £ = 0, then necessarily m = 0 and the corresponding
contribution to the sum is (0% f) o (Id + F), whereas ¢ # 0 implies
m # 0 and k # 0.

We have |g|lcown) < || f[cowny and, for each k e (NV)*,

AT B 6 oo P
B L PR | N YR i Uy
2,m,neNN kL. kltle(NN)*
£#0, m+n=~k Kl 4 klll=m
N
with P = ]] 11 | 0¥ i co. Multiplying by LI*l /g1e=1

=1 Oyl <p<Lit+-+l;
and taking the sum over k, we get

L\k|a
(4.3) lglas < Y, S| fleo +
keNN
with
Limriearn fleo P
(A Si= ) In! el S p
Le(NN)* m,neNN finl(m +n)! KL, ke (NN ) k- Rl

KL gkl =m

with the same P as above.

Inequality (A.7) from [MSO03|] says that, if s > 1 and k',... k* €
(NM)* with k' + - + k% = m, then k- k%! < N®m!/s!. Hence, in
each term of the sum S, we can compare D := (!n!(m-+n)1*~ k... Kl
and D = (In)(¢ + n)le ke ke we have

% _ (kll---kfll(un)!)al - (Nflm!(un)!)al

(m +n)! 1) (m + n)!
NI+ n)lye-1
S L el Inl
< ( Il ) < AT
where the last inequality stems from our choice of A\ and pu, using
(t+n)! 1 Al gl

Tl S (1+ 1/a)|£‘(1 + a)ln\. Inserting D < D in (A4, we
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obtain

S <

L‘”'O‘)\“|p‘"‘|\a””f|\co Z Ik ke p

-1 e e
(e (NN ) meNN tnl(C+n)let R Llla . Ll

The inner sum over k', ... kN e (NN )* coincides with the product
s (Fpg)™ - NZ L(Fvy)™, which is < el by assumption. Hence,
coming back to ([(A3), we get

(uL) M e) 0 flleo v (WL + Aee) M [0* f oo
HgHaL X Z E'n' €+n>|a 1 B Z Ll

£,neNN keNN

(we have used u > 1 to absorb the first term of the right-hand side
of (A.3) in the contribution of £ = 0). The conclusion follows from our
choice of e.. O

A.2. Estimates for Gevrey flows. We need some improvements
with respect to [MS03] and for the estimates of the flow of
a small Gevrey vector field.

Lemma A.1. Suppose a =1 and 0 < L < Ly.

(i) For every integer N = 1, there exists ¢ = (N, «, L, Ly) such that,
for every vector field X € G*I(RN RY), if | X|ar, < €, then the
time-1 map ® of the flow generated by X belongs to Id + G*E (RN, RY)
and

(A5) H(I) - IdHaL HXHa Ly

(ii) For every integer n > 1, there exists ey = ey(n, o, L, L) such that,
for every u € GI1(R*"), zf |t|a.r, < eu, then the time-1 map ®* of
the Hamiltonian flow generated by u belongs to Id + G*L(R?", R*™) and

(A.6) |@% = Td]ar <2%(Ly = L),

Building upon the previous result, we get

Lemma A.2. Suppose « =1 and 0 < L < Ly. Then there exist C' =
C(n,a, L, Ly) and € = €(n,a, L, Ly) such that, if r = 1, uy,...,u, €
G (R™), U e Id + G*E(R?™,R*™™) and

(A.7) [@ —Idfar + C(lurar, + -+ Jurlar) <e

then

(A8) [@¥o- 0@ oW —Wor < Clutfar, ++ + |ur]ar,)
(with the same notation as in Lemma[A (i) for the ®%’s).
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Proof of LemmalA 1 (i) Let us pick L' € (L, L;). We will prove the
statement with € = e.(N, «, L, L) (notation from Lemma [A.0]).

Let X be as in the statement. We write the restriction of its flow to
the time-interval [0, 1] in the form ®(¢) = Id + £(t), with ¢ € [0,1] —
£(t) e C*(RYN,RY) characterised by

£(t) = J:X o(Id+&(r))dr for all t € [0, 1].

We will show that ¢ belongs to B == {v € C°([0, 1], G*X(RY,RY)) |
|¢)] < | X|a.r, }, which is a closed ball in a Banach space.

Lemma [A-0 shows that the formula F(¢)(t) == §; X o (Id + (7)) dr
defines a map from B to B. Moreover, if ¢, ¢¥* € B satisfy

[0*(t) — (t)|a < A(t) for all t € [0, 1],

where t € [0, 1] — A(?) is continuous, then for each ¢ and 1,

F*) (O — F@) () = j ary) j 1
0, Xpip 0 (Id + (1 = 0)(7) + 00" (7)) (™ (7)) — (7)),

whence
t

IF@*) (@) = F@)(t)|ar < Kf A(7)dr with K := max 102, X[}l
0 b

(we have K < oo by (A2) and we have used Lemma and (A.))).
[terating this, we get

KP
| FP (%) = FP()ll < EW* — [ forall peN,

which shows that F? is a contraction for p large enough. The map F
thus has a unique fixed point in B, and this fixed point is &.

(ii) Let L' := (L+ Ly)/2. For any u € G%L1(R?"), inequality (A:2)) with
p = 1 reads

DU l0mMufar < (Ly = L) ufar,.
meN2n; |[m|=1

The left-hand side is precisely the («, L')-Gevrey norm of the Hamil-
tonian vector field generated by w. Therefore, point (i) shows that the
conclusion holds with eg = (L1 — L')%€¢:(2n, o, L, L').
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Proof of Lemma [A.2 Let us pick L' € (L,L;). We will show the
statement with

C:=2%L—L')* e=min{e(2n,a, L L) Ceu(n,a, L L)}
by induction on 7.
The induction is tautologically initialized for » = 0. Let us take
r = 1 and assume that the statement holds at rank r — 1. Given
up, .. u € GOF(R™) and ¥ € Id + G*F(R?", R?") satisfying (A7),
we set y = @1 o...0P" o U which satisfies
X = ¥a,r < C(Jua] o)
by the induction hypothesis, and observe that we also have
| —Id]a,r < Cllur|a,z,
since |[tuy]a., < en(n,a, L', Ly). Now
[ o0 @™ oW — Wy < [(2* —1d) o x|

a,ly + -+ Hur—l

a,L + HX - \I]|a,L

< @ —Tdfa + [x - @

|@ —1d]a,r+ X = V]ar < [¥—TId|a,r+C (Jutfaz +
€(2n,a, L, L") and we are done.

|a,L

since |x —Id|q.L

<
et Hur’—1|a,L1) <
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