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Abstract In this paper, we present a convergence rate analysis for the inexact Krasnosel’skiı̆–Mann iteration built
from non-expansive operators. The presented results include two main parts: we first establish the global point-
wise and ergodic iteration-complexity bounds; then, under a metric sub-regularity assumption, we establish a local
linear convergence for the distance of the iterates to the set of fixed points. The obtained results can be applied
to analyze the convergence rate of various monotone operator splitting methods in the literature, including the
Forward–Backward splitting, the Generalized Forward–Backward, the Douglas–Rachford splitting, alternating di-
rection method of multipliers (ADMM) and Primal–Dual splitting methods. For these methods, we also develop
easily verifiable termination criteria for finding an approximate solution, which can be seen as a generalization of
the termination criterion for the classical gradient descent method. We finally develop a parallel analysis for the
non-stationary Krasnosel’skiı̆–Mann iteration.
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1 Introduction

1.1 Monotone inclusion and operator splitting methods

In various fields of science and engineering, many problems can be cast as solving a structured monotone inclusion
problem. A prototypical example that has attracted a wave of interest recently, see e.g. [65,19,58], takes the form

Find x ∈ H such that 0 ∈ Bx+
∑n
i=1L

∗
i ◦Ai ◦ Lix, (1)

where H is a real Hilbert space, B is cocoercive, Ai is a set-valued maximal monotone operator acting on a real
Hilbert space Gi, and Li : H → Gi is a bounded linear operator. Even more complex forms (e.g. with parallel sums
(24)) will be discussed in detail in Section 5.

Since the first operator splitting method developed in the 70’s for solving structured monotone inclusion prob-
lems, the class of splitting methods has been regularly enriched with increasingly sophisticated algorithms as the
structure of problems to handle becomes more complex. Splitting methods are iterative algorithms which evaluate
(possibly approximately) the individual operators, their resolvents, the linear operators, all separately at various
points in the course of iteration, but never the resolvents of sums nor of composition by a linear operator. Popular
splitting algorithms to solve special instances of (1) include the Forward–Backward splitting method (FBS) [46,
54], the Douglas–Rachford splitting method (DRS) [26,43] and Peaceman–Rachford splitting method (PRS) [55],
Alternating Direction method of Multipliers (ADMM) [28,29,30,31]. Other splitting methods were designed to
solve (1) or even more complex forms (e.g. with parallel sums), see for instance [15,64,61,12,14,58,19,22,65].
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For the operator splitting methods, many of them (including FBS, DRS, ADMM, and many others) can be cast
as the Krasnosel’skiı̆–Mann fixed-point iteration [35,44], possibly in its inexact form to handle errors,

zk+1 = zk + λk(Tzk + εk − zk), (2)

where T : H → H is a non-expansive operator (Definition 1), and H is a real Hilbert space with norm || · ||.
(λk)k∈N ∈ [0, 1], and εk is the error of approximating Tzk. The sequence zk is built in way that it converges (in
general weakly [59]) to some fixed point z? of T , and the latter can be easily related to a solution x? of the original
problem, e.g. (1).

1.2 Contributions

We consider the inexact Krasnosel’skiı̆–Mann iteration (2), and assume that the set of fixed points is non-empty. It
is known that a crucial step in proving the convergence of the iterates is to show that ||zk − Tzk|| → 0, a property
known as asymptotic regularity of T [53]. In this paper, we show that even with errors, the global pointwise and
ergodic iteration-complexity bounds, i.e. rates of asymptotic regularity, are respectively O(1/

√
k) and O(1/k).

Then under a metric sub-regularity assumption [25], we establish a local linear convergence for the iteration in
terms of the distance of the iterates to the set of fixed points. Of course, when the fixed point is unique, the sequence
itself converges linearly to it.

Our result can be applied to analyze the convergence behaviour of the iterates generated by various monotone
operator splitting methods. As stated above, one crucial property of these methods is that they have the equivalent
fixed-point formulation (2)1. Suchmethods include the FBS, theGeneralized Forward–Backward (GFB) [58], DRS,
ADMM, and several Primal–Dual splitting (PDS) methods [65,16]. In particular, for the GFB method developed
by two of the co-authors, which addresses the case when Li’s in (1) equal to identity, we demonstrate that O(1/ε)

iterations are needed to find a pair ((ui)i, g) with the termination criterion ||g + B(
∑
iωiui)||

2 ≤ ε, where g ∈∑
iAi(ui). This termination criterion can be viewed as a generalization of the classical one based on the norm of

the gradient for the gradient descent method [51]. The iteration-complexity improves toO(1/
√
ε) in ergodic sense

for the same termination criterion. Similar interpretation is also provided for the DRS/ADMM and PDS considered
in Section 5.

We finally study the convergence and rates of the non-stationary version of the Krasnosel’skiı̆–Mann iteration.
By absorbing the non-stationarity appropriately into an additional error term, we show that the iteration-complexity
bounds developed above remain valid under reasonable conditions. The obtained result is illustrated on the GFB
method.

1.3 Related work

1.3.1 Global iteration-complexity bounds

Relation with [3,21] Suppose that T : C → C, where C is a convex compact subset of H, and εk ≡ 0 (i.e. exact
case). In [3], the authors conjectured that ||zk − Tzk|| ≤ diam(C)/

√
π
∑k
j=1 λj(1− λj) where diam(C) is the

diameter of C, and proved it for λj ≡ λ. This conjecture was settled in [21, Theorem 1]2. Our work differs from
these in several aspects. For instance, we consider the inexact case without any assumption on boundedness of
C. We also establish both the pointwise and ergodic convergence rates, as well as local linear convergence under
metric sub-regularity.

However, the extension of the result of [21] to the inexact iteration seems quite intricate. The main reason is
that their method of proof relies on the recursive bound in [21, Corollary 3], and exploits some properties of some
special functions and an identity for Catalan numbers. These recursions are unfortunately not stable to errors.

Relation with [33] The authors in [33] studied the exact version of DRS to solve (1), i.e. B = 0, n = 2 and
Li = Id, i = 1, 2. They also supposed the extra assumption that A2 is single-valued. Let

ek = zk − JγA1
(Id− γA2)zk, (3)

1 In fact, in many cases the fixed-point operator T is even α-averaged, see Definition 1.
2 The authors consider the case whereH is any normed space.
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where JγA1
= (Id + γA1)−1 is the resolvent of A1. Relying on firm non-expansiveness of the resolvent [6], [33]

have shown that ||ek|| = O(1/
√
k).

In fact, it is easy to show that (3) is equivalent to

ek = zk − 1
2

(
(2JγA1 − Id)(2JγA2 − Id) + Id

)
zk,

where single-valuedness ofA2 is not needed whatsoever. The operator 1
2 ((2JγA1

−Id)(2JγA2
−Id)+Id) is firmly

non-expansive, and thus fits in our framework. Our results in Section 3 go much beyond this by considering a more
general iterative scheme with an operator that is only non-expansive and may be evaluated approximately.

Relation with HPE Based on the enlargement of maximal monotone operators, in [62], a hybrid proximal extra-
gradient method (HPE) is introduced to solve monotone inclusion problems of the form

Find x ∈ H such that 0 ∈ Ax.

The HPE framework encompasses some splitting algorithms in the literature [48]. The convergence of HPE is
established in [62] and in [13] for its inexact version. The pointwise and ergodic iteration-complexities of the exact
HPE on a similar error criterion as in our work are established in [48]. Some of the splitting methods we consider
in Section 5 are also covered by HPE, hence our iteration-complexity bounds coincide with those of HPE, but only
for the ergodic case. While for the pointwise case, our bound is uniform and theirs is not (see further discussion in
Remark 3).

1.3.2 Local linear convergence

Relation with [38,40] In [38], local linear convergence of the distance to the set of zeros of a maximal monotone
operator using the exact proximal point algorithm (PPA [45,60]) is established by assuming metric sub-regularity
of the operator. Local convergence rate analysis of PPA under a higher-order extension of metric sub-regularity,
namely metric q-sub-regularity q ∈]0, 1], is conducted in [40]. In our work, metric sub-regularity is assumed on
Id− T with T being the fixed-point operator, i.e. the resolvent, rather than the maximal monotone operator in the
case of PPA. Relation between metric sub-regularity of these operators is intricate in general and is beyond the
scope of this paper, though we provide an instructive discussion for a simple case at the end of Section 4. Note also
that the work of [38,40] considers PPA only in its classical form, i.e. without errors nor relaxation.

Relation with [8] While the first version of this paper was submitted, we became aware of the recent work of [8].
These authors considered (2) with λk ≡ λ ∈ [0, 1[ and εk ≡ 0. In [8, Lemma 3.8], they established local linear
convergence under bounded linear regularity of T (see [8, Definition 2.1]). The latter coincides exactly with our
metric sub-regularity assumption on Id− T (see (12)). Our result is however more general as it covers the inexact
case and λk is allowed to be iteration-dependent.

Local linear rate for feasibility problems In finite dimension, based on strong regularity, [39] proves a local linear
convergence of the Method of Alternating Projections (MAP) in the non-convex setting, where the sets are closed
and one of which is suitably regular. The linear rate is associated with a modulus of regularity. This is refined later
in [7]. In [34], the authors develop a local linear convergence results for the MAP and DRS to solve non-convex
feasibility problems, see also [56] for an even more general setting. Their analysis relies on a local version of firm
non-expansiveness together with a coercivity condition. It turns out that this coercivity condition holds for mapping
T for which the fixed points are isolated and Id− T is metrically regular. The linear rate they establish, however,
imposes a bound on the metric regularity modulus.

Other local linear rates with DRS For the case of a sphere intersecting a line, or more generally a proper affine
subset, typically in R2, [9] establishes local linear convergence of DRS. Local linear convergence of (the relaxed)
DRS to solve the affine constraint `1-minimization problem (basis pursuit) is shown in [23]. For this particular
instance, their regularity assumptions can be related to our metric sub-regularity assumption involving the DRS
fixed-point operator. Given the level of details this relation requires, we defer it (in an even more general setting)
to a forthcoming paper, hence we do not discuss this further.
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1.4 Paper organization

The organization of the paper is as follows. In Section 2 we introduce our main notations and recall some necessary
material onmonotone operator theory. Global iteration-complexity bounds and local convergence rate of the inexact
Krasnosel’skiı̆–Mann iteration are established in Section 3 and Section 4 respectively. In Section 5, illustrative
examples of existing monotone operator splitting methods to which our iteration-complexity result can be applied
are described. Extension to the non-stationary case is discussed in Section 6.

2 Preliminaries

Throughout the paper, N is the set of non-negative integers andH is a real Hilbert space with scalar product 〈·, ·〉,
norm || · ||. Id denotes the identity operator on H. The sub-differential of a proper function f : H →] −∞,+∞]
is the set-valued operator,

∂f : H → 2H, x 7→
{
g ∈ H|(∀y ∈ H), 〈y − x, g〉+ f(x) ≤ f(y)

}
.

Γ0(H) denotes the class of proper, lower semi-continuous, convex functions fromH to ]−∞,+∞]. If f ∈ Γ0(H),
then proxf denotes the Moreau proximity operator [50], and the Moreau envelope of index δ ∈]0,+∞[ of f is the
function,

δf : x 7→ min
y∈H

f(y) +
1

2δ
||y − x||2,

and its gradient is δ−1-Lipschitz continuous [49].
Let A : H → 2H be a set-valued operator. The domain of A is domA = {x ∈ H|Ax 6= ∅}, the range of A is

ranA = {y ∈ H|∃x ∈ H : y ∈ Ax}, the graph of A is the set graA = {(x, y) ∈ H2|y ∈ Ax}, the inverse of A is
the operator whose graph is graA−1 = {(y, x) ∈ H2|x ∈ A−1y}, and its zeros set is zerA = {x ∈ H|0 ∈ Ax} =
A−1(0).

The resolvent of A is the operator JA = (Id + A)−1, and the reflection operator associated to JA is RA =
2JA − Id.

We denote `1+ the set of summable sequences in [0,+∞[, and define the index set J1, nK = {1, 2, · · · , n}.
A sequence (xk)k∈N is said to convergeQ-linearly to x̃ if there exists a constant r ∈]0, 1[ such that ||xk+1−x̃||

||xk−x̃|| ≤
r, and (xk)k∈N is said to converge R-linearly to x̃ if ||xk − x̃|| ≤ σk and (σk)k∈N converges Q-linearly to 0.

2.1 Non-expansive operators and quasi-Fejér monotone sequences

Definition 1 (Non-expansive operator) An operator T : H → H is non-expansive if

∀x, y ∈ H, ||Tx− Ty|| ≤ ||x− y||.

For any α ∈]0, 1[, T is α-averaged if there exists a non-expansive operator R such that T = αR+ (1− α)Id.

We denoteA(α) the class of α-averaged operators onH, in particularA( 1
2 ) is the class of firmly non-expansive

operators, whose detailed property can be found in [6, Proposition 4.2].

Lemma 1 Let T : H → H be an α-averaged operator, then 1
2α (Id− T ) ∈ A( 1

2 ).

Proof By definition, there exists a 1-Lipschitz continuous operator R such that T = αR+ (1− α)Id, hence

1
2α (Id− T ) = 1

2α

(
Id− (αR+ (1− α)Id)

)
= 1

2

(
Id + (−R)

)
∈ A( 1

2 ).

We also collect below several useful equivalent characterizations of the firmly non-expansive operators.

Lemma 2 The following statements are equivalent:

(i) T is firmly non-expansive;
(ii) 2T − Id is non-expansive;
(iii) ∀x, y ∈ H, ||Tx− Ty||2 ≤ 〈Tx− Ty, x− y〉;
(iv) T is the resolvent of a maximal monotone operator A, i.e. T = JA.
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Proof For (i)-(iii), see [6, Proposition 4.2]; For (i)⇔ (iv), see [47].

The next lemma shows that the class A(α) is closed under relaxation, convex combination and composition.
Lemma 3 Let (Ti)i∈J1,nK be a finite family of non-expansive operators from H to H, (ωi)i ∈]0, 1]n such that∑
i ωi = 1, and let (αi)i ∈]0, 1]n such that, for every i ∈ J1, nK, Ti ∈ A(αi). Then,
(i) (∀i ∈ J1, nK) (∀λi ∈]0, 1

αi
[), Id + λi(Ti − Id) ∈ A(λiαi);

(ii) T1 · · ·Tn ∈ A(α), with α = n
n−1+1/(maxi∈J1,nK αi)

.
(iii) Let α = maxi{αi}, then

∑
i ωiTi is α-averaged.

Proof See [6, Proposition 4.28, 4.30, 4.32].

Remark 1 For the composite operator T1 · · ·Tn, a sharper bound of α can be obtained for the case n = 2 with
α = α1+α2−2α1α2

1−α1α2
∈]0, 1[ ([52, Theorem 3]).

Definition 2 (Quasi–Fejér monotone sequences) Let Ω be a non-empty closed and convex subset of H. A se-
quence (xk)k∈N is quasi–Fejér monotone with respect to Ω if there exists a sequence (δk)k∈N ∈ `1+ such that

∀x ∈ Ω, k ∈ N, ||xk+1 − x|| ≤ ||xk − x||+ δk.

2.2 Monotone operators

Definition 3 (Monotone operator) A set-valued operator A : H → 2H is monotone if(
∀(x, u) ∈ graA

)(
∀(y, v) ∈ graA

)
, 〈x− y, u− v〉 ≥ 0,

it is moreover maximally monotone if graA is not strictly contained in the graph of any other monotone operator.

Definition 4 (Cocoercive operator) An operator B : H → H is called β-cocoercive for some β ∈]0,+∞[ if
βB ∈ A( 1

2 ), i.e.,
(∀x, y ∈ H), β||Bx−By||2 ≤ 〈Bx−By, x− y〉.

Observe that β-cocoercivity implies 1
β -Lipschitz continuity.

Lemma 4 Let f : H →] − ∞,+∞[ be a convex differentiable function, with 1
β -Lipschitz continuous gradient,

β ∈]0,+∞[. Then
(i) β∇f ∈ A( 1

2 ), i.e. is firmly non-expansive;
(ii) Id− γ∇f ∈ A( γ2β ) for γ ∈]0, 2β[;

Proof (i) See [4, Baillon–Haddad theorem]; (ii) See [6, Proposition 4.33].

2.3 Product Space

Let (ωi)i ∈]0,+∞]n, considerH = Hn endowed with the scalar product and norm defined as

∀x,y ∈H, 〈〈x,y〉〉 =
∑n
i=1ωi〈xi, yi〉, ||x|| =

√∑n
i=1ωi||xi||

2
.

Define Id the identity operator onH.
Let S = {x = (xi)i ∈ H|x1 = · · · = xn} and its orthogonal complement S⊥ =

{
x = (xi)i ∈

H|
∑n
i=1 ωixi = 0

}
⊂ H. We also define the canonical isometry C : H → S, x 7→ (x, · · · , x). We have

∀z ∈H,
PS(z) = C

(∑n
i=1ωizi

)
.

Clearly PS is self-adjoint, and its reflection operator is RS = 2PS − Id.
Letγ = (γi)i ∈ ]0,+∞[

n. For arbitrarymaximalmonotone operatorsAi, i ∈ J1, nK onH, defineγA :H→ 2H,x =
(xi)i 7→ ×ni=1γiAixi, i.e. its graph is

graγA =×n

i=1graγiAi =
{

(x,u) ∈H2|x = (xi)i, u = (ui)i, ui ∈ γiAixi
}
.

For a single-valued maximal monotone operator B, denote B : H → H, x = (xi)i 7→ (Bxi)i. It is immediate
to check that both γA and B are maximal monotone. We also define the operators BS = BPS , JγA = (JγiAi)i
and RγA = 2JγA − Id.
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3 Global iteration-complexity bounds

In this section, we present the global iteration-complexity bounds of the inexact Krasnosel’skiı̆–Mann iteration.

Definition 5 (Inexact Krasnosel’skiı̆–Mann iteration) Let T : H → H be a non-expansive operator such that
the set of fixed points fixT = {z ∈ H : z = Tz} is non-empty. Let λk ∈]0, 1], and denote Tλk = λkT+(1−λk)Id.
Then the inexact Krasnosel’skiı̆–Mann iteration of T is given by

zk+1 = zk + λk(Tzk + εk − zk) = Tλkzk + λkεk, (4)

where εk is the error of approximating Tzk. The error of the iteration is defined as

ek = (Id− T )zk = (zk − zk+1)/λk + εk. (5)

Define the following two important notions

T ′ = Id− T and τk = λk(1− λk), (6)

clearly, ek = T ′zk. We start by collecting some useful properties that characterize the above fixed-point iteration.

Proposition 1 The following statements hold,

(i) Tλk ∈ A(λk) for λk ∈]0, 1[, and if T ∈ A(α), then Tλk ∈ A(λkα);
(ii) For any z? ∈ fixT , z? ∈ fixT ⇐⇒ z? ∈ fixTλk ⇐⇒ z? ∈ zerT ′;
(iii) If (τk)k∈N /∈ `1+ and (λk||εk||)k∈N ∈ `1+, then,

(a) (ek)k∈N converges strongly to 0;
(b) (zk)k∈N is quasi–Fejér monotone with respect to fixT , and converges weakly to a point z? ∈ fixT .

Proof (i) Combine Definition 1 and (i) of Lemma 3; (ii) Straightforward; (iii) See [18, Lemma 5.1].

Let’s now turn to the properties of ek. Denote τ = infk∈N τk, τ = supk∈N τk, and ν1 = 2 supk∈N ||Tλkzk −
z?||+ supk∈N λk||εk||, ν2 = 2 supk∈N ||ek − ek+1||.

Lemma 5 For the error term ek, the following inequality holds
1

2λk
||ek − ek+1||2 ≤ 〈ek − εk, ek − ek+1〉.

Proof By Lemma 1, 1
2T
′ ∈ A( 1

2 ). It then follows from Lemma 2(iii) that ∀p, q ∈ H,

|| 12T
′(p)− 1

2T
′(q)||2 ≤ 〈p− q, 1

2T
′(p)− 1

2T
′(q)〉.

Applying this bound with p = zk and q = zk+1, and using the definition of ek yields the desired result.

Corollary 1 If T is α-averaged, the inequality of Lemma 5 becomes
1

2αλk
||ek − ek+1||2 ≤ 〈ek − εk, ek − ek+1〉.

Lemma 6 For z? ∈ fixT , λk ∈]0, 1], we have

||zk+1 − z?||2 ≤ ||zk − z?||2 − τk||ek||2 + ν1λk||εk||.

Proof By virtue of [6, Corollary 2.14] we get

||zk+1 − z?||2 = ||Tλkzk − z? + λkεk||2

≤ ||(1− λk)(zk − z?) + λk(Tzk − Tz?)||2 + ν1λk||εk||

= (1− λk)||zk − z?||2 + λk||Tzk − z?||2 − τk||zk − Tzk||2 + ν1λk||εk||

≤ ||zk − z?||2 − τk||ek||2 + ν1λk||εk||.

This lemma indicates that (zk)k∈N is quasi–Fejér monotone with respect to fixT as stated in Proposition 1.

Corollary 2 If T is α-averaged, the inequality of Lemma 6 holds with λk ∈]0, 1/α] and τk = λk( 1
α − λk).
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Lemma 7 For λk ∈]0, 1], (ek)k∈N obeys ||ek+1||2 − ν2||εk|| ≤ ||ek||2.

Proof We have

||ek+1||2 = ||ek+1 − ek + ek||2 = ||ek||2 − 2〈ek, ek − ek+1〉+ ||ek − ek+1||2

≤ ||ek||2 − 2(1− λk)〈ek − εk, ek − ek+1〉 − 2〈εk, ek − ek+1〉

≤ ||ek||2 − 1−λk
λk
||ek − ek+1||2 + ν2||εk|| ≤ ||ek||2 + ν2||εk||

where Lemma 5 was used twice in the second and third lines.

We are now in position to the main results of this section. Denote d0 = d(z0,fixT ) = infz∈fixT ||z0 − z||.

Theorem 1 (Pointwise iteration-complexity bound) For the inexact fixed-point iteration (4), if there holds

0 < inf
k∈N

λk ≤ sup
k∈N

λk < 1 and
(
(k + 1)||εk||

)
k∈N ∈ `

1
+ , (7)

then, denoting C1 = ν1

∑
j∈N λj ||εj ||+ ν2τ

∑
`∈N(`+ 1)||ε`|| < +∞, we have

||ek|| ≤
√

d20 + C1

τ(k + 1)
. (8)

Proof Condition (7) implies τ > 0, (τk)k∈N /∈ `1+ and (λk||εk||)k∈N ∈ `1+. Therefore, zk is quasi-Fejér monotone
with respect to fixT ((iii) of Proposition 1). Thus, (||ek||)k∈N and (||zk − z?||)k∈N are bounded for any z? ∈ fixT .
Hence ν1, ν2 and C1 are bounded constants. Choose z? such that d0 = ||z0 − z?||. From Lemma 6, ∀k ∈ N,

τk||ek||2 ≤ ||zk − z?||2 − ||zk+1 − z?||2 + ν1λk||εk||.

Summing up from j = 0 to k,∑k
j=0 τj ||ej ||

2 ≤ ||z0 − z?||2 − ||zk+1 − z?||2 + ν1

∑k
j=0 λj ||εj ||. (9)

From Lemma 7, we have ∀j ≤ k,
||ek||2 − ν2

∑k−1
`=j ||ε`|| ≤ ||ej ||

2
.

Substituting this back into (9) yields,(∑k
j=0τj

)
||ek||2 ≤

∑k
j=0τj ||ej ||

2
+ ν2

∑k
j=0 τj

∑k−1
`=j ||ε`||

≤ d2
0 + ν1

∑k
j=0 λj ||εj ||+ ν2

∑k
j=0 τj

∑k−1
`=j ||ε`||.

(10)

Finally, since (k + 1)τ ≤
∑k
j=0τj , we get,

(k + 1)τ ||ek||2 ≤ d2
0 + ν1

∑k
j=0 λj ||εj ||+ ν2τ

∑k−1
`=0 (`+ 1)||ε`||,

which leads to the desired result (8).

Remark 2
(i) If T is α-averaged, then condition (7) of Theorem 1 on λk changes to 0 < infk∈N λk ≤ supk∈N λk <

1
α .

(ii) Since finding z? ∈ fixT is equivalent to finding a zero of T ′ ((ii) of Proposition 1), Theorem 1 tells us that
O(1/ε) iterations are needed for (4) to reach an ε-accurate in terms of the error criterion ||T ′zk||2 ≤ ε.

(iii) For the case of first-order methods for solving smooth optimization problems, i.e. the gradient descent where
T ′ is just the gradient, the obtained pointwise bound is the best-known complexity bound [51].

(iv) If the fixed-point iteration (4) is exact, then the sequence (||ek||)k∈N is non-increasing (Lemma 7), hence we
get ||ek|| ≤ d0/

√∑k
j=0τj , which recovers the result of [21, Proposition 11]. Note that we provide a sharper

monotonicity property compared to them.

We now turn to the ergodic iteration-complexity bound of (4). For this, let’s define Λk =
∑k
j=0 λj and ēk =

1
Λk

∑k
j=0 λjej .
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Theorem 2 (Ergodic iteration-complexity bound) Suppose that C2 =
∑
k∈N λk||εk|| < +∞. Then,

||ēk|| ≤
2(d0 + C2)

Λk
.

In particular, if infk∈N λk > 0, then ||ēk|| = O(1/k).

Proof Again, let z? ∈ fixT such that d0 = ||z0 − z?||. Since Tλk is non-expansive, we have

||zk+1 − z?|| = ||Tλkzk − Tλkz? + λkεk|| ≤ ||zk − z?||+ λk||εk||

≤ ||zk−1 − z?||+
∑k
j=k−1λj ||εj || ≤ ||z0 − z?||+

∑k
j=0λj ||εj ||.

This together with the definition of ēk yields

||ēk|| = || 1
Λk

∑k
j=0 λjej || = 1

Λk
||∑k

j=0 (zj − zj+1) +
∑k
j=0λjεj ||

≤ 1
Λk

(
||z0 − z?||+ ||zk+1 − z?||+

∑k
j=0λj ||εj ||

)
≤ 2(d0+C2)

Λk
.

Again, this result holds when T is α-averaged, where now λk is allowed to vary in ]0, 1/α].

Remark 3
(i) As in the pointwise case, Theorem 2 holds when T isα-averaged, where now λk is allowed to vary in ]0, 1/α].
(ii) When T is firmly non-expansive, i.e. the resolvent of a maximal monotone operator ((iv) of Lemma 2),

an O(1/k) ergodic convergence rate is also established in [48] with summable enlargement errors. For the
methods which can also be cast in the HPE framework, our result coincides with the one in [48]. Note that
in that work, they handled the non-stationary case (i.e. the parameter of the resolvent varies); see also our
extension to the non-stationary case in Section 6. For the case without errors, we recover also the bound in
[2].

From Theorem 1 and 2, it is immediate to get the convergence rate bounds on the sequence (||zk − zk+1||)k∈N
in the exact case. To lighten the notation, let vk = zk − zk+1 and v̄k = 1

k+1

∑k
j=0 vj .

Corollary 3 Assume that εk = 0 for all k ∈ N.
(i) If 0 < infk∈N λk ≤ supk∈N λk < 1, then ||vk|| ≤ d0√

τ(k+1)
;

(ii) If λ = infk∈N λk > 0, then ||v̄k|| ≤ 2d0
k+1 .

Proof
(i) By definition vk = λkek, then from (8) we have

||vk|| = ||λkek|| ≤ λk d0√
τ(k+1)

≤ d0√
τ(k+1)

.

(ii) A direct result of Theorem 2 by replacing Λk with k + 1.

4 Local linear convergence rate

In the literature, for many splitting algorithms applied to a range of optimization problems, the following typi-
cal convergence profile has been observed in practice. Globally the algorithm converges sub-linearly, and after a
sufficiently large number of iterations, the algorithm enters a new regime where a local linear convergence takes
over. This has been for instance observed (and sometimes proved) for DRS or FBS when solving sparsity-enforcing
minimization problems, see e.g. [23,41].

In this section, we study the rationale underlying this local linear convergence behaviour. Our analysis relies
on a metric sub-regularity assumption of T ′ = Id− T (Definition 5).

Definition 6 (Metric sub-regularity [25]) A set-valued mapping F : H → 2H is called metrically sub-regular at
z̃ for ũ ∈ F (z̃) if there exists κ ≥ 0 along with neighborhood Z of z̃ such that

d(z, F−1ũ) ≤ κ d(ũ, Fz), ∀z ∈ Z. (11)

The infimum of κ such that (11) holds is the modulus of metric sub-regularity, denoted by subreg(F ; z̃|ũ). The
absence of metric regularity is signalled by subreg(F ; z̃|ũ) = +∞.

8



Metric sub-regularity implies that, for any z ∈ Z , d(ũ, Fz) is bounded below. The metric (sub)regularity of
multifunctions plays a crucial role in modern variational analysis and optimization. These properties are a key to
study the stability of solutions of generalized equations, see the dedicated monograph [25].

Let’s specialize this notion to T ′ and ũ = 0. Since T ′ is single-valued and zerT ′ = fixT , from (11), metric
sub-regularity of T ′ at some z? ∈ fixT for 0 is equivalent to

d(z,fixT ) ≤ κ||T ′z||, ∀z ∈ Z. (12)

There are several concrete examples of operators T where T ′ fulfills (12).

Example 1 (Projector) Suppose that T = PC , for C a non-empty closed convex subset of H. Then fixT = C and
d(z, C) = ||z − PCz|| = ||T ′z||. Thus T ′ is metrically sub-regular at any z? ∈ C for 0 with Z = H and modulus 1.

Using the relation between metric sub-regularity of T ′ and bounded linear regularity of T as defined in [8] (see
our discussion in Section 1.3.2), other examples can be deduced for instance from [8, Example 2.3 and 2.5]. Two
other instructive examples, one on DRS with two subspaces and the second on gradient descent will be discussed
at the end of the section.

Another interesting situation is when T is firmly non-expansive, so that T = JF for some maximal monotone
operator F ((iv) of Lemma 2), in which case (4) is the relaxed inexact PPA. Let z? ∈ fixT = zerF and suppose
that 0 ∈ zerF . If F is metrically sub-regular at z? for 0 with modulus γ, then

d(z, zerF ) = d(z,fixT ) ≤ γd(0, F z) = γd(0, T−1z − z) = γ inf
v∈T−1z

||v − z||, ∀z ∈ Z.

Thus for all w such that z = Tw ∈ Z , applying the previous inequality and using the triangle inequality, we get

d(Tw,fixT ) ≤ γ||T ′w|| and d(w,fixT ) ≤ (1 + γ)||T ′w||.

Clearly, this is closely related, though not equivalent, to metric sub-regularity of T ′.
Metric sub-regularity implies that (12) gives an estimate for how far a point z is from being the fixed-point set of

T in terms of the residual ||z−Tz||. This is the rationale behind using such a regularity assumption on the operator
T ′ to quantify the convergence rate on d(zk,fixT ). Thus, starting from z0 ∈ H, and by virtue of Theorem 1, one
can recover a O(1/

√
k) rate on d(zk,fixT ). In fact, we can do even better as shown in the following theorem. We

use the shorthand notation dk = d(zk,fixT ).

Theorem 3 (Local convergence rate) Let z? ∈ fixT , assume T ′ is metrically sub-regular at z? with neighborhood
Z of z?, let κ > subreg(T ′; z?|0), λk ∈]0, 1]. Given a ball Ba(z?) ⊂ Z, a ≥ 0, suppose C2 =

∑
k∈N λk||εk|| is

small enough such that
B(a+C2)(z

?) ⊆ Z.

Then for any starting point z0 ∈ Ba(z?), we have for all k ∈ N,

d2
k+1 ≤ ζk d2

k + ck, where ζk =

{
1− τk

κ2 , if τk/κ
2 ∈]0, 1]

κ2

κ2+τk
, otherwise

∈ [0, 1[, (13)

and ck = ν1λk||εk||. Moreover,

(i) dk converges to 0 if (τk)k∈N /∈ `1+.
(ii) Let χk =

∏k
j=0 ζj , if χ = lim sup

k→+∞
k
√
χk < 1, then (d2

k)k∈N ∈ `1+. When εk = 0, then lim
k→+∞

k
√
dk < 1,

which is R-linear convergence.
(iii) If 0 < infk∈N λk ≤ supk∈N λk < 1, then there exists ζ ∈ (0, 1) such that

d2
k+1 ≤ ζk

(
d2

0 +
∑k
j=0ζ

−j+1cj
)
.

Proof Let constants b > a > 0 such that T ′ is metrically sub-regular at z? with modulus κ. Make the radius a
smaller if necessary so that Ba(z?) ⊂ Bb(z?) ⊆ Z and

a+ C2 ≤ b.
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Pick z0 ∈ Ba(z?). If z0 = z? then, take zk = z? for all k ∈ N and there is nothing more to prove. If not, then
from Lemma 6 that for any z̃ ∈ fixT ,

||zk+1 − z̃|| ≤ ||zk − z̃||+ λk||εk|| ≤ · · · ≤ ||z0 − z̃||+
∑k
j=0λj ||εj || ≤ a+ C2 ≤ b,

which implies that starting from any point z0 ∈ Ba(z?), zk ∈ Bb(z?) holds for all k ∈ N. Now for ∀k ∈ N, let
z̃ ∈ fixT be such that dk = ||zk − z̃|| and ck = ν1λk||εk||, then by virtue of the metric sub-regularity of T ′ and
Lemma 6, we have

d2
k+1 ≤ ||zk+1 − z̃||2 ≤ ||zk − z̃||2 − τk||T ′zk − T ′z̃||2 + ck ≤ d2

k − τk
κ2 d

2
k + ck (14)

≤ d2
k − τk

κ2 (d2
k+1 − ck) + ck = d2

k − τk
κ2 d

2
k+1 + 1

ζk
ck. (15)

If τk/κ2 ∈]0, 1[, then from (14) we have d2
k+1 ≤ (1 − τk

κ2 )d2
k + ck, or if 1 ≤ τk/κ

2, (15) produces d2
k+1 ≤

κ2

κ2+τk
d2
k + ck, λk ∈]0, 1] ensures κ2/(κ2 + τk) ∈]0, 1]. Therefore, we have

ζk =

{
1− τk

κ2 , if τk/κ2 ∈]0, 1[
κ2

κ2+τk
, if 1 ≤ τk/κ2

∈]0, 1].

Furthermore,
d2
k+1 ≤ ζk d2

k + ck ≤ · · · ≤ χk d2
0 +

∑k
j=0φk−jcj ≤ χk d

2
0 +

∑k
j=0cj , (16)

where χk =
∏k
j=0 ζj and φk−j =

∏k
`=j+1 ζ`.

(i) From (16) we have d2
k+1 ≤ d2

k + ck, then the d2
k → d ≥ 0 ([57, Lemma 2.2.2]). If (τk)k∈N /∈ `1+, then

||ek|| → 0 (Theorem 1), and by metric sub-regularity we have dk ≤ κ||ek||, therefore d = 0;
(ii) If χ = lim sup

k→+∞
k
√
χk < 1, then lim

k→+∞
χk = 0 and (χk)k∈N, (φk)k∈N ∈ `1+. Since also (ck)k∈N ∈ `1+, hence

the convolution
(∑k

j=0φk−jcj
)
k∈N ∈ `

1
+, as a result,

(
χk d

2
0 +

∑k
j=0φk−jcj

)
k∈N ∈ `

1
+ and so is (d2

k)k∈N.
If εk = 0, then from (16) we have lim

k→+∞
k
√
dk ≤ lim sup

k→+∞
k
√
χk < 1.

(iii) If 0 < infk∈N λk ≤ supk∈N λk < 1, then there exists ζ = supk∈N κ
2/(κ2 + τk) < 1 which concludes the

result.

Remark 4
(i) When the fixed point is a singleton, Theorem 3 holds replacing dk by ||zk − z?||.
(ii) For simplicity, suppose the iteration is exact, and let z? ∈ fixT such that dk = ||zk − z?||. Then we have

||ek||2 = ||zk − z? + Tz? − Tzk||2 ≤ 4d2
k,

which means locally, ||ek|| also converges linearly to 0 given that (τk)k∈N /∈ `1+.
(iii) As far as the claim in (iii) of Theorem 3 is concerned, if ∃ξ ∈]0, 1] such that ck = O(ξk), then

(a) If ξ < ζ, then d2
k+1 = O(ζk);

(b) If ξ = ζ, then d2
k+1 = O(kζk) = o

(
(ζ + δ)k

)
, δ > 0;

(c) If ξ > ζ, then d2
k+1 = o(ξk).

Theorem 3 extends readily to the α-averaged case.

Corollary 4 If T is α-averaged, then Theorem 3 holds substituting λkα for λk and κα for κ.

Remark 5
(i) When λk ≡ λ and εk ≡ 0, our second rate estimate in (13) encompasses that of [8, Lemma 3.8].
(ii) Equivalent characterizations of metric sub-regularity can be given, for instance in terms of derivative criteria.

In particular, as T ′ is single-valued, metric sub-regularity of T ′ holds if T ′ is differentiable on a neighbour-
hood of z? with non-singular derivatives at z around z?, and the operator norms of their inverses are uniformly
bounded [24, Theorem 1.2]. Computing the metric regularity modulus κ is however far from obvious in gen-
eral even for the differentiable case.
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Examples

DRS with two subspaces in R2 Let U and V two subspaces in R2 forming an angle of θ ∈]0, π/2]. Consider
the problem of finding U ∩ V = {0} using DRS. It is well-known the DRS fixed point operator TDRS is firmly
non-expansive. Moreover, following [8, Example 2.3 and 2.5], it can be shown T ′DRS = Id − TDRS is metrically
sub-regular with modulus 1/ sin θ. It then follows from (13) that the rate estimate is ζk = 1− (2−λk)λk sin2 θ =
(1− λk)2 + (2− λk)λk cos2 θ ∈]0, 1[, for λk ∈]0, 2[. This is exactly the optimal rate estimate provided in [42,5].
Observe that as remarked in [42], the best rate ζk ≡ cos2 θ is obtained for λk ≡ 1 (no relaxation).

Gradient descent We now consider the example of minimizing a convex function f : Rn → Rwhich is locallyC2

and strongly convex on Ω ⊂ Rn and has Lipschitz gradient. Clearly f has a unique minimizer, and without losing
generality, we denote it as 0. Define δm, δM the local strong convexity and Lipschitz modulus of f respectively,
then 1

δm
is equivalent to metric sub-regularity of ∇f at 0 for 0 [1, Theorem 3.5].

For simplicity, consider the non-relaxed gradient descent method [57] for minimizing f with constant step-size,
i.e.

xk+1 = xk − γ∇f(xk),

where γ ∈]0, 2
δM

[. This can be cast in our above framework by setting T = Id − γ∇f which is γδM
2 -averaged

(Lemma 4). Hence T ′ def
= Id− T = γ∇f which is continuously differentiable on any neighbourhood Z ⊂ Ω. For

any x ∈ Z , the Jacobian of T ′ is just γ∇2f(x), where∇2f(x) is the Hessian of f at x, which is non-singular and
its inverse is uniformly bounded by 1

δm
from local strong convexity. Thus, by virtue of [25, Theorem 4B.1], T ′ is

metrically regular, hence sub-regular, and the metric regularity modulus κ is precisely 1
γδm

. In fact we could have
anticipated this directly from the local strong monotonicity of ∇f . Specializing the rate of Theorem 3, we get

ζ = 1− t(2− t)
cnd2

∈ [0, 1[,

where we set t = γδM ∈]0, 2[, and cnd = δM/δm can be seen as the condition number of the Hessian of f along
Ω. It is obvious that the smallest ζ3 is attained for t = 1, i.e. γ = 1/δM.

The observed and theoretical convergence profiles of ||ek|| = ||xk − xk+1|| are illustrated in Figure 1 where
gradient descent was run with γ ∈ { 1

2δM
, 1
δM
}. As predicted by our result, the convergence profile exhibits two

regimes, a global sub-linear one, and then a local linear one.

k

ke
k
k

100 101 102
10-10

10-6

10-2

102

global 1=
p

k

practical

local
p
1; . = 1

2/M
practical . = 1

2/M
local

p
1; . = 1

/M

practical . = 1
/M

120 140 160

Fig. 1 Global and local convergence profiles of gradient descent to minimize f with (δm, δM) = (0.8, 1). For γ = 1
2δM

, the observed and
theoretical rates are respectively 0.60 and 0.72. For γ = 1

δM
, they are 0.20 and 0.60 respectively.

3 One may observe that γ can be modified locally, once the iterates enter the appropriate neighbourhood, to get the usual optimal linear rate
of gradient descent with a strongly convex objective [57]. But this is not our aim here.
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5 Applications

In this section, we apply the obtained results to conduct quantitative convergence analysis of a class of monotone
operator splitting methods in the literature, and mainly focus on the global iteration-complexity bounds. As stated
in the introduction, we will rely on the fact that all the considered iterative schemes (GFB/FBS, DRS/ADMM
and PDS) can be cast as Krasnosel’skiı̆–Mann iteration. Furthermore, based on the structure of the corresponding
monotone inclusion problem, we also derive specific error criteria which can serve as termination tests.

5.1 Generalized Forward–Backward splitting

TheGFB algorithm [58] addresses themonotone inclusion (1) whenLi = Id, i ∈ J1, nK, andB is β-cocoercive. By
lifting the problem into product space, GFB achieves full splitting by applying theAi’s implicitly andB explicitly.
Let (ωi)i ∈]0, 1[n such that

∑n
i=1ωi = 1, γ ∈]0, 2β[, λk ∈]0, 4β−γ

2β [, (bk)k∈N and (ai,k)k∈N are error terms. The
GFB iteration reads

For i = 1, · · · , n⌊
zi,k+1 = zi,k + λk

(
J γ
ωi
Ai(2xk − zi,k − γBxk + bk) + ai,k − xk

)
,

xk+1 =
∑n
i=1ωizi,k+1.

(17)

GFB recovers FBS for n = 1, and when B = 0, GFB recovers DRS in the product space. In the literature, the
convergence properties of the FBS and DRS have been extensively studied, see [6] and references therein. In this
section, we mainly focus on the GFB method.

Recall the notation introduced in Section 2.3. Denote ui,k+1 = J γ
ωi
Ai(2xk − zi,k − γBxk), i ∈ J1, nK, then

(17) equivalently reads
zi,k+1 = zi,k + λk(ui,k+1 + εi,k − xk),

where εi,k =
(
J γ
ωi
Ai(2xk − zi,k − γBxk + bk) + ai,k

)
− ui,k+1. Let ε1,k = C(bk), ε2,k = (ai,k)i, and T1,γ =

1
2 (RγARS + Id), T2,γ = Id− γBS .

Using Remark 1, the composed operator Tγ = T1,γ ◦ T2,γ is 2β
4β−γ -averaged. Moreover, it was shown in [58]

that the fixed-point iteration of GFB reads,

zk+1 = zk + λk
(
T1,γ(T2,γzk + ε1,k) + ε2,k − zk

)
= zk + λk(Tγzk + εk − zk), (18)

where εk =
(
T1,γ(T2,γzk + ε1,k) + ε2,k

)
− Tγzk.

Obviously, (18) is exactly in the form of (4). Therefore, the GFB iterates converge weakly [58, Theorem 4.1],
and obey the iteration-complexity bounds in Theorem 1 and 2. Moreover, we can establish certain convergence
rates for the structured monotone inclusion (1).

Let gk+1 = 1
γxk−Bxk−

1
γ

∑
i ωiui,k+1. Define ūi,k+1 = 1

k+1

∑k
j=0 ui,j+1, i ∈ J1, nK, x̄k = 1

k+1

∑k
j=0 xj

and ḡk+1 = 1
γ x̄k −Bx̄k −

1
γ

∑
i ωiūi,k+1.

Proposition 2 We have gk+1 ∈
∑
iAiui,k+1. Moreover,

(i) If 0 < infk∈N λk ≤ supk∈N λk <
4β−γ

2β ,
(
(k + 1)||bk||

)
k∈N ∈ `

1
+ and ∀i ∈ J1, nK,

(
(k + 1)||ai,k||

)
k∈N ∈ `

1
+,

then

d
(
0,
∑
iAiui,k+1 +B(

∑
iωiui,k+1)

)
≤ 1

γ

√
d20 + C1

τ(k + 1)
.

(ii) If λ = infk∈N λk > 0, (λk||bk||)k∈N ∈ `1+ and (λk||ai,k||)k∈N ∈ `1+, ∀i ∈ J1, nK, then

||ḡk+1 +B(
∑
iωiūi,k+1)|| ≤ 2(d0 + C2)

γλ(k + 1)
.

C1, C2 are the constants in Theorem 1 and 2 respectively.
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Proof (i) Embarking from the definition of ui,k+1, we have

ui,k+1 = J γ
ωi
Ai

(2xk − zi,k − γBxk)

⇔ 2xk − zi,k − γBxk − ui,k+1 ∈ γ
ωi
Aiui,k+1

⇔ ωi
γ

(
2xk − zi,k − γBxk − ui,k+1 + γB(

∑
iωiui,k+1)

)
∈ Aiui,k+1 + ωiB(

∑
iωiui,k+1).

Then sum up over i to get

1
γxk −Bxk −

1
γ

∑
i ωiui,k+1 +B(

∑
iωiui,k+1) ∈

∑
iAiui,k+1 +B(

∑
iωiui,k+1).

Now

∑
k∈N(k + 1)||εk|| ≤

∑
k∈N(k + 1)||ε1,k||+

∑
k∈N(k + 1)||ε2,k||

≤
∑
k∈N(k + 1)||bk||+

∑n
i=1wi

∑
k∈N (k + 1)||ai,k|| < +∞,

and thus Theorem 1 applies. Combining this with the fact that Id−γB is non-expansive ((ii) of Lemma 4), we
obtain

d
(
0,
∑
iAiui,k+1 +B(

∑
iωiui,k+1)

)
≤ ||gk+1 + γB(

∑
iωiui,k+1)|| = 1

γ
||(Id− γB)xk − (Id− γB)(

∑
iωiui,k+1)||

≤ 1

γ
||xk −

∑
iωiui,k+1|| ≤

1

γ
||ek|| ≤

1

γ

√
d20 + C1

τ(k + 1)
.

(ii) Again, one can check that indeed (λk||εk||) ∈ `+1 . Thus, owing to Theorem 2 and non-expansiveness of Id−γB,
we have

||ḡk+1 +B(
∑
iωiūi,k+1)|| = 1

γ
||(Id− γB)x̄k − (Id− γB)(

∑
iωiūi,k+1)||

≤ 1

γ
||x̄k −

∑
iωiūi,k+1|| ≤

1

γ(k + 1)
||∑k

j=0 (zj+1 − zj − λjεj)/λj||

≤ 1

γλ(k + 1)

(
||z0 − zk+1||+

∑k
j=0λj||εj||

)
≤ 2(d0 + C2)

γλ(k + 1)
.

Remark 6

(i) Proposition 2 indicates that GFB provides an ε-accurate solution in at mostO(1/ε) iterations for the criterion
d
(
0,
∑
iAiui,k +B(

∑
iωiui,k)

)2 ≤ ε, which also recovers the sub-differential stopping criterion of the FBS
method when n = 1. This can then be viewed as a generalization of the best-known complexity bounds of
the gradient descent method [51].

(ii) In [11], the Forward–Douglas–Rachford splitting (FDRS) was proposed to solve (1) with A1 = A and A2 =
NV , V is a closed vector subspace of K. FDRS has a very similar structure to GFB. Therefore, FDRS also
obeys the iteration-complexity bounds established in Section 3.

(iii) Using the transportation formula for cocoercive operators in [63, Lemma 2.8], one can write the non-relaxed
and exactGFBmethod into the HPE framework introduced there, and derive the iteration-complexity bounds
[48] as discussed in the related work. However, we would like to point out that, to establish the iteration-
complexity bounds for GFB under the HPE framework, neither relaxation nor errors are handled, and the
iteration-complexity bound would be non-uniform [48]4.

4 Let (xk, vk) ∈ graA be a sequence generated by an iterative method for solving the monotone inclusion problem 0 ∈ Ax, then the
non-uniform iteration-complexity bound means that for every k ∈ N, there exists a j ≤ k such that ||vj || = O(1/

√
k).

13



5.2 Douglas–Rachford splitting and ADMM

As mentioned above, the DRS method [43] can be applied to solve (1) whenB = 0, n = 2 and Li = Id, i = 1, 2.
Let γ > 0, λk ∈]0, 2], (ε1,k)k∈N and (ε2,k)k∈N are summable error sequences. The DRS iteration reads

uk+1 = JγA1(2xk − zk),

zk+1 = zk + λk(uk+1 + ε1,k − xk),

vk+1 = JγA2(zk+1),

xk+1 = vk+1 + ε2,k+1.

(19)

When B = 0, n = 2, L2 = Id and L1 : H → G is some injective linear operator, then (1) can also be solved
using ADMM which is DRS method applied to the dual of (1) [27]. In the following, we discuss only DRS.

DRS (19) takes exactly the form (4) with

T = 1
2 (RγA1

RγA2
+ Id), εk =

(
1
2 (RγA1

(RγA2
zk + 2ε2,k) + zk)− Tzk

)
+ ε1,k,

see e.g. [18]. Moreover T ∈ A( 1
2 ) and (εk)k∈N ∈ `1+ owing to the summability of (ε1,k)k∈N, (ε2,k)k∈N. Therefore,

the DRS iterates obey the iteration-complexity bounds in Section 3.
Next, we turn to the corresponding monotone inclusion problem (1), and develop a criterion similar to Propo-

sition 2. Define gk+1 = 1
γ (2xk − zk − uk+1 + zk+1 − vk+1).

Proposition 3 We have gk+1 ∈ A1uk+1 +A2vk+1. Moreover, if 0 < infk∈N λk ≤ supk∈N λk < 2, (ε1,k)k∈N and
(ε2,k)k∈N ∈ `1+, then

d
(
0, A1uk+1 +A2vk+1

)
≤ 1 + λk

γ

√
d20 + C1

τ(k + 1)
+ ck, (20)

where ck = 1
γ

(
(2 + λk)||ε2,k||+ ||ε1,k||

)
, d0 and C1 are those defined in Theorem 1.

Proof From (19), we have 2xk − zk − uk+1 ∈ γA1uk+1, zk+1 − vk+1 ∈ γA2vk+1, whose sum leads to

gk+1 = 1
γ

(
2xk − zk − uk+1 + zk+1 − vk+1

)
∈ A1uk+1 +A2vk+1,

where ε1,2,k = ε1,k + ε2,k. Note that vk − zk = (Id− JγA2
)zk and (Id− JγA2

) is firmly non-expansive (Lemma
1), whence we get

d
(
0, A1uk+1 +A2vk+1

)
≤ 1+λk

γ ||ek||+
1
γ

(
λk||εk||+ ||ε1,2,k − εk||

)
. (21)

For the error ||εk||, we have

||εk|| ≤ 1
2 ||RγA1(RγA2zk + 2ε2,k)−RγA1RγA2zk||+ ||ε1,k|| ≤ ||ε1,k||+ ||ε2,k||, (22)

and similarly we have
||εk − ε1,2,k|| ≤ 2||ε2,k||. (23)

Combining together (21), (22) and (23) concludes the proof.

Remark 7
(i) The summability assumption of (ε1,k)k∈N and (ε1,k)k∈N implies (ck)k∈N is summable too, hence decays

faster than 1/k, which means the right hand side of (20) is dominated by the first term.
However, to ensure the convergence of the DRS method, one only needs

(
λk||εk||

)
k∈N to be summable,

which does not necessary mean that (ε1,k)k∈N and (ε1,k)k∈N should be summable. In [17, Remark 5.7],
an example is provided where

∑
k∈N ||εk|| may diverge while (λk||εk||)k∈N is summable. Suppose ||εk|| ≤

(1+
√

1− 1/k)/kq, q ∈]0, 1], and λk = (1−
√

1− 1/k)/2, then it can be verified that
∑
k∈N ||εk|| diverges

but
∑
k∈N λk||εk|| < +∞ and

∑
k∈N λk(2− λk) = +∞.

(ii) The obtained iteration-complexity results can be readily adapted to the ADMM method, by exploiting the
fact that ADMM is nothing but DRS applied to the Fenchel dual of the problem. In particular, one can then
show that the pointwise iteration-complexity of ADMM is indeed O(1/

√
k). A similar result in the exact

case is presented in [32] under a different metric.
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5.3 Primal–Dual splitting

In [65], a more general monotone problem is considered. Let C : H → 2H be a maximal monotone operator,
B : H → H is µ-cocoercive for some µ ∈]0,+∞[. n is a strictly positive integer, let (ωi)i ∈]0, 1[n such that∑
iωi = 1. For every i ∈ J1, nK, let Gi be a real Hilbert space, ri ∈ Gi, Ai : Gi → 2Gi is maximal monotone,

Di : Gi → 2Gi is maximal monotone and νi-strongly monotone for νi ∈]0,+∞[ (thus D−1
i is single-valued),

Ai�Di = (A−1
i + D−1

i )−1 is the parallel sum of Ai and Di. Finally, let Li : H → Gi be a non-zero bounded
linear operator. Now, consider the following monotone inclusion problem,

Find x ∈ H such that 0 ∈ Cx+Bx+
∑n
i=1ωiL

∗
i

(
(Ai�Di)(Lix− ri)

)
, (24)

and the corresponding dual problem,

Find (v1 ∈ G1, ..., vn ∈ Gn) such that (∃x ∈ H)

{
0 ∈ Cx+Bx+

∑n
i=1ωiL

∗
i vi,

0 ∈ (Ai�Di)(Lix− ri)− vi,
(25)

denote by P and D the solution sets of (24) and (25) respectively.
Let τ, (σi)i > 0 such that η = min{ 1

τ ,
1
σ1
, ..., 1

σn
}(1−

√
τ
∑
i σiωi‖Li‖2), 2ηβ > 1whereβ = min{µ, ν1, ..., νn},

and λk ∈]0, 4ηβ−1
2ηβ ]. Let (ε1,k, ε2,k)k∈N be absolutely summable sequences in H, (ε3,i,k, ε4,i,k)k∈N be absolutely

summable sequences in Gi for i ∈ J1, nK. The primal-dual splitting algorithm of [65] reads,

pk+1 = JτC
(
xk − τ(

∑
iωiL

∗
i vi,k +Bxk + ε1,k)

)
+ ε2,k,

yk+1 = 2pk+1 − xk,
xk+1 = xk + λk(pk+1 − xk),

For i = 1, · · · , n⌊
qi,k+1 = JσiA−1

i

(
vi,k + σi(Liyi,k+1 −D−1

i vi,k − ε3,i,k − ri)
)

+ ε4,i,k,

vi,k+1 = vi,k + λk(qi,k+1 − vi,k).

(26)

For the case of convex optimization, with n = 1, r = 0, D = 0, no errors and λk ≡ 1, the algorithm reduces
to that in [14].

In this part, we recall briefly the fixed-point iteration corresponding to (26) whose detailed derivation can be
found in [65, Section 3]. Define the product space G = Gi×· · ·×Gn endowed with the scalar product 〈〈v1,v2〉〉G =∑n
i=1ωi〈v1,i, v2,i〉Gi and associated norm || · ||G . LetK = H⊕G be the Hilbert direct sum with the scalar product
〈〈(x1,v1), (x2,v2)〉〉K = 〈x1, x2〉+ 〈〈v1,v2〉〉G and norm || · ||K.

Define the following operators onK,

C : K→ 2K, (x,v) 7→ (Cx)× (r1 +A−1
1 v1)× · · · × (rn +A−1

n vn),

D : K→ K, (x,v) 7→ (
∑
iωiL

∗
i vi,−L1x, · · · ,−Lnx),

E : K→ K, (x,v) 7→ (Bx,D−1
1 v1, · · · , D−1

n vn),

F : K→ K, (x,v) 7→ ( 1
τ x−

∑
iωiL

∗
i vi,

1
σ1
v1 − L1x, · · · , 1

σn
vn − Lnx),

C andD are maximal monotone,E is β–cocoercive, and F is self–adjoint and η–strongly positive. Then the fixed
point equation of (26) is [65]

zk+1 = zk + λk
(
JA(zk −Bzk − ε2,k) + ε1,k − zk

)
, (27)

where A = F−1(C +D), B = F−1E, zk = (xk, v1,k, · · · , vn,k), the errors ε1,k = (ε2,k, ε4,1,k, · · · , ε4,n,k),
ε3,k = (ε1,k, ε3,1,k, · · · , ε3,n,k), ε4,k = ( 1

τ ε2,k,
1
σ1
ε4,1,k, · · · , 1

σn
ε4,n,k), ε2,k = F−1

(
(D +E)ε1,k + ε3,k − ε4,k

)
.

Iteration (27) has the structure of FBS, and by Remark 1, the fixed-point operator T = JA ◦ (Id − B) ∈
A( 2ηβ

4ηβ−1 ). Thus, (27) is a special instance of (4). In addition, since ε1,k and ε2,k (resp. ε3,i,k and ε4,i,k) are
summable in H (resp. in Gi), so are ε1,k and ε2,k inK. Therefore, the PDS iterates obey the iteration-complexity
bounds in Section 3.

Observing that fixT = zer(A+B) = zer(C +D +E), we also have the following bounds. We will denote
δ = max{ 1

τ ,
1
σ1
, . . . , 1

σn
}, τ = infk∈N λk( 4ηβ−1

2ηβ − λk), and wk+1 = (zk+1 − (1 − λk)zk)/λk − εk, where
εk = (JA(zk −Bzk − ε2,k) + ε1,k)− JA(zk −Bzk).
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Proposition 4 Suppose 0 < infk∈N λk ≤ supk∈N λk < 2ηβ
4ηβ−1 ,

(
(k + 1)||εj,k||

)
k∈N ∈ `1+, j = 1, 2, and(

(k + 1)||εj,i,k||
)
k∈N ∈ `

1
+, j = 3, 4. Then

d
(
0, (A+B)wk+1

)
≤ 2δ

η

√
d20 + C1

τ(k + 1)
,

where C1 < +∞ and d0 = infz∈fixT ||z0 − z||K.
The proof is similar to that of Proposition 2 and will not be included here. Again, Proposition 4 can serve as
a stopping criterion for the primal-dual monotone inclusion (24)-(25). An ergodic bound can also be derived.
However, for the sake of brevity, we do not pursue this further.

6 Non-stationary Krasnosel’skiı̆-Mann iteration

6.1 General convergence analysis

The fixed-point iteration discussed in Section 3 is stationary, namely, T of (4) is fixed along the iterations. In
this section, we study the non-stationary version of it, and show that, the non-stationary case can be seen as a
perturbation of the stationary one. Moreover the iterates are convergent if the extra perturbation error is absolutely
summable.

Let TΓ : H → H be a non-expansive operator depending on a parameter Γ . Let λk ∈]0, 1[. Then the non-
stationary fixed-point iteration is defined by

zk+1 = zk + λk(TΓkzk + εk − zk) = TΓk,λkzk + λkεk, (28)

with TΓk,λk = λkTΓk + (1− λk)Id. If we define εΓk = (TΓk − TΓ )zk, πk = εΓk + εk, then (28) can be rewritten
as

zk+1 =
(
λkTΓ + (1− λk)Id

)
zk + λkπk = TΓ,λkzk + λkπk, (29)

where TΓ,λk = λkTΓ + (1− λk)Id. The corresponding vector ek of (28) becomes

ek = (zk − zk+1)/λk + πk.

Comparing (29) to Definition 5, a new error sequence πk is introduced. To obtain convergence of the non-stationary
iteration, we adapt arguments from [36] (Banach spaces endowed with an appropriate compatible topology) and
[37] (real Hilbert spaces). For convenience, we recall that τ = infk∈N λk(1− λk).

Theorem 4 (Convergence of (28)) Assume the following holds:
(A.1) fixTΓ 6= ∅;
(A.2) ∀k ∈ N, TΓk,λk is (1 + βk)-Lipschitz with βk ≥ 0, and (βk)k∈N ∈ `1+;
(A.3) λk ∈]0, 1[ such that τ > 0;
(A.4) (λk||εk||) ∈ `1+;
(A.5) ∀ρ ∈ [0,+∞[, the sequence (λk∆k,ρ)k∈N ∈ `+1 , where

∆k,ρ = sup
||z||≤ρ

||TΓkz − TΓ z||. (30)

Then (ek)k∈N converges strongly to 0, and (zk)k∈N converges weakly to a point z? ∈ fixTΓ .

Proof For the sequence (zk)k∈N generated by (28), and z? ∈ fixTΓ , we have

||zk+1 − z?|| = ||TΓk,λkzk + λkεk − TΓ,λkz?||
≤ ||TΓk,λkzk − TΓk,λkz?||+ ||TΓk,λkz? − TΓ,λkz?||+ λk||εk||
≤ (1 + βk)||zk − z?||+ λk∆k,||z?|| + λk||εk||.

As (βk)k∈N, (λk||εk||)k∈N and (λk∆k,||z?||)k∈N are summable by assumptions (A.2), (A.4) and (A.5), it follows
from [57, Lemma 2.2.2] that the sequence (||zk − z?||)k∈N converges, hence bounded. Therefore, zk is bounded in
norm by some ρ ∈ [0,+∞[. This implies that

||zk+1 − TΓ,λkzk|| = ||TΓk,λkzk + λkεk − TΓ,λkzk|| ≤ λk (∆k,ρ + ||εk||) .

In other words, the (inexact) non-stationary iteration (28) can be seen as a perturbed version of the (inexact) sta-
tionary one with an extra-error term which is summable owing to (A.5). The rest of the proof follows by applying
[36, Proposition 2.1 and Remark 2.2] (see also [10, Remark 14]) using (A.1) and (A.3).
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If TΓk were non-expansive, then obviously (A.2) is in force, and in turn, Theorem 4 holds. In the specific
scenario where ∀k ∈ N, TΓk is αk-averaged, αk ∈]0, 1], we can further refine the choice of λk. Here we take a
different route from the one in [18]. By definition, ∀k ∈ N, there exists a non-expansive operator RΓk : H → H
such that TΓk = αkRΓk +(1−αk)Id. LetRΓ be a non-expansive operator, and λ′k = αkλk. We have the following
corollary.

Corollary 5 Assume that
(A′.1) fixRΓ 6= ∅;
(A′.2) ∀k ∈ N, TΓk is αk-averaged, αk ∈]0, 1];
(A′.3) λk ∈]0, 1

αk
[ such that infk∈N λ

′
k(1− λ′k) > 0;

(A′.4) (λ′k||εk||) ∈ `1+;
(A′.5) ∀ρ ∈ [0,+∞[, (λ′k∆k,ρ)k∈N ∈ `+1 , where

∆k,ρ = sup
||z||≤ρ

||RΓkz −RΓ z||.

Then (ek)k∈N converges strongly to 0, and (zk)k∈N converges weakly to a fixed point z? ∈ fixTΓ .

Assumptions (A.4)-(A.5) of Theorem 4 imply that∑
k∈Nλk||πk|| ≤

∑
k∈Nλk(||εΓk ||+ ||εk||) < +∞.

Therefore, if we can further impose a stronger summability assumption on (πk)k∈N as in Theorem 1, then we can
obtain the iteration-complexity bounds for the non-stationary iteration (28) as well. This is stated in the following
result. Recall Λk =

∑k
j=0λj , ēk = 1

Λk

∑k
j=0 λjej , and d0 = infz∈fixTΓ ||z0 − z||.

Proposition 5 Assume that (A.1) holds, and that ∀k ∈ N, TΓk is non-expansive.
(i) Suppose that (A.3) is verified,

(
(k + 1)||εk||

)
k∈N ∈ `

+
1 and

(
(k + 1)∆k,ρ

)
k∈N ∈ `

+
1 , ∀ρ ∈ [0,+∞[, where

∆k,ρ is given by (30). Then,

||ek|| ≤
√

d20 + C1

τ(k + 1)

where C1 is a bounded constant (see Theorem 1).
(ii) Suppose that λk ∈]0, 1] such that (A.4)-(A.5) are verified. Then

||ēk|| ≤
2(d0 + C2)

Λk

where C2 is a bounded constant (see Theorem 2). In particular, if infk∈N λk > 0, we get O(1/k) ergodic
convergence rate.

Proof (i) By assumption, we have
∑
k∈N(k+ 1)||πk|| < +∞. All assumptions of Theorem 1 are then fulfilled and

the result follows. (ii) Similarly all required assumptions to apply Theorem 2 are in force.

Remark 8 If metric sub-regularity assumption is imposed on Id− TΓ , a result similar to Theorem 3 can be stated.
But now, we have ck = ν1λk(||εk||+ ∆k,ρ). So the actual local convergence behaviour depends also on the addi-
tional perturbation error brought by non-stationarity as captured by∆k,ρ, even in the exact case. Thus, similarly to
Remark 4, if ||εk|| and ∆k,ρ converge linearly, then so does dk = d(zk,fixTΓ ) locally. If the non-stationary error
∆k,ρ decays sub-linearly, then it dominates.

6.2 Application to non-stationary GFB

As discussed in Section 5.1, the fixed-point operator Tγ of GFB depends on a parameter γ. Now let γ vary along
the iteration, and denote the following operators

T1,γk = 1
2 (RγkARS + Id), T2,γk = Id− γkBS , and Tγk = T1,γk ◦ T2,γk .

Recall that for (γk)k∈N ∈]0, 2β[, Tγk is αk-averaged with αk = 2β
4β−γk , and Tγ is α-averaged with α = 2β

4β−γ , for
γ ∈]0, 2β[. Moreover, there exists non-expansive operators Rγ and Rγk such that Tγ = αRγ + (1 − α)Id and
Tγk = αkRγk + (1− αk)Id.

Let εγk = (Tγk − Tγ)zk, πk = εγk + εk. The the non-stationary version of (18) is defined by

zk+1 = zk + λk(Tγzk + πk − zk). (31)
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Theorem 5 For the non-stationary iteration (31), if the following assumptions hold

(A′′.1) zer(B +
∑
iAi) 6= ∅;

(A′′.2) λk ∈]0, 1
αk

[, such that infk∈N λk( 1
αk
− λk) > 0;

(A′′.3)
(
λk||bk||

)
k∈N ∈ `

1
+ and

(
λk||ai,k||

)
k∈N ∈ `

1
+, ∀i ∈ J1, nK;

(A′′.4) (γk)k∈N ∈]0, 2β[ such that 0 < γ ≤ γk ≤ γ < 2β, γ ∈ [γ, γ], and (λk|γk − γ|)k∈N ∈ `+1 ;

then, the sequence (zk)k∈N generated by (31) converges weakly to a point in fixTγ .
If we further assume that ((k+ 1)|γk − γ|)k∈N ∈ `+1 , ((k+ 1)||bk||)k∈N ∈ `1+, and ((k+ 1)||ai,k||)k∈N ∈ `1+, ∀i ∈
J1, nK, then we obtain the pointwise iteration-complexity bound for the non-stationary version of GFB algorithm
as stated in (i) of Proposition 5.

Proof It is sufficient to verify the conditions of Corollary 5 to conclude.

• Assumption (A′.1) is fulfilled thanks to (A′′.1) since PS(fixRγ) = PS(fixTγ) = zer(B +
∑
iAi) 6= ∅;

• As Tγk ∈ A(αk), Tγk,λk ∈ A(αkλk), and thus assumption (A′.2) is in force;
• (A′.3) holds thanks to (A′′.2);
• (A′.4) follows from (A′′.3).
• It remains to check that (A′′.4) implies (A′.5).

By definition ofRγ andRγk , we have

Rγ =
(
1− 1

α

)
Id + 1

αTγ and Rγk =
(
1− 1

αk

)
Id + 1

αk
Tγk .

It then follows that

||Rγkz −Rγz|| = || 1
αk

(
Tγk − Id

)
z − 1

α

(
Tγ − Id

)
z||

≤ | 1
αk
− 1

α |||
(
Tγ − Id

)
z||+ 1

αk
||
(
Tγk − Id

)
z −

(
Tγ − Id

)
z||

≤ |γk − γ|
2β

(
2ρ+ ||Tγ0||

)
+ 1

αk
||Tγkz − Tγz|| . (32)

Now, non-expansiveness of T1,γk yields

||Tγkz − Tγz|| ≤ ||T1,γkT2,γkz − T1,γkT2,γz||+ ||T1,γkT2,γz − T1,γT2,γz||
≤ ||T2,γkz − T2,γz||︸ ︷︷ ︸

Term 1

+ ||T1,γkT2,γz − T1,γT2,γz||︸ ︷︷ ︸
Term 2

. (33)

We first bound the first term in (33),

||T2,γkz − T2,γz|| ≤ |γk − γ|||BPSz||
(Triangle inequality andB is β−1-Lipschitz) ≤ (β−1ρ+ ||B(0)||)|γk − γ|, (34)

where B(0) is bounded.
Let’s now turn to the second term of (33). Denote zS = PS(z) and zS⊥ = z − zS , then

v = T1,γT2,γ′z ⇔ v = zS⊥ + JγA(zS − zS⊥ − γ′BzS),

Let y = zS − zS⊥ − γBzS , then we have

T1,γkT2,γz − T1,γT2,γz = JγkA(y)− JγA(y).

and denote uk = JγkAy, u = JγAy. By definition of the resolvent, this is equivalent to(
u,

y − u
γ

)
∈ gra(A) and

(
uk,

y − uk
γk

)
∈ gra(A).

SinceA is monotone, and by assumptions on γk and γ, it follows that

〈〈γk(y − u)− γ(y − uk),u− uk〉〉 ≥ 0⇔ ||u− uk||2 ≤
γk − γ
γ
〈〈y − u,u− uk〉〉.
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Therefore, using Cauchy-Schwartz inequality and the fact that Id− JγA ∈ A( 1
2 ) is non-expansive,

||u− uk|| ≤
|γk − γ|

γ
||(Id− JγA)y|| ≤ |γk − γ|

γ
(||y||+ ||JγA(0)||), (35)

where ||JγA(0)||2 =
∑
i ωi||J γ

ωi
(0)||2. Using the triangle inequality, the Pythagorean theorem and non-expansiveness

of βBPS , we obtain

||y|| ≤ ||zS − zS⊥ ||+ γ||BzS || ≤ ρ+ γ||BzS −BPS(0)||+ γ||BPS(0)||
≤ ρ+ γβ−1||z||+ γ||B(0)|| ≤ ρ+ γβ−1ρ+ γ||B(0)||. (36)

Putting together (32), (34), (35) and (36), we get ∀ρ ∈ [0,+∞[

∑
k∈Nλkαk∆k,ρ =

∑
k∈Nλkαk sup

||z||≤ρ
||Rγkz −Rγz|| ≤ C

∑
k∈N λk|γk − γ| < +∞,

where

C =
2ρ+ ||Tγ0||

4β − γ
+ ρβ−1(1 + β/γ + γ/γ) + (1 + γ/γ)||B(0)||+ γ−1||JγA(0)|| < +∞ .

Consequently, (A.5) is fulfilled.
The last statement of the theorem is a simple application of Theorem 1.

Remark 9

(1) For the non-stationary versions of the methods discussed in Section 5, for instance, the DRS and FDRSmeth-
ods, whose fixed-point operators also depend on γk, Theorem 5 is also applicable. In general, the summability
assumption (A′′.4) of Theorem 5 is hard to remove, except for some special cases. For instance for the FBS
method, as stated in [20, Theorem 3.4], where γk ∈]0, 2β[, but λk ∈]0, 1[ instead of ]0, 4β−γk

2β [ here.
(2) Recall the term ck in the bound (13) of Theorem 3. Clearly, for the non-stationary GFB iteration, even if

the approximation error εk = 0, we still have ck = ν1λkεγk 6= 0. Therefore, under metric sub-regularity
of Id − Tγ , a bound similar to (13) can be obtained, whose performance will depend on how fast |γk − γ|
converges to 0.

7 Conclusion

In this paper, we presented global iteration-complexity bounds for the inexact Krasnosel’skiı̆–Mann iteration built
from a non-expansive operator, then under metric sub-regularity, we provided a unified quantitative analysis of lo-
cal linear convergence. Extensions to the non-stationary version of the fixed-point iteration were also studied. The
obtained results are applied to several monotone operator splitting algorithms and illustrated through some exam-
ples where both global sub-linear and local linear convergence profiles are observed. The local linear convergence
rate depends on the sub-regularity modulus of the fixed-point operator, which is not straightforward to compute in
general. Moreover, our rate estimates are not necessarily sharp in general. Sharper rates can be obtained if more
structure on the problem is available and exploited wisely. These are important aspects that we will investigate in
a future work.
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