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A Multi-step Inertial Forward–Backward Splitting Method for
Non-convex Optimization

Jingwei Liang∗ Jalal M. Fadili∗ Gabriel Peyré†

Abstract

In this paper, we propose a multi-step inertial Forward–Backward splitting algorithm for minimizing
the sum of two non-necessarily convex functions, one of which is proper lower semi-continuous while
the other is differentiable with a Lipschitz continuous gradient. We first prove global convergence of the
scheme with the help of the Kurdyka–Łojasiewicz property. Then, when the non-smooth part is also partly
smooth relative to a smooth submanifold, we establish finite identification of the latter and provide sharp
local linear convergence analysis. The proposed method is illustrated on a few problems arising from
statistics and machine learning.

1 Introduction

1.1 Non-convex non-smooth optimization

Non-smooth optimization has proved extremely useful to all quantitative disciplines of science including
statistics and machine learning. A common trend in modern science is the increase in size of datasets, which
drives the need for more efficient optimization schemes. For large-scale problems with non-smooth and
possibly non-convex terms, it is possible to generalize gradient descent with the Forward–Backward (FB)
splitting scheme [4] (a.k.a proximal gradient descent), which includes projected gradient descent as a sub-case.

Formally, we equip Rn the n-dimensional Euclidean space with the standard inner product 〈·, ·〉 and
associated norm || · || respectively. Our goal is the generic minimization of composite objectives of the form

min
x∈Rn

{
Φ(x)

def
= R(x) + F (x)

}
, (P)

where we have
(A.1) R : Rn → R∪{+∞} is the penalty function which is proper lower semi-continuous (lsc), and bounded

from below;
(A.2) F : Rn → R is the loss functionwhich is finite-valued, differentiable and its gradient∇F isL-Lipschitz

continuous.
Throughout, no convexity is imposed neither on R nor on F .

The class of problems we consider is that of non-smooth and non-convex optimization problems. Here are
some examples that are of particular relevance to problems in regression, machine learning and classification.
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Example 1.1 (Sparse regression). Let A ∈ Rm×n, y ∈ Rm, µ > 0, and ||x||0 is the `0 pseudo-norm (see
Example 4.1). Consider (see e.g. [14])

min
x∈Rn

1
2
||y −Ax||2 + µ||x||0. (1.1)

Example 1.2 (Principal component pursuit (PCP)). The PCP problem [10] aims at decomposing a given
matrix into sparse and low-rank components

min
(xs,xl)∈(Rn1×n2 )2

1
2
||y − xs − xl||2F + µ1||xs||0 + µ2rank(xl), (1.2)

where || · ||F is the Frobenius norm and µ1 and µ2 > 0.

Example 1.3 (Sparse Support Vector Machines). One would like to find a linear decision function which
minimizes the objective

min
(b,x)∈R×Rn

1
m

∑m

i=1 G(〈x, zi〉+ b, yi) + µ||x||0, (1.3)

where for i = 1, · · · ,m, (zi, yi) ∈ Rn × {±1} is the training set, and G is a smooth loss function with
Lipschitz-continuous gradient such as the squared hinge loss G(ŷi, yi) = max(0, 1− ŷiyi)2 or the logistic
loss G(ŷi, yi) = log(1 + e−ŷiyi).

(Inertial) Forward–Backward The Forward–Backward splitting method for solving (P) reads

xk+1 ∈ proxγkR
(
xk − γk∇F (xk)

)
, (1.4)

where γk > 0 is a descent step-size, and

proxγR(·) def
= Argminx∈Rn

1
2
||x− ·||2 + γR(x), (1.5)

denotes the proximity operator of R. proxγR(x) is non-empty under (A.1) and is set-valued in general.
Lower-boundedness of R can be relaxed by requiring e.g. coercivity of the objective in (1.5).

Since the pioneering work of Polyak [28] on the heavy-ball method approach to gradient descent, several
works have adapted this methodology to various optimization schemes. For instance, the inertial proximal
point algorithm [2, 3], or the inertial FB methods [26, 24, 5, 23]. The FISTA scheme [6, 11] also belongs to
this class. See [23] for a detailed account.

The non-convex case In the context of non-convex optimization, [4] was the first to establish convergence of
the FB iterates when the objective Φ satisfies the Kurdyka–Łojasiewicz property1. Following their footprints,
[9, 27] established convergence of the special inertial schemes in [26] in the non-convex setting.

1.2 Contributions

In this paper, we introduce a novel inertial scheme (Algorithm 1) and study its global and local properties to
solve the non-smooth and non-convex optimization problem (P). More precisely, our main contributions can
be summarized as follows.

1We are aware of the works existing on convergence of the objective sequence Φ(xk) of FB, including rates, in the non-smooth
and non-convex setting. But given that, in general, this does not say anything about convergence of the sequence of iterates xk, they
are irrelevant to our discussion.
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A globally convergent general inertial scheme We propose a general multi-step inertial FB (MiFB)
algorithm to solve (P). This algorithm is very flexible as it allows higher memory and even negative inertial
parameters (unlike previous work [23]). Global convergence of any bounded sequence of iterates to a critical
point is proved when the objective Φ is lower-bounded and satisfies the Kurdyka–Łojasiewicz property.

Local convergence properties under partial smoothness Under the additional assumptions that the
smooth part is locally C2 around a critical point x? (where xk → x?), and that the non-smooth com-
ponent R is partly smooth (see Definition 3.1) relative to an active submanifoldMx? , we show thatMx?

can be identified in finite time, i.e.xk ∈ Mx? for all k large enough. Building on this finite identification
result, we provide a sharp local linear convergence analysis and we characterize precisely the corresponding
convergence rate which, in particular, reveals the role ofMx? . Moreover, this local convergence analysis
naturally opens the door to higher-order acceleration, since under some circumstances, the original problem
(P) is eventually equivalent to locally minimizing Φ onMx? , and partial smoothness implies that Φ is actually
C2 onMx? .

Algorithm 1: A Multi-step Inertial Forward–Backward (MiFB)
Initial: s ≥ 1 is an integer, I = {0, 1, . . . , s− 1}, x0 ∈ Rn and x−s = . . . = x−1 = x0.
repeat

Let 0 < γ ≤ γk ≤ γ < 1
L , {a0,k, a1,k, . . .} ∈]− 1, 2]s, {b0,k, b1,k, . . .} ∈]− 1, 2]s:

ya,k = xk +
∑
i∈Iai,k(xk−i − xk−i−1),

yb,k = xk +
∑
i∈Ibi,k(xk−i − xk−i−1),

(1.6)

xk+1 ∈ proxγkR
(
ya,k − γk∇F (yb,k)

)
. (1.7)

k = k + 1;
until convergence;

1.3 Notations

Throughout the paper, N is the set of non-negative integers. For a nonempty closed convex set Ω ⊂ Rn, ri(Ω)
is its relative interior, and par(Ω) = R(Ω− Ω) is the subspace parallel to it.

LetR : Rn → R∪{+∞} be a lsc function, its domain is defined as dom(R)
def
= {x ∈ Rn : R(x) < +∞},

and it is said to be proper if dom(R) 6= ∅. We need the following notions from variational analysis, see e.g.
[30] for details. Given x ∈ dom(R), the Fréchet subdifferential ∂FR(x) ofR at x, is the set of vectors v ∈ Rn
that satisfies lim infz→x, z 6=x

1
||x−z||(R(z)−R(x)−〈v, z−x〉) ≥ 0. If x /∈ dom(R), then ∂FR(x) = ∅. The

limiting-subdifferential (or simply subdifferential) of R at x, written as ∂R(x), is defined as ∂R(x)
def
= {v ∈

Rn : ∃xk → x,R(xk)→ R(x), vk ∈ ∂FR(xk)→ v}. Denote dom(∂R)
def
= {x ∈ Rn : ∂R(x) 6= ∅}. Both

∂FR(x) and ∂R(x) are closed, with ∂FR(x) convex and ∂FR(x) ⊂ ∂R(x) [30, Proposition 8.5]. Since R
is lsc, it is (subdifferentially) regular at x if and only if ∂FR(x) = ∂R(x) [30, Corollary 8.11].

An lsc function R is r-prox-regular at x̄ ∈ dom(R) for v̄ ∈ ∂R(x̄) if ∃r > 0 such that R(x′) >
R(x) + 〈v, x′ − x〉 − 1

2r ||x− x
′||2 ∀x, x′ near x̄, R(x) near R(x̄) and v ∈ ∂R(x) near v̄.

A necessary condition for x to be a minimizer of R is 0 ∈ ∂R(x). The set of critical points of R is
crit(R) = {x ∈ Rn : 0 ∈ ∂R(x)}.
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2 Global convergence of MiFB

This section is dedicated to the global convergence of the sequence generated by Algorithm 1.

Kurdyka–Łojasiewicz property Let J : Rn → R ∪ {+∞} be a proper lsc function. For η1, η2 such that
−∞ < η1 < η2 < +∞, define the set [η1 < J < η2]

def
= {x ∈ Rn : η1 < J(x) < η2}.

Definition 2.1. J is said to have the Kurdyka–Łojasiewicz property at x̄ ∈ dom(J) if there exists η ∈]0,+∞],
a neighbourhood U of x̄ and a continuous concave function ϕ : [0, η[→ R+ such that

(i) ϕ(0) = 0, ϕ is C1 on ]0, η[, and for all s ∈]0, η[, ϕ′(s) > 0;
(ii) for all x ∈ U ∩ [J(x̄) < J < J(x̄) + η], the Kurdyka–Łojasiewicz inequality holds

ϕ′
(
J(x)− J(x̄)

)
dist

(
0, ∂J(x)

)
≥ 1. (2.1)

Proper lsc functions which satisfy the Kurdyka–Łojasiewicz property at each point of dom(∂J) are called
KL functions.

Roughly speaking, KL functions become sharp up to reparameterization via ϕ, called a desingularizing
function for J . Typical KL functions are the class of semi-algebraic functions, see [7, 8]. For instance, the `0
pseudo-norm and the rank function (see Example 1.1-1.3 and Section 4.1) are indeed KL.

2.1 Global convergence

Let µ, ν > 0 be two constants. For i ∈ I and k ∈ N, define the following quantities,

βk
def
=

1− γkL− µ− νγk
2γk

, β
def
= lim inf

k∈N
βk and αk,i

def
=

sa2i,k
2γkµ

+
sb2i,kL

2

2ν
, αi

def
= lim sup

k∈N
αk,i. (2.2)

Theorem 2.2 (Convergence of MiFB (Algorithm1)). For problem (P), suppose that (A.1)-(A.2) hold.
Assume moreover that Φ is a proper lsc KL function which is bounded from below. For Algorithm 1, choose
µ, ν, γk, ai,k, bi,k such that

δ
def
= β −

∑
i∈Iαi > 0. (2.3)

Then each bounded sequence {xk}k∈N satisfies
(i) {xk}k∈N has finite length, i.e.

∑
k∈N ||xk − xk−1|| < +∞;

(ii) There exists a critical point x? ∈ crit(Φ) such that limk→∞ xk = x?.
(iii) If Φ has the KL property at a global minimizer x?, then starting sufficiently close from x?, any sequence

{xk}k∈N converges to a global minimum of Φ and satisfies (i).

See the Section A for the detailed proof.

Remark 2.3.
(i) Boundedness of the sequence is automatically ensured under standard assumptions such as coercivity

of Φ.
(ii) Unlike existing work, negative inertial parameters are allowed by Theorem 2.2.
(iii) When ai,k ≡ 0 and bi,k ≡ 0, i.e. the case of FB splitting, condition (2.3) holds naturally as long as

γ < 1
L which recovers the case of [4];

(iv) From (2.2) and (2.3), we conclude the following:
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(a) s = 1: if bk,0 ≡ b, ak,0 ≡ a (i.e. constant inertial parameters), then (2.3) implies that a, b must
belong to an ellipsoid,

a2

2γµ
+

b2

2ν/L2 < β =
1− γL− µ− νγ

2γ
.

(b) When s ≥ 2, for each i ∈ I , let bi,k = ai,k ≡ ai (i.e. constant symmetric inertial parameters),
then (2.3) tells us that the ai must live in a ball,( 1

2γµ
+

1
2ν/L2

)∑
i∈I a

2
i < β.

An empirical approach for inertial parameters Besides Theorem 2.2, we also provide an empirical bound
for the choice of the inertial parameters. Consider the setting: γk ≡ γ ∈]0, 1/L[ and bi,k = ai,k ≡ ai ∈
]− 1, 2[, i ∈ I . We have the following empirical bound for the summand

∑
i∈I ai:∑

iai ∈
]
0,min

{
1, 1/L−γ
|2γ−1/L|

}[
. (2.4)

To ensure the convergence {xk}k∈N, an online updating rule should be applied together with the empirical
bound. More precisely, choose ai according to (2.4). Then for each k ∈ N, let bi,k = ai,k and choose ai,k
such that

∑
i ai,k = min{

∑
i ai, ck} where ck > 0 is such that {ck

∑
i∈I ||xk−i−xk−i−1||}k∈N is summable.

For instance,
ck =

c
k1+q

∑
i∈I ||xk−i − xk−i−1||

, c > 0, q > 0.

Remark 2.4. The allowed choices of the summand
∑

i ai by (2.4) is larger than those of Theorem 2.2. For
instance, (2.4) allows

∑
i ai = 1 for γ ∈]0, 2

3L ]. While for Theorem 2.2,
∑

i ai = 1 can be reached only when
γ → 0.

3 Local convergence properties of MiFB

Here, we present the local convergence analysis of the proposed method under partial smoothness.

3.1 Partial smoothness

LetM⊂ Rn be a C2-smooth submanifold, let TM(x) the tangent space ofM at any point x ∈M.

Definition 3.1. The function R : Rn → R ∪ {+∞} is C2-partly smooth at x̄ ∈ M relative toM for
v̄ ∈ ∂R(x̄) 6= ∅ ifM is a C2-submanifold around x̄, and

(i) (Smoothness): R restricted toM is C2 around x̄;
(ii) (Regularity): R is regular at all x ∈M near x̄ and R is r-prox-regular at x̄ for v̄;
(iii) (Sharpness): TM(x̄) = par(∂R(x))⊥;
(iv) (Continuity): The set-valued mapping ∂R is continuous at x̄ relative toM.

We denote the class of partly smooth functions at x relative toM for v as PSFx,v(M). Partial smoothness
was first introduced in [18] and its directional version stated here is due to [21, 15]. Prox-regularity is sufficient
to ensure that the partly smooth submanifolds are locally unique [21, Corollary 4.12], [15, Lemma 2.3 and
Proposition 10.12].
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3.2 Finite activity identification

One of the key consequences of partial smoothness is finite identification of the partial smoothness submanifold
associated to R for problem (P). This is formalized in the following statement.

Theorem 3.2 (Finite activity identification). Suppose that Algorithm 1 is run under the conditions of Theo-
rem 2.2, such that the generated sequence {xk}k∈N converges to a critical point x? ∈ crit(Φ). Assume that
R ∈ PSFx?,−∇F (x?)(Mx?) and the non-degeneracy condition

−∇F (x?) ∈ ri
(
∂R(x?)

)
, (ND)

holds. Then, xk ∈Mx? for all k large enough.

See the Section B for the proof. This result generalises that of [23] to the non-convex case and multiple
inertial steps.

3.3 Local linear convergence

Given γ ∈]0, 1
L [ and a critical point x? ∈ crit(Φ), let Mx? be a C2-smooth submanifold and R ∈

PSFx?,−∇F (x?)(Mx?). Denote Tx?
def
= TMx?

(x?) and the following matrices which are all symmetric,

H
def
= γPTx?∇

2F (x?)PTx? , G
def
= Id−H, Q

def
= γ∇2

Mx?
Φ(x?)PTx? −H, (3.1)

where ∇2
Mx?

Φ is the Riemannian Hessian of Φ along the submanifold Mx? (readers may refer to the
supplementary material from more details on differential calculus on Riemannian manifolds).

To state our local linear convergence result, the following assumptions will play a key role.

Restricted injectivity Besides the local C2-smoothness assumption on F , following the idea of [22, 23],
we assume the restricted injectivity condition,

ker
(
∇2F (x?)

)
∩ Tx? = {0}. (RI)

Positive semi-definiteness of Q Assume that Q is positive semi-definite, i.e. ∀h ∈ Tx? ,

〈h, Qh〉 ≥ 0. (3.2)

Under (3.2), Id +Q is symmetric positive definite, hence invertible, we denote P def
= (Id +Q)−1.

Convergent parameters The parameters of MiFB (Algorithm 1), are convergent, i.e.

ai,k → ai, bi,k → bi, ∀i ∈ I and γk → γ ∈ [γ,min{γ, r̄}], (3.3)

where r̄ < r, and r is the prox-regularity modulus of R (see Definition 3.1).

Remark 3.3.
(i) Condition (3.2) can be met by various non-convex functions, such as polyhedral functions, including

the `0 pseudo-norm discussed in Example 1.1 and Section 4.1.
(ii) Condition (3.3) asserts that both the inertial parameters (ai,k, bi,k) and the step-size γk should converge

to some limit points, and this condition cannot be relaxed in general.
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(iii) It can be shown that conditions (3.2) and (RI) together imply that x? is a local minimizer of Φ in (P),
and Φ grows at least quadratically near x?. The arguments to prove this are essentially adapted from
those used to show [23, Proposition 4.1(ii)].

We need the following notations:

M0
def
= (a0 − b0)P + (1 + b0)PG, Ms

def
= −(as−1 − bs−1)P − bs−1PG,

Mi
def
= −

(
(ai−1 − ai)− (bi−1 − bi)

)
P − (bi−1 − bi)PG, i = 1, ..., s− 1,

M
def
=


M0 · · · Ms−1 Ms

Id · · · 0 0
... . . . ...

...
0 · · · Id 0

 , dk def
=

 xk − x?
...

xk−s − x?

 .

(3.4)

Theorem 3.4 (Local linear convergence). Suppose that the MiFB Algorithm 1 is run under the setting of
Theorem 3.2. Moreover, assume that (RI), (3.2) and (3.3) hold. Then for all k large enough,

dk+1 = Mdk + o(||dk||). (3.5)

If ρ(M) < 1, then given any ρ ∈]ρ(M), 1[, there existsK ∈ N such that ∀k ≥ K,

||xk − x?|| = O(ρk−K). (3.6)

In particular, if s = 1, then ρ(M) < 1 if R is locally polyhedral around x? or if a0 = b0.

See the Section C for the proof.

Remark 3.5.
(i) When s = 1, ρ(M) can be given explicitly in terms of the parameters of the algorithm (i.e. a0, b0

and γ), see [23, Section 4.2] for details. However, the spectral analysis of M becomes much more
complicated to get for s ≥ 2, where the analysis of at least cubic equations are involved. Therefore, for
the sake of brevity, we shall skip the detailed discussion here.

(ii) When s = 1, it was shown in [23] that the optimal convergence rate that can be obtained by 1-step
inertial scheme with fixed γ is ρ?s=1 = 1−

√
1− τγ, where from condition (RI), continuity of∇2F at

x? implies that there exists τ > 0 and a neighbourhood of x? such that 〈h, ∇2F (x?)h〉 ≥ τ ||h||2, for
all h ∈ Tx? . As we will see in the numerical experiments of Section 4, such a rate can be improved
by our multi-step inertial scheme. Taking s = 2 for example, we will show that for a certain class of
functions, the optimal local linear rate is close to or even is ρ?s=2 = 1− 3√

1− τγ, which is obviously
faster than ρ?s=1.

(iii) Though it can be satisfied for many problems in practice, the restricted injectivity (RI) can be removed
for some penalties R, for instance, when R is locally polyhedral near x?.

4 Numerical experiments

In this section, we illustrate our results with some numerical experiments carried out on the problems in
Example 1.1, 1.2 and 1.3.
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4.1 Examples of KL and partly smooth functions

All the objectives Φ in the above mentioned examples are continuous KL functions. Indeed, in Example 1.1
and 1.2, Φ is the sum of semi-algebraic functions which is also semi-algebraic. In Example 1.3, Φ is also
algebraic when G is the squared hinge loss, and definable in an o-minimal structure for the logistic loss (see
e.g. [31] for material on o-minimal structures).

Moreover, R is partly smooth in all these examples as we show now.

Example 4.1 (`0 pseudo-norm). The `0 pseudo-norm is locally constant. Moreover, it is regular on Rn ([16,
Remark 2]) and its subdifferential is given by (see [16, Theorem 1])

∂||x||0 = span
(
(ei)i∈supp(x)c

)
,

where (ei)i=1,...,n is the standard basis, and supp(x) =
{
i : xi 6= 0

}
. The proximity operator of `0-norm is

given by hard-thresholding,

proxγ||x||0(z) =


z if |z| >

√
2γ,

sign(z)[0, z] if |z| =
√

2γ,

0 if |z| <
√

2γ.

It can then be easily verified that the `0 pseudo-norm is partly smooth at any x relative to the subspace

Mx = Tx =
{
z ∈ Rn : supp(z) ⊂ supp(x)

}
.

It is also prox-regular at x for any bounded v ∈ ∂||x||0. Note also condition (ND) is automatically verified
and that the Riemannian gradient and Hessian along Tx of || · ||0 vanish.

Example 4.2 (Rank). The rank function is the spectral extension of `0 pseudo-norm to matrix-valued data
x ∈ Rn1×n2 [20]. Consider a singular value decomposition (SVD) of x, i.e.x = Udiag(σ(x))V ∗, where
U = {u1, . . . , un}, V = {v1, . . . , vn} are orthonormal matrices, and σ(x) = (σi(x))i=1,...,n is the vector of
singular values. By definition, rank(x)

def
= ||σ(x)||0. Thus the rank function is partly smooth relative at x to

the set of fixed rank matrices

Mx =
{
z ∈ Rn1×n2 : rank(z) = rank(x)

}
,

which is a C2-smooth submanifold [19]. The tangent space ofMx at x is

TMx(x) = Tx =
{
z ∈ Rn1×n2 : u∗i zvj = 0, for all r < i ≤ n1, r < j ≤ n2

}
,

The rank function is also regular its subdifferential reads

∂rank(x) = U∂
(
||σ(x)||0

)
V ∗ = Uspan

(
(ei)i∈supp(σ(x))c

)
V ∗,

which is a vector space (see [16, Theorem4 and Proposition 1]). The proximity operator of rank func-
tion amounts to applying hard-thresholding to the singular values. Observe that by definition ofMx, the
Riemannian gradient and Hessian of the rank function alongMx also vanish.

For Example 1.2, it is worth noting from the above examples and separability of the regularizer that the
latter is also partly smooth relative to the cartesian product of the partial smoothness submanifolds of `0 and
the rank function.
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4.2 Experimental results

For the problem in Example 1.1, we generated y = Axob +ω withm = 48, n = 128, the entries ofA are i.i.d.
zero-mean and unit variance Gaussian, xob is 8-sparse, and ω ∈ Rm is an additive noise with small variance.

For the problem in Example 1.2, we generated y = xs + xl + ω, with n1 = n2 = 50, xs is 250-sparse,
and the rank of xl is 5, and ω is an additive noise with small variance.

For Example 1.3, we generatedm = 64 training samples with n = 96-dimensional feature space.
For all presented numerical results, 3 different settings were tested:
• the FB method, with γk ≡ 0.3/L, noted as “FB”;
• MiFB with s = 1, bk = ak ≡ a and γk ≡ 0.3/L, noted as “1-iFB”;
• MiFB with s = 2, bi,k = ai,k ≡ ai, i = 0, 1 and γk ≡ 0.3/L, noted as “2-iFB”.

Tightness of theoretical prediction The convergence profiles of ||xk − x?|| are shown in Figure 1. As it can
be seen from all the plots, finite identification and local linear convergence indeed occur. The positions of the
green dots indicate the iteration from which xk numerically identifies the submanifoldMx? . The solid lines
(“P”) represents practical observations, while the dashed lines (“T”) denotes theoretical predictions.

As the Riemannian Hessians of `0 and the rank both vanish in all examples, our predicted rates coincide
exactly with the observed ones (same slopes for the dashed and solid lines).
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Figure 1: Finite identification and local linear convergence of MiFB under different inertial settings in terms of
||xk−x?||. “P” stands for practical observation and “T” indicates the theoretical estimate. We fix γk ≡ 0.3/L
for all tests. For the 2 inertial schemes, inertial parameters are first chosen such that (2.3) holds. The position
of the green dot in each plot indicates the iteration beyond which identification ofMx? occurs.

Comparison of the methods Under the tested settings, we draw the following remarks on the comparison of
the inertial schemes:
• The MiFB scheme is much faster than FB both globally and locally. Finite activity identification also

occurs earlier for MiFB than for FB;
• Comparing the two MIFB inertial schemes, “2-iFB” outperforms “1-iFB”, showing the advantages of a

2-step inertial scheme over the 1-step one.
Optimal first-order method To highlight the potential of multiple steps in MiFB, for the “2-iFB” scheme,
we also added an example where we locally optimized the rate for the inertial parmeters. See the magenta lines
all the examples, where the solid line corresponds to the observed profile for the optimal inertial parameters,
the dashed line stands for the rate 1−

√
1− τγ, and the dotted line is that of 1− 3√

1− τγ, which shows
indeed that a faster linear rate can be obtained owing to multiple inertial parameters.

We refer to [23, Section 4.5] for the optimal choice of inertial parameters for the case s = 1.
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4.3 The empirical bound (2.4) and inertial steps s

We now present a short comparison of the empirical bound (2.4) of inertial parameters and different choices
of s under bigger choice of γ = 0.8/L. MiFB with 3 inertial steps, i.e. s = 3, is added which is noted as
“3-iFB”, see the magenta line in Figure 2.

Similar to the above experiments, we choose bi,k = ai,k ≡ ai, i ∈ I , and “Thm 2.2” means that ai’s are
chosen according to Theorem 2.2, while “Bnd (2.4)” means that ai’s are chosen based on the empirical bound
(2.4). We can infer from Figure 2 the following.
• Compared to the results in Figure 1, a bigger choice of γ leads to faster convergence. Yet still, under

the same choice of γ, MiFB is faster than FB both locally and globally;
• For either “Thm 2.2” or “Bnd (2.4)”, the performance of the three MiFB schemes are close, this is

mainly due to the fact that values of the sum
∑
i∈Iai for each scheme are close.

• Then between “Thm 2.2” and “Bnd (2.4)”, “Bnd (2.4)” shows faster convergence result, since the
allowed value of

∑
i∈Iai of (2.4) is bigger than that of Theorem 2.2.

It should be noted that, when γ ∈]0, 2
3L ], the largest value of

∑
i∈Iai allowed by (2.4) is 1. If we choose∑

i∈Iai equal or very close to 1, then it can be observed in practice that MiFB locally oscillates, which is
a well-known property of the FISTA scheme [6, 11]. We refer to [23, Section 4.4] for discussions of the
properties of such oscillation behaviour.
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Figure 2: Comparison of MiFB under different inertial settings. We fix γk ≡ 0.8/L for all tests. For the three
inertial schemes, the inertial parameters were chosen such that (2.3) holds.

A Proof of Theorem 2.2

Lemma A.1. Let {dk}k∈N, {δk}k∈N be two non-negative sequences, and ω ∈ Rs such that

dk+1 ≤
∑

i∈Iωidk−i + δk, (A.1)

for all k ≥ s. If
∑

i ωi ∈ [0, 1[ and
∑

k∈N δk < +∞, then∑
k∈Ndk < +∞.

Remark A.2. Lemma A.1 is an extension of [9, Lemma 3]. It should be noted that in our case, non-negativity
is not imposed to the weight ωi’s, but only the sum of them. In fact, we can even afford all ωi’s to be negative,
as long as

∑
i∈I ωidk−i + δk is positive for all k ∈ N.
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Proof. From (A.1), suppose that d−1 = d−2 = d−s+1 = 0, then sum up for both sides from k = 0,∑
k∈Ndk+1 ≤

∑
k∈N

∑
i∈I ωidk−i +

∑
k∈Nδk =⇒

∑
k∈N dk ≤ d0 +

∑
i∈Iωi

∑
k∈N dk +

∑
k∈Nδk

=⇒
(

1−
∑

i∈Iωi

)∑
k∈N dk ≤ d0 +

∑
k∈Nδk.

Since we assume
∑

i∈I ωi < 1 and δk is summable, then we have∑
k∈Ndk ≤

(
1−
∑

i∈Iωi

)−1(
d0 +

∑
k∈Nδk

)
< +∞,

which concludes the proof.

Define ∆k
def
= ||xk − xk−1||.

Lemma A.3. For the update of xk+1 in (1.7), given any k ∈ N, define

gk+1
def
=

1
γk

(ya,k − xk+1)−∇F (yb,k) +∇F (xk+1).

We have gk+1 ∈ ∂Φ(xk+1), and moreover,

||gk+1|| ≤
( 1
γ

+ L
)
∆k+1 +

∑
i∈I

( |ai,k|
γ

+ |bi,k|
)
∆k−i. (A.2)

Proof. From the definition of proximity operator and the update of xk+1 (1.7), we have ya,k− γk∇F (yb,k)−
xk+1 ∈ γk∂R(xk+1), add γk∇F (xk+1) to both sides, then

gk+1 =
ya,k − γk∇F (yb,k)− xk+1 + γk∇F (xk+1)

γk
∈ ∂Φ(xk+1).

Then, apply the triangle inequality and the Lipschitz continuity of∇F , we get

||gk+1|| = || 1γk (ya,k − xk+1)−∇F (yb,k) +∇F (xk+1)||

≤ 1
γk
||ya,k − xk+1||+ L||yb,k − xk+1||

≤ 1
γk

(
∆k+1 +

∑
i∈I |ai,k|∆k−i

)
+ L
(
∆k+1 +

∑
i∈I |bi,k|∆k−i

)
≤
( 1
γ

+ L
)
∆k+1 +

∑
i∈I

( |ai,k|
γ

+ |bi,k|
)
∆k−i,

which concludes the proof.

Lemma A.4. For Algorithm 1, given the parameters γk, ai,k, bi,k, the following inequality holds

Φ(xk+1) + β∆2
k+1 ≤ Φ(xk) +

∑
i∈Iαi∆

2
k−i. (A.3)

Proof. Define the function

Lk(x) = γkR(x) +
1
2
||x− ya,k||2 + γk〈x, ∇F (yb,k)〉.

It can be shown that the update of xk+1 in (1.7) is equivalent to

xk+1 ∈ argminx∈RnLk(x), (A.4)
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which means that Lk(xk+1) ≤ Lk(xk), and

R(xk+1) +
1

2γk
||xk+1 − ya,k||2 + 〈xk+1, ∇F (yb,k)〉 ≤ R(xk) +

1
2γk
||xk − ya,k||2 + 〈xk, ∇F (yb,k)〉,

and leads to,

R(xk) ≥ R(xk+1) +
1

2γk
||xk+1 − ya,k||2 + 〈xk+1 − xk, ∇F (yb,k)〉 −

1
2γk
||xk − ya,k||2

= R(xk+1) + 〈xk+1 − xk, ∇F (xk)〉+
1

2γk
∆2
k+1

+
1
γk
〈xk − xk+1,

∑
i∈Iai,k(xk−i − xk−i−1)〉+ 〈xk+1 − xk, ∇F (yb,k)−∇F (xk)〉.

(A.5)

Since F is L-Lipschitz, then

〈∇F (xk), xk+1 − xk〉 ≥ F (xk+1)− F (xk)−
L
2

∆2
k+1.

Apply Young’s inequality, we obtain

〈xk − xk+1,
∑
i∈Iai,k(xk−i − xk−i−1)〉 ≥ −

(µ
2

∆2
k+1 +

1
2µ
||∑i∈I ai,k(xk−i − xk−i−1)||

2
)

≥ −
(µ

2
∆2
k+1 +

∑
i∈I

sa2i,k
2µ

∆2
k−i
)
,

(A.6)

where µ > 0. Then similarly, for ν > 0, we have

〈xk+1 − xk, ∇F (yb,k)−∇F (xk)〉 ≥ −
(ν

2
∆2
k+1 +

1
2ν
||∇F (yb,k)−∇F (xk)||2

)
≥ −
(ν

2
∆2
k+1 +

∑
i∈I

sb2i,kL
2

2ν
∆2
k−i
)
.

(A.7)

Combining the above 3 inequalities with (A.5) leads to

Φ(xk+1) + βk∆
2
k+1 ≤ Φ(xk) +

∑
i∈I

( sa2i,k
2γkµ

+
sb2i,kL

2

2ν

)
∆2
k−i = Φ(xk) +

∑
i∈Iαk,i∆

2
k−i. (A.8)

Therefore, we obtain

Φ(xk+1) + β∆2
k+1 ≤ Φ(xk+1) + βk∆

2
k+1 ≤ Φ(xk) +

∑
i∈Iαk,i∆

2
k−i ≤ Φ(xk) +

∑
i∈Iαi∆

2
k−i,

which concludes the proof.

Define Rns the product space Rns
def
= Rn × · · · × Rn︸ ︷︷ ︸

s times

and zk = (xk, xk−1, ..., xk−s+1) ∈ Rns . Then given

zk, define the function
Ψ(zk) = Φ(xk) +

∑
i∈I

∑s−1
j=iαj∆

2
k−i,

which is is a KL function if Φ is. Denote Cxk , Czk the set of cluster points of sequences xk and zk respectively,
and crit(Ψ) = {z = (x, ..., x) ∈ Rns : x ∈ crit(Φ)}.

Lemma A.5. For Algorithm 1, choose µ, ν, γk, ai,k, bi,k such that (2.3) holds. If Φ is bounded from below,
then
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(i)
∑

k∈N ∆2
k < +∞;

(ii) The sequence Ψ(zk) is monotonically decreasing and convergent;
(iii) The sequence Φ(xk) is convergent.

Proof. Define
δ = β −

∑
i∈Iαi > 0.

From the Lemma A.4, we have

δ∆2
k+1 ≤

(
Φ(xk)− Φ(xk+1)

)
+
∑

i∈Iαi(∆
2
k−i −∆2

k+1).

Since we let x1−s = ... = x0 = x1, for the above inequality, sum over k we get

δ
∑

k∈N ∆2
k+1 ≤

∑
k∈N
(
Φ(xk)− Φ(xk+1)

)
+
∑

k∈N

∑
i∈I αi(∆

2
k−i −∆2

k+1)

≤ Φ(x0) +
∑

i∈Iαi
∑

k∈N (∆2
k−i −∆2

k+1)

= Φ(x0) +
∑

i∈Iαi
∑1

j=1−i ∆2
j = Φ(x0),

which means, as Φ(x0) is bounded, ∑
k∈N∆2

k+1 ≤
Φ(x0)
δ

< +∞.

From Lemma A.4, by pairing terms on both sides of (A.3), we get

Ψ(zk+1) +
(
β −
∑

i∈Iαi
)
∆2
k+1 ≤ Ψ(zk).

Since we assume β−
∑

i∈I αi > 0, hence Ψ(zk) is monotonically non-increasing. The convergence of Φ(xk)
is straightforward.

Lemma A.6. For Algorithm 1, choose µ, ν, γk, ai,k, bi,k such that (2.3) holds. If Φ is bounded from below
and {xk}k∈N is bounded, then xk converges to a critical point of Φ.

Proof. Since {xk}k∈N is bounded, there exists a subsequence {xkj}k∈N and cluster point x̄ such that xkj → x̄
as j →∞. Next we show that Φ(xkj )→ Φ(x̄) and that x̄ is a critical point of Φ.

Since R is lsc, then lim infj→∞R(xkj ) ≥ R(x̄). From (A.4), we have Lkj−1(xkj ) ≤ Lkj−1(x̄),

R(x̄) ≥ R(xkj ) +
1

2γkj−1
||xkj − ya,kj−1||

2 + 〈xkj − x̄, ∇F (yb,kj−1)〉 −
1

2γkj−1
||x̄− ya,kj−1||

2

= R(xkj ) +
1

2γkj−1
(||xkj − x̄||

2 + 2〈xkj − x̄, x̄− ya,kj−1〉) + 〈xkj − x̄, ∇F (yb,kj−1)〉

Since ∆2
k → 0 and xkj → x̄, then taking the above inequality to limit we have lim supj→∞R(xkj ) ≤ R(x̄).

As a result, limk→∞R(xkj ) = R(x̄). Since F is continuous, then F (xkj )→ F (x̄), hence Φ(xkj )→ Φ(x̄).
Furthermore, owing to Lemma A.3, gkj ∈ ∂Φ(xkj ), and (i) of Lemma A.5 we have gkj → 0 as k →∞.

As a consequence,
gkj ∈ ∂Φ(xkj ), (xkj , gkj )→ (x̄, 0) and Φ(xkj )→ Φ(x̄),

as j →∞. Hence 0 ∈ ∂Φ(x̄), i.e. x̄ is a critical point.

Now we present the proof of Theorem 2.2.
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Proof of Theorem 2.2. Putting together the above lemmas, we draw the following useful conclusions:
(R.1) Denote δ = β −

∑
i∈I αi, then Ψ(zk+1) + δ∆2

k+1 ≤ Ψ(zk);
(R.2) Define

wk+1
def
=


gk+1 + 2

∑s−1
i=0 αi(xk+1 − xk)

2
∑s−1
i=0 αi(xk − xk+1) + 2

∑s−1
i=1 αi(xk − xk−1)

...
2αs−1(xk+2−s − xk+1−s)

 ,

then we have wk+1 ∈ ∂Ψ(zk+1). Owing to Lemma A.3, there exists a σ > 0 such that ||wk+1|| ≤
σ
∑k+1

j=k+2−s ∆j ;
(R.3) if xkj is a subsequence such that xkj → x̄, then Ψ(zk)→ Ψ(z̄) where z̄ = (x̄, ..., x̄).
(R.4) Czk ⊆ crit(Ψ);
(R.5) limk→∞ dist(zk, Czk) = 0;
(R.6) Czk is non-empty, compact and connected;
(R.7) Ψ is finite and constant on Czk .

Next we prove the claims of Theorem 2.2.
(i) Consider a critical point of Φ, x̄ ∈ crit(Φ), such that z̄ = (x̄, ..., x̄) ∈ Czk , then owing to (R.3), we have

Ψ(zk)→ Ψ(z̄).
Suppose there existsK such that Ψ(zK) = Ψ(z̄), then the descent property (R.1) implies that Ψ(zk) =
Ψ(z̄) holds for all k ≥ K. Then zk is constant for k ≥ K, hence has finite length.
On the other hand, let Ψ(zk) > Ψ(z̄), denote ψk = Ψ(zk)−Ψ(z̄). Owing to (R.6), (R.7) and Definition
2.1, the KL property of Ψ means that there exist ε, η and a concave function ϕ, and

U def
=
{
u ∈ Rns : dist(u, Czk) < ε

}⋂[
Ψ(z̄) < Ψ(u) < Ψ(z̄) + η

]
, (A.9)

sucht ath for all z ∈ U ,
ϕ′
(
Ψ(z)−Ψ(z̄)

)
dist

(
0, ∂Ψ(z)

)
≥ 1. (A.10)

Let k1 ∈ N be such that Ψ(zk) < Ψ(z̄) + η holds for all k ≥ k1. Owing to (R.5), there exists another
k2 ∈ N such that dist(zk, Czk) < ε holds for all k ≥ k2. LetK = max{k1, k2}, then zk ∈ U holds for
all k ≥ K. Then from (A.10), we have for k ≥ K

ϕ′(ψk)dist
(
0, ∂Ψ(zk)

)
≥ 1.

Since ϕ is concave, ϕ′ is decreasing, and Ψ(zk) is decreasing, we have

ϕ(ψk)− ϕ(ψk+1) ≥ ϕ′(ψk)
(
Ψ(zk)−Ψ(zk+1)

)
≥ Ψ(zk) − Ψ(zk+1)

dist(0, ∂Ψ(zk))
.

From (R.1), since dist(0, ∂Ψ(zk)) ≤ ||wk||, then

ϕ(ψk)− ϕ(ψk+1) ≥
Ψ(zk)−Ψ(zk+1)

||wk||
≥ Ψ(zk)−Ψ(zk+1)

σ
∑k

j=k+1−s ∆j

.

Moreover, Ψ(zk)−Ψ(zk+1) ≥ δ∆2
k+1 from (R.2), therefore we get

ϕ(ψk)− ϕ(ψk+1) ≥
δ∆2

k+1

σ
∑k

j=k+1−s ∆j

,
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which yields
∆2
k+1 ≤

(σ
δ

(ϕ(ψk)− ϕ(ψk+1))
)∑k

j=k+1−s ∆j . (A.11)

Taking the square root of both sides and applying Young’s inequality with κ > 0, we further obtain

2∆k+1 ≤
1
κ

∑k

j=k+1−s ∆j +
κσ
δ

(ϕ(ψk)− ϕ(ψk+1))

(κ = s) ≤ 1
s

∑k

j=k+1−s ∆j +
sσ
δ

(ϕ(ψk)− ϕ(ψk+1)).
(A.12)

Summing up both sides over k, and since x0 = ... = x−s, we get

`
def
=
∑

k∈N∆k ≤ ∆1 +
sσ
δ
ϕ(ψ1) < +∞,

which concludes the finite length property of xk.
(ii) Then the convergence of the sequence follows from the fact that {xk}k∈N is a Cauchy sequence, hence

convergent. Owing to Lemma A.6, there exists a critical point x? ∈ crit(Φ) such that limk→∞ xk = x?.
(iii) We now turn to proving local convergence to a global minimmizer. Note that if x? is a global minimizer

of Φ, then z? is a global minimizer of Ψ. Let r > ρ > 0 such that Br(z?) ⊂ U and η < δ(r − ρ)2.
Suppose that the initial point x0 is chosen such that following conditions hold,

Ψ(z?) ≤ Ψ(z0) < Ψ(z?) + η (A.13)

||x0 − x?||+ `(s− 1) + 2
√

Ψ(z0)−Ψ(z?)
δ

+ σ
δ
ϕ(ψ0) < ρ. (A.14)

The descent property (R.1) of Ψ together with (A.13) imply that for any k ∈ N, Ψ(z?) ≤ Ψ(zk+1) ≤
Ψ(zk) ≤ Ψ(z0) < Ψ(z?) + η, and

||xk+1 − xk|| ≤
√

Ψ(zk)−Ψ(zk+1)
δ

≤
√

Ψ(zk)−Ψ(z?)
δ

. (A.15)

Therefore, given any k ∈ N, if we have xk ∈ Bρ(x?), then

||xk+1 − x?|| ≤ ||xk − x?||+ ||xk+1 − xk|| ≤ ||xk − x?||+
√

Ψ(zk)−Ψ(z?)
δ

≤ ρ+ (r − ρ) = r,

(A.16)

which means that xk+1 ∈ Br(x?).
For any k ∈ N, define the following partial sum

pk =
∑k−1

j=k+1−s

∑j

i=1 ∆i.

Note that pk = 0 for k = 1, and limk→∞ pk = `(s− 1). Next we prove the following claims through
induction: for k ∈ N

xk ∈ Bρ(x?) (A.17)∑k

j=1∆j+1 + ∆k+1 ≤ ∆1 + pk + σ
δ

(ϕ(ψ1)− ϕ(ψk+1)). (A.18)

From (A.15) we have

||x1 − x0|| ≤
√

Ψ(z0)−Ψ(z?)
δ

. (A.19)
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Applying the triangle inequality we then obtain

||x1 − x?|| ≤ ||x0 − x?||+ ||x1 − x0|| ≤ ||x0 − x?||+
√

Ψ(z0)−Ψ(z?)
δ

< ρ,

which means x1 ∈ Bρ(x?). Now, taking κ = 1 in (A.12) yields, for any k ∈ N,

2∆k+1 ≤
∑k

j=k+1−s∆j +
σ
δ

(ϕ(ψk)− ϕ(ψk+1)). (A.20)

Let k = 1. Since x0 = ... = x−s, we have

2∆2 ≤ ∆1 +
σ
δ

(ϕ(ψ1)− ϕ(ψ2)).

Therefore, (A.17) and (A.18) hold for k = 1.
Now assume that they hold for some k > 1. Using the triangle inequality and (A.18),

||xk+1 − x?|| ≤ ||x0 − x?||+ ∆1 +
∑k

j=1∆j

≤ ||x0 − x?||+ 2∆1 + pk +
σ
δ

(ϕ(ψ1)− ϕ(ψk+1))

≤ ||x0 − x?||+ 2∆1 + (s− 1)`+
σ
δ

(ϕ(ψ1)− ϕ(ψk+1))

(A.19) ≤ ||x0 − x?||+ 2

√
Ψ(z0)−Ψ(z?)

δ
+ (s− 1)`+

σ
δ

(ϕ(ψ1)− ϕ(ψk+1)).

As ϕ(ψ) ≥ 0 and ϕ′(ψ) > 0 for ψ ∈]0, η[, and in view of (A.14), we arrive at

||xk+1 − x?|| ≤ ||x0 − x?||+ 2

√
Ψ(z0)−Ψ(z?)

δ
+ (s− 1)`+

σ
δ
ϕ(ψ0) < ρ

whence we deduce that (A.17) holds at k + 1. Now, taking (A.20) at k + 1 gives

2∆k+2 ≤
∑k+1

j=k+2−s∆j +
σ
δ

(ϕ(ψk+1)− ϕ(ψk+2))

≤ ∆k+1 +
∑k

j=k+2−s∆j +
σ
δ

(ϕ(ψk+1)− ϕ(ψ(k+2)).
(A.21)

Adding both sides of (A.21) and (A.18) we get∑k+1

j=1∆j+1 + ∆k+2 ≤ ∆1 + pk +
∑k

j=k+2−s∆j +
σ
δ

(ϕ(ψ1)− ϕ(ψk+2))

= ∆1 + pk+1 +
σ
δ

(ϕ(ψ1)− ϕ(ψk+2)),

meaning that (A.18) holds at k + 1. This concludes the induction proof.
In summary, the above result shows that if we start close enough from x? (so that (A.13)-(A.14) hold),
then the sequence {xk}k∈N will remain in the neighbourhood Bρ(x?) and thus converges to a critical
point x̄ owing to LemmaA.6. Moreover, Ψ(zk)→ Ψ(z̄) ≥ Ψ(z?) by virtue of (R.3). Now we need to
show that Ψ(z̄) = Ψ(z?). Suppose that Ψ(z̄) > Ψ(z?). As Ψ has the KL property at z?, we have

ϕ′
(
Ψ(z̄)−Ψ(z?)

)
dist

(
0, ∂Ψ(z̄)

)
≥ 1.

But this is impossible since ϕ′(s) > 0 for s ∈]0, η[, and dist
(
0, ∂Ψ(z̄)

)
= 0 as z̄ is a critical point.

Hence we have Ψ(z̄) = Ψ(z?), which means Φ(x̄) = Φ(x?), i.e. the cluster point x̄ is actually a global
minimizer. This concludes the proof.
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B Proof of Theorem 3.2

Proof of Theorem 3.2. Since R ∈ PSFx?(Mx?) and F is locally C2 around x?, the smooth perturbation
rule of partly smooth functions ensures that Φ ∈ PSFx?(Mx?) (Corollary 4.7 of [18]).

With conditions in Theorem 2.2 hold, we have there is a critical point x? ∈ crit(Φ) such that xk → x? and
Φ(xk)→ Φ(x?) (proof of Lemma A.6).

The finite length property of {xk}k∈N gives ∆k → 0, then from Lemma A.3, we have

dist
(
0, ∂Φ(xk+1)

)
≤ ||gk+1|| ≤

(
1
γ + L

)
∆k+1 +

∑
i∈I
( |ai,k|

γ + |bi,k|
)
∆k−i.

Altogether, this shows that the conditions of [21, Theorem 4.10] or [15, Proposition 10.12] are fulfilled on R
at x? for −∇F (x?), and the identification result follows.

C Proof of Theorem 3.4

Before presenting the proofs, we need some extra result from partial smoothness, and also Riemannian
geometry.

C.1 Partial smoothness and Riemannian geometry

From the sharpness in Definition 3.1, Proposition 2.10 of [18] allows to prove the following fact.

Fact C.1 (Local normal sharpness). If R ∈ PSFx(M), then all x′ ∈M near x satisfy TM(x′) = Tx′ . In
particular, whenM is affine or linear, then Tx′ = Tx.

We now give expressions of the Riemannian gradient and Hessian (see SectionC.2 for definitions) for the
case of partly smooth functions relative to a C2 submanifold. This is summarized in the following fact which
follows by combining (C.2), (C.3), Definition 3.1, Fact C.1 and [13, Proposition 17] (or [25, Lemma 2.4]).

Fact C.2. If R ∈ PSFx(M), then for any x′ ∈M near x

∇MR(x′) = PTx′ (∂R(x′)),

and this does not depend on the smooth representation of R onM. In turn, for all h ∈ Tx′

∇2
MG(x′)h = PTx′∇

2R̃(x′)h+ Wx′
(
h,PT⊥

x′
∇R̃(x′)

)
,

where R̃ is a smooth extension (representative) of R onM, and Wx(·, ·) : Tx × T⊥x → Tx is the Weingarten
map ofM at x (see SectionC.2 below for definitions).

C.2 Riemannian Geometry

LetM be a C2-smooth embedded submanifold of Rn around a point x. With some abuse of terminology, we
shall state C2-manifold instead of C2-smooth embedded submanifold of Rn. The natural embedding of a
submanifoldM into Rn permits to define a Riemannian structure and to introduce geodesics onM, and we
simply sayM is a Riemannian manifold. We denote respectively TM(x) andNM(x) the tangent and normal
space ofM at point near x inM.
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Exponential map Geodesics generalize the concept of straight lines in Rn, preserving the zero acceleration
characteristic, to manifolds. Roughly speaking, a geodesic is locally the shortest path between two points on
M. We denote by g(t;x, h) the value at t ∈ R of the geodesic starting at g(0;x, h) = x ∈M with velocity
ġ(t;x, h) = dg

dt
(t;x, h) = h ∈ TM(x) (which is uniquely defined). For every h ∈ TM(x), there exists an

interval I around 0 and a unique geodesic g(t;x, h) : I →M such that g(0;x, h) = x and ġ(0;x, h) = h.
The mapping

Expx : TM(x)→M, h 7→ Expx(h) = g(1;x, h),

is called Exponential map. Given x, x′ ∈M, the direction h ∈ TM(x) we are interested in is such that

Expx(h) = x′ = g(1;x, h).

Parallel translation Given two points x, x′ ∈ M, let TM(x), TM(x′) be their corresponding tangent
spaces. Define

τ : TM(x)→ TM(x′),

the parallel translation along the unique geodesic joining x to x′, which is isomorphism and isometry w.r.t.
the Riemannian metric.

Riemannian gradient andHessian For a vector v ∈ NM(x), theWeingarten map ofM at x is the operator
Wx(·, v) : TM(x)→ TM(x) defined by

Wx(·, v) = −PTM(x)dV [h],

where V is any local extension of v to a normal vector field onM. The definition is independent of the
choice of the extension V , and Wx(·, v) is a symmetric linear operator which is closely tied to the second
fundamental form ofM, see [12, Proposition II.2.1].

LetG be a real-valued function which is C2 along theM around x. The covariant gradient ofG at x′ ∈M
is the vector∇MG(x′) ∈ TM(x′) defined by

〈∇MG(x′), h〉 =
d
dt
G
(
PM(x′ + th)

)∣∣
t=0

, ∀h ∈ TM(x′),

where PM is the projection operator ontoM. The covariant Hessian of G at x′ is the symmetric linear
mapping∇2

MG(x′) from TM(x′) to itself which is defined as

〈∇2
MG(x′)h, h〉 =

d2

dt2
G
(
PM(x′ + th)

)∣∣
t=0

, ∀h ∈ TM(x′). (C.1)

This definition agrees with the usual definition using geodesics or connections [25]. Now assume thatM is a
Riemannian embedded submanifold of Rn, and that a functionG has a C2-smooth restriction onM. This can
be characterized by the existence of a C2-smooth extension (representative) of G, i.e. a C2-smooth function
G̃ on Rn such that G̃ agrees with G onM. Thus, the Riemannian gradient∇MG(x′) is also given by

∇MG(x′) = PTM(x′)∇G̃(x′), (C.2)

and ∀h ∈ TM(x′), the Riemannian Hessian reads

∇2
MG(x′)h = PTM(x′)d(∇MG)(x′)[h] = PTM(x′)d

(
x′ 7→ PTM(x′)∇MG̃

)
[h]

= PTM(x′)∇2G̃(x′)h+ Wx′
(
h,PNM(x′)∇G̃(x′)

)
,

(C.3)
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where the last equality comes from [1, Theorem1]. WhenM is an affine or linear subspace of Rn, then
obviouslyM = x+ TM(x), andWx′(h,PNM(x′)∇G̃(x′)) = 0, hence (C.3) reduces to

∇2
MG(x′) = PTM(x′)∇2G̃(x′)PTM(x′).

See [17, 12] for more materials on differential and Riemannian manifolds.
The following lemmas summarize two key properties that we will need throughout.

Lemma C.3. Let x ∈M, and xk a sequence converging to x inM. Denote τk : TM(x)→ TM(xk) be the
parallel translation along the unique geodesic joining x to xk. Then, for any bounded vector u ∈ Rn, we have

(τ−1k PTM(xk) − PTM(x))u = o(||u||).

Proof. See Lemma B.1 of [23].

Lemma C.4. Let x, x′ be two close points inM, denote τ : TM(x)→ TM(x′) the parallel translation along
the unique geodesic joining x to x′. The Riemannian Taylor expansion of Φ ∈ C2(M) around x reads,

τ−1∇MΦ(x′) = ∇MΦ(x) +∇2
MΦ(x)PTM(x)(x

′ − x) + o(||x′ − x||).

Proof. See Lemma B.2 of [23].

C.3 Proof of Theorem3.4

The proof of Theorem 1 consists of several steps, first we prove that under the required setting, we can obtain
(C.4), i.e. the linearized fixed-point iteration.

Proposition C.5 (Locally linearized iteration). For Algorithm 1, suppose that conditions in Theorem 2.2
hold and the generated sequence xk converges to a critical point x? ∈ crit(Φ) such that Theorem 3.2 and
condition (3.2) and (3.3) hold. Then for all k large enough, we have

dk+1 = Mdk + o(||dk||). (C.4)

The term o(·) vanishes if R is polyhedral around x? and (γk, ai,k, bi,k) are chosen constants.

Define the iteration-dependent versions of the matrices in (3.1) and (3.4), i.e.

Hk
def
= γkPTx?∇

2F (x?)PTx? , Gk
def
= Id−Hk, Qk

def
= γk∇2

Mx?
Φ(x?)PTx? −Hk,

Mk,0
def
= (ak,0 − bk,0)P + (1 + bk,0)PG, Mk,s

def
= −(ak,s−1 − bk,s−1)P − bk,s−1PG,

Mk,i
def
= −

(
(ak,i−1 − ak,i)− (bk,i−1 − bk,i)

)
P − (bk,i−1 − bk,i)PG, i = 1, ..., s− 1,

Mk
def
=


Mk,0 Mk,1 · · · Mk,s−1 Mk,s

Id 0 · · · 0 0
0 Id · · · 0 0
...

... . . . ...
...

0 0 · · · Id 0

 .
(C.5)

After the finite identification ofMx? , we have xk ∈ Mx? for xk close enough to x?. Let Txk be their
corresponding tangent spaces, and define τk : Tx? → Txk the parallel translation along the unique geodesic
joining from xk to x?.

Before proving PropositionC.5, we first establish the following intermediate result which provides useful
estimates.
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Proposition C.6. Under the assumptions of PropositionC.5, we have

||ya,k − x?|| = O(||dk||), ||yb,k − x?|| = O(||dk||), ||rk+1|| = O(||dk||),
(τ−1k+1PTxk+1

− PTx? )
(
∇F (yb,k)−∇F (xk+1)

)
= o(||dk||).

(C.6)

and
||P (Qk −Q)rk+1|| = o(||dk||), ||(Mk −M)dk|| = o(||dk||). (C.7)

Proof. Since |ai,k| ≤ 1, then

||ya,k − x?|| = ||xk +
∑
i∈Iai,k(xk−i − xk−i−1)− x

? +
∑
i∈Iai,k(x

? − x?)||
≤ ||xk − x?||+

∑
i∈Iai,k(||xk−i − x

?||+ ||xk−i−1 − x?||)

≤ 2
∑

i∈I ||rk−i|| ≤ 2
√
s+ 1

∥∥∥∥∥∥∥
rk
...

rk−s

∥∥∥∥∥∥∥ = 2
√
s+ 1||dk||,

(C.8)

hence we get the first and second estimates. From prox-regularity of R at x? for −∇F (x?), invoking
[30, Proposition 13.37], we have that there exists r̄ > 0 such that for all γk ∈]0,min(γ, r̄)[, there exists a
neighbourhood U of x? − γk∇F (x?) on which proxγkR is single-valued and l-Lipschitz continuous with
l = r̄/(r̄ − γk). Since ∇F is continuous and xk → x?, we have ya,k − γk∇F (yb,k)→ x? − γk∇F (x?). In
turn, ya,k − γk∇F (yb,k) ∈ U for all k sufficiently large. Then in turn, we obtain

||rk+1|| = ||proxγkR
(
ya,k − γk∇F (yb,k)

)
− proxγkR

(
x? − γk∇F (x?)

)
||

≤ l||(ya,k − x?)− γk
(
∇F (yb,k)−∇F (x?)

)
||

≤ l(||ya,k − x?||+ γkL||yb,k − x?||)
≤ 2l
√
s+ 1(1 + γkL)||dk|| ≤ 4l

√
s+ 1||dk||,

(C.9)

which yields the third estimate. Combining Lemma C.3, (C.8) and (C.9), we get

(τ−1k+1PTxk+1
− PTx? )

(
∇F (yb,k)−∇F (xk+1)

)
= o(||∇F (yb,k)−∇F (xk+1)||)

= o(||yb,k − x?||) + o(||rk+1||) = o(||dk||).

Let’s now turn to (C.7). First, define the function R(x)
def
= R(x) + 〈x, ∇F (x?)〉. From the smooth

perturbation rule of partial smoothness [18, Corollary 4.7], R ∈ PSFx?(Mx?). Moreover, from Fact C.2 and
normal sharpness, the Riemannian Hessian of R at x? is such that, ∀h ∈ Tx? ,

γ∇2
Mx?

R(x?)h = γPTx?∇
2R̃(x?)h+ γWx?

(
h,PT⊥

x?
∇R̃(x?)

)
= γPTx?∇

2R̃(x?)h+ γWx?
(
h,PT⊥

x?
∇Φ̃(x?)

)
= γ∇2

Mx?
Φ(x?)PTx?h−Hh = Qh,

where ·̃ is the smooth representative of the corresponding function. We have

lim
k→∞

||P (Qk −Q)rk+1||
||rk+1||

= lim
k→∞

||P (γk − γ)∇2
Mx?

R(x?)PTx? rk+1||
||rk+1||

≤ lim
k→∞

|γk − γ|||P ||||∇2
Mx?

R(x?)PTx? || = 0,
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which entails ||P (Qk −Q)rk+1|| = o(||rk+1||) = o(||dk||). Similarly, since H is Lipschitz, we have

lim
k→∞

||P (Gk −G)rk||
||rk||

= lim
k→∞

||P (γk − γ)Hrk||
||rk||

≤ lim
k→∞

|γk − γ|L||P || = 0. (C.10)

Now, let’s consider (Mk −M)dk

Mk −M =


Mk,0 −M0 Mk,1 −M1 · · · Mk,s−1 −Ms−1 Mk,s −Ms

0 0 · · · 0 0
0 0 · · · 0 0
...

... . . . ...
...

0 0 · · · 0 0

 .

Take (Mk,0 −M0)rk, we have

(Mk,0 −M0)rk

=
(
(ak,0 − bk,0)P + (1 + bk,0)PGk

)
rk −

(
(a0 − b0)P + (1 + b0)PG

)
rk

=
(
(ak,0 − bk,0)− (a0 − b0)

)
Prk + (1 + bk,0)P (Gk −G)rk + (bk,0 − b0)PGrk.

Since we assume that ai,k → ai, bi,k → bi, i = 0, 1 and γk → γ, plus (C.10), it can be shown that

lim
k→∞

||(Mk,0 −M0)rk||
||rk||

≤ lim
k→∞

|(ak,0 − bk,0)− (a0 − b0)|||P ||+ |1 + bk,0||γk − γ|L||P ||+ |bk,0 − b0|||P ||||G|| = 0,

that is ||(Mk,0 −M0)rk|| = o(||rk||). Using the same arguments, we can show that

||(Mk,i −Mi)rk−i|| = o(||rk−i||), i = 1, ..., s− 1 and ||(Mk,s −Ms)rk,s|| = o(||rk,s||).

Assemble them together, we obtain

||(Mk −M)dk|| = o(||dk||),

which concludes the proof.

Proof of PropositionC.5. From the update (1.7) and the condition for a critical point x? of problem (P),
we have

ya,k − xk+1 − γk
(
∇F (yb,k)−∇F (xk+1)

)
∈ γk∂Φ(xk+1)

0 ∈ γk∂Φ(x?).

Projecting into Txk+1
and Tx? , respectively, and using Fact C.2, leads to

γkτ
−1
k+1∇Mx?

Φ(xk+1) = τ−1k+1PTxk+1

(
ya,k − xk+1 − γk

(
∇F (yb,k)−∇F (xk+1)

))
γk∇Mx?

Φ(x?) = 0.

Adding both identities, and subtracting τ−1k+1PTxk+1
x? on both sides, we arrive at

τ−1k+1PTxk+1
rk+1 + γk

(
τ−1k+1∇Mx?

Φ(xk+1)−∇Mx?
Φ(x?)

)
= τ−1k+1PTxk+1

(ya,k − x?)− γkτ−1k+1PTxk+1

(
∇F (yb,k)−∇F (xk+1)

)
.

(C.11)
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By virtue of LemmaC.3, we get

τ−1k+1PTxk+1
rk+1 = PTx? rk+1 + (τ−1k+1PTxk+1

− PTx? )rk+1 = PTx? rk+1 + o(||rk+1||).

Using [22, Lemma 5.1], we also have

rk+1 = PTx? rk+1 + o(||rk+1||),

and thus
τ−1k+1PTxk+1

rk+1 = rk+1 + o(||rk+1||) = rk+1 + o(||dk||), (C.12)

where we also used (C.6). Similarly

τ−1k+1PTxk+1
(ya,k − x?)

= PTx? (ya,k − x?) + (τ−1k+1PTxk+1
− PTx? )(ya,k − x?)

= PTx? (ya,k − x?) + o(||ya,k − x?||) = PTx? (ya,k − x?) + o(||dk||)
= PTx? (xk − x?) +

∑
i∈Iai,kPTx?

(
(xk−i − x?)− (xk−i−1 − x?)

)
+ o(||dk||)

= rk + o(||rk||) +
∑

i∈Iai,k
(
rk−i − rk−i−1 + o(||rk−i||) + o(||rk−i−1||)

)
+ o(||dk||)

= rk +
∑

i∈Iai,k(rk−i − rk−i−1) +
∑

i∈I∪{s}o(||rk−i||) + o(||dk||)

= (ya,k − x?) + o(||dk||).

(C.13)

Moreover owing to Lemma C.4 and (C.6),

τ−1∇Mx?
Φ(xk+1)−∇Mx?

Φ(x?) = ∇2
Mx?

Φ(x?)PTx? rk+1 + o(||rk+1||)
= ∇2

Mx?
Φ(x?)PTx? rk+1 + o(||dk||).

(C.14)

Therefore, inserting (C.12), (C.13) and (C.14) into (C.11), we obtain(
Id + γk∇2

Mx?
Φ(x?)PTx?

)
rk+1

= (ya,k − x?)− γkτ−1k+1PTxk+1

(
∇F (yb,k)−∇F (xk+1)

)
+ o(||dk||).

(C.15)

Owing to (C.6) and local C2-smoothness of F , we have

τ−1k+1PTxk+1

(
∇F (yb,k)−∇F (xk+1)

)
= PTx?

(
∇F (yb,k)−∇F (xk+1)

)
+ o(||dk||)

= PTx?
(
∇F (yb,k)−∇F (x?)

)
− PTx?

(
∇F (xk+1)−∇F (x?)

)
+ o(||dk||)

= PTx?∇
2F (x?)(yb,k − x?) + o(||yb,k − x?||)− PTx?∇

2F (x?)rk+1 + o(||rk+1||) + o(||dk||)
= PTx?∇

2F (x?)PTx? (yb,k − x?)− PTx?∇
2F (x?)PTx? (xk+1 − x?) + o(||dk||).

(C.16)

Injecting (C.16) in (C.15), we get(
Id + γk∇2

Mx?
Φ(x?)PTx? − γkPTx?∇

2F (x?)PTx?
)
rk+1

= (Id +Qk)rk+1 = (ya,k − x?)−Hk(yb,k − x?) + o(||dk||),
(C.17)
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which can be further written as, recall that Hk = Id−Gk,
(Id +Qk)rk+1

= (Id +Q)rk+1 + (Qk −Q)rk+1

= (ya,k − x?)−Hk(yb,k − x?) + o(||dk||)

= rk +
∑

i∈Iai,k(rk−i − rk−i−1)−Hk

(
rk +

∑
i∈Ibi,k(rk−i − rk−i−1)

)
+ o(||dk||)

= (1 + ak,0)rk −
∑s−1

i=1 (ak,i−1 − ak,i)rk−i − ak,s−1rk−s

−Hk

(
(1 + bk,0)rk −

∑s−1
i=1 (bk,i−1 − bk,i)rk−i − bk,s−1rk−s

)
+ o(||dk||)

= (1 + ak,0)rk −
∑s−1

i=1 (ak,i−1 − ak,i)rk−i − ak,s−1rk−s

− (1 + bk,0)Hkrk +Hk

∑s−1
i=1 (bk,i−1 − bk,i)rk−i +Hkbk,s−1rk−s + o(||dk||)

=
(
(1 + ak,0)Id− (1 + bk,0)Hk

)
rk − (ak,s−1Id− bk,s−1Hk)rk−s

−
∑s−1

i=1

(
(ak,i−1 − ak,i)Id− (bk,i−1 − bk,i)Hk

)
rk−i + o(||dk||)

=
(
(ak,0 − bk,0)Id + (1 + bk,0)Gk

)
rk −

(
(ak,s−1 − bk,s−1)Id + bk,s−1Gk

)
rk−s

−
∑s−1

i=1

(
(ak,i−1 − ak,i)Id− (bk,i−1 − bk,i)Id + (bk,i−1 − bk,i)Gk

)
rk−i + o(||dk||).

Inverting Id +Q (which is possible thanks to assumption (3.2)), we obtain
rk+1 + P (Qk −Q)rk+1

=
(
(ak,0 − bk,0)P + (1 + bk,0)PGk

)
rk −

(
(ak,s−1 − bk,s−1)P + bk,s−1PGk

)
rk−s

−
∑s−1

i=1

(
(ak,i−1 − ak,i)P − (bk,i−1 − bk,i)P + (bk,i−1 − bk,i)PGk

)
rk−i + o(||dk||)

= Mk,0rk +Mk,srk−s +
∑s−1

i=1Mk,irk−i + o(||dk||).
Using the estimates (C.7), we get

dk+1 = (M + (Mk −M))dk + o(||dk||) = Mdk + o(||dk||).
With the above result, we are able to prove the claim (3.6), hence Theorem 3.4.

Proof of Theorem 3.4. Since ρ(M) < 1, then we have M is convergent with limk→∞M
k = 0. Define

ψk = o(dk), suppose afterK > 0 iterations, (C.4) holds, then for k ≥ K

dk+1 = Mk+1−KdK +
∑k

j=KM
k−jψj (C.18)

Since the spectral radius ρ(M) < 1, then from the spectral radius formula, given any ρ ∈]ρ(M), 1[, there
exists a constant C such that, for any k ∈ N

||Mk|| ≤ ||M ||k ≤ Cρk.
Therefore, from (C.18), we get

||dk+1|| ≤ ||Mk+1−KdK +
∑k

j=KM
k−jψj ||

≤ ||M ||k+1−K ||dK ||+
∑k

j=K ||M ||
k−j ||ψj ||

≤ Cρk+1−K ||dK ||+ C
∑k

j=K ρk−j ||ψj ||.

Together with the fact that ψj = o(||dj ||) leads to the claimed result. See also the result of [29, Section 2.1.2,
Theorem 1].
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