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In this paper, we present a convergence rate analysis for the inexact Krasnosel'skiȋ-Mann iteration built from non-expansive operators. The presented results include two main parts: we first establish the global pointwise and ergodic iteration-complexity bounds; then, under a metric sub-regularity assumption, we establish a local linear convergence for the distance of the iterates to the set of fixed points. The obtained results can be applied to analyze the convergence rate of various monotone operator splitting methods in the literature, including the Forward-Backward splitting, the Generalized Forward-Backward, the Douglas-Rachford splitting, alternating direction method of multipliers (ADMM) and Primal-Dual splitting methods. For these methods, we also develop easily verifiable termination criteria for finding an approximate solution, which can be seen as a generalization of the termination criterion for the classical gradient descent method. We finally develop a parallel analysis for the non-stationary Krasnosel'skiȋ-Mann iteration.

Introduction

Monotone inclusion and operator splitting methods

In various fields of science and engineering, many problems can be cast as solving a structured monotone inclusion problem. A prototypical example that has attracted a wave of interest recently, see e.g. [START_REF] Vũ | A splitting algorithm for dual monotone inclusions involving cocoercive operators[END_REF][START_REF] Combettes | Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators[END_REF][START_REF] Raguet | A generalized Forward-Backward splitting[END_REF], takes the form

Find x ∈ H such that 0 ∈ Bx + n i=1 L * i • A i • L i x, (1) 
where H is a real Hilbert space, B is cocoercive, A i is a set-valued maximal monotone operator acting on a real Hilbert space G i , and L i : H → G i is a bounded linear operator. Even more complex forms (e.g. with parallel sums [START_REF] Dontchev | Aubin criterion for metric regularity[END_REF]) will be discussed in detail in Section 5.

Since the first operator splitting method developed in the 70's for solving structured monotone inclusion problems, the class of splitting methods has been regularly enriched with increasingly sophisticated algorithms as the structure of problems to handle becomes more complex. Splitting methods are iterative algorithms which evaluate (possibly approximately) the individual operators, their resolvents, the linear operators, all separately at various points in the course of iteration, but never the resolvents of sums nor of composition by a linear operator. Popular splitting algorithms to solve special instances of (1) include the Forward-Backward splitting method (FBS) [START_REF] Mercier | Topics in finite element solution of elliptic problems[END_REF][START_REF] Passty | Ergodic convergence to a zero of the sum of monotone operators in Hilbert space[END_REF], the Douglas-Rachford splitting method (DRS) [START_REF] Douglas | On the numerical solution of heat conduction problems in two and three space variables[END_REF][START_REF] Lions | Splitting algorithms for the sum of two nonlinear operators[END_REF] and Peaceman-Rachford splitting method (PRS) [START_REF] Peaceman | The numerical solution of parabolic and elliptic differential equations[END_REF], Alternating Direction method of Multipliers (ADMM) [START_REF] Fortin | Augmented Lagrangian methods: applications to the numerical solution of boundary-value problems[END_REF][START_REF] Gabay | Chapter IX: Applications of the method of multipliers to variational inequalities[END_REF][START_REF] Gabay | A dual algorithm for the solution of nonlinear variational problems via finite element approximation[END_REF][START_REF] Glowinski | Augmented Lagrangian and operator-splitting methods in nonlinear mechanics[END_REF]. Other splitting methods were designed to solve [START_REF] Aragòn | Characterization of metric regularity of subdifferentials[END_REF] or even more complex forms (e.g. with parallel sums), see for instance [START_REF] Chen | A proximal-based decomposition method for convex minimization problems[END_REF][START_REF] Tseng | Alternating projection-proximal methods for convex programming and variational inequalities[END_REF][START_REF] Solodov | A class of decomposition methods for convex optimization and monotone variational inclusions via the hybrid inexact proximal point framework[END_REF][START_REF] Briceno-Arias | A monotone+ skew splitting model for composite monotone inclusions in duality[END_REF][START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF][START_REF] Raguet | A generalized Forward-Backward splitting[END_REF][START_REF] Combettes | Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators[END_REF][START_REF] Condat | A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms[END_REF][START_REF] Vũ | A splitting algorithm for dual monotone inclusions involving cocoercive operators[END_REF].

For the operator splitting methods, many of them (including FBS, DRS, ADMM, and many others) can be cast as the Krasnosel'skiȋ-Mann fixed-point iteration [START_REF] Krasnosel'skii | Two remarks on the method of successive approximations[END_REF][START_REF] Mann | Mean value methods in iteration[END_REF], possibly in its inexact form to handle errors,

z k+1 = z k + λ k (T z k + ε k -z k ), (2) 
where T : H → H is a non-expansive operator (Definition 1), and H is a real Hilbert space with norm || • ||.

(λ k ) k∈N ∈ [0, 1], and ε k is the error of approximating T z k . The sequence z k is built in way that it converges (in general weakly [START_REF] Reich | Weak convergence theorems for nonexpansive mappings in Banach spaces[END_REF]) to some fixed point z of T , and the latter can be easily related to a solution x of the original problem, e.g. [START_REF] Aragòn | Characterization of metric regularity of subdifferentials[END_REF].

Contributions

We consider the inexact Krasnosel'skiȋ-Mann iteration [START_REF] Baillon | Un théoreme de type ergodique pour les contractions non linéaires dans un espace de Hilbert[END_REF], and assume that the set of fixed points is non-empty. It is known that a crucial step in proving the convergence of the iterates is to show that ||z k -T z k || → 0, a property known as asymptotic regularity of T [START_REF]Weak convergence of the sequence of successive approximations for nonexpansive mappings[END_REF]. In this paper, we show that even with errors, the global pointwise and ergodic iteration-complexity bounds, i.e. rates of asymptotic regularity, are respectively O(1/ √ k) and O(1/k). Then under a metric sub-regularity assumption [START_REF] Dontchev | Implicit functions and solution mappings: A view from variational analysis[END_REF], we establish a local linear convergence for the iteration in terms of the distance of the iterates to the set of fixed points. Of course, when the fixed point is unique, the sequence itself converges linearly to it.

Our result can be applied to analyze the convergence behaviour of the iterates generated by various monotone operator splitting methods. As stated above, one crucial property of these methods is that they have the equivalent fixed-point formulation (2) 1 . Such methods include the FBS, the Generalized Forward-Backward (GFB) [START_REF] Raguet | A generalized Forward-Backward splitting[END_REF], DRS, ADMM, and several Primal-Dual splitting (PDS) methods [START_REF] Vũ | A splitting algorithm for dual monotone inclusions involving cocoercive operators[END_REF][START_REF] Chen | A primal-dual fixed point algorithm for convex separable minimization with applications to image restoration[END_REF]. In particular, for the GFB method developed by two of the co-authors, which addresses the case when L i 's in [START_REF] Aragòn | Characterization of metric regularity of subdifferentials[END_REF] equal to identity, we demonstrate that O(1/ ) iterations are needed to find a pair ((u i ) i , g) with the termination criterion ||g + B( i ω i u i )||

2 ≤ , where g ∈ i A i (u i ). This termination criterion can be viewed as a generalization of the classical one based on the norm of the gradient for the gradient descent method [START_REF] Nesterov | Introductory lectures on convex optimization: A basic course[END_REF]. The iteration-complexity improves to O(1/ √ ) in ergodic sense for the same termination criterion. Similar interpretation is also provided for the DRS/ADMM and PDS considered in Section 5.

We finally study the convergence and rates of the non-stationary version of the Krasnosel'skiȋ-Mann iteration. By absorbing the non-stationarity appropriately into an additional error term, we show that the iteration-complexity bounds developed above remain valid under reasonable conditions. The obtained result is illustrated on the GFB method.

Related work

Global iteration-complexity bounds

Relation with [START_REF] Baillon | The rate of asymptotic regularity is O(1/ √ n)[END_REF][START_REF] Cominetti | On the rate of convergence of Krasnoselski-Mann iterations and their connection with sums of Bernoullis[END_REF] Suppose that T : C → C, where C is a convex compact subset of H, and ε k ≡ 0 (i.e. exact case). In [START_REF] Baillon | The rate of asymptotic regularity is O(1/ √ n)[END_REF], the authors conjectured that

||z k -T z k || ≤ diam(C)/ π k j=1 λ j (1 -λ j )
where diam(C) is the diameter of C, and proved it for λ j ≡ λ. This conjecture was settled in [21, Theorem 1] 2 . Our work differs from these in several aspects. For instance, we consider the inexact case without any assumption on boundedness of C. We also establish both the pointwise and ergodic convergence rates, as well as local linear convergence under metric sub-regularity.

However, the extension of the result of [START_REF] Cominetti | On the rate of convergence of Krasnoselski-Mann iterations and their connection with sums of Bernoullis[END_REF] to the inexact iteration seems quite intricate. The main reason is that their method of proof relies on the recursive bound in [21, Corollary 3], and exploits some properties of some special functions and an identity for Catalan numbers. These recursions are unfortunately not stable to errors.

Relation with [START_REF] He | On convergence rate of the Douglas-Rachford operator splitting method[END_REF] The authors in [START_REF] He | On convergence rate of the Douglas-Rachford operator splitting method[END_REF] studied the exact version of DRS to solve (1), i.e. B = 0, n = 2 and L i = Id, i = 1, 2. They also supposed the extra assumption that A 2 is single-valued. Let

e k = z k -J γA1 (Id -γA 2 )z k , (3) 
where J γA1 = (Id + γA 1 ) -1 is the resolvent of A 1 . Relying on firm non-expansiveness of the resolvent [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF], [START_REF] He | On convergence rate of the Douglas-Rachford operator splitting method[END_REF] have shown that

||e k || = O(1/ √ k).
In fact, it is easy to show that (3) is equivalent to

e k = z k -1 2 (2J γA1 -Id)(2J γA2 -Id) + Id z k ,
where single-valuedness of A 2 is not needed whatsoever. The operator 1 2 ((2J γA1 -Id)(2J γA2 -Id) + Id) is firmly non-expansive, and thus fits in our framework. Our results in Section 3 go much beyond this by considering a more general iterative scheme with an operator that is only non-expansive and may be evaluated approximately.

Relation with HPE Based on the enlargement of maximal monotone operators, in [START_REF] Solodov | A hybrid approximate extragradient-proximal point algorithm using the enlargement of a maximal monotone operator[END_REF], a hybrid proximal extragradient method (HPE) is introduced to solve monotone inclusion problems of the form

Find x ∈ H such that 0 ∈ Ax.
The HPE framework encompasses some splitting algorithms in the literature [START_REF] Monteiro | On the complexity of the hybrid proximal extragradient method for the iterates and the ergodic mean[END_REF]. The convergence of HPE is established in [START_REF] Solodov | A hybrid approximate extragradient-proximal point algorithm using the enlargement of a maximal monotone operator[END_REF] and in [START_REF] Burachik | Robustness of the hybrid extragradient proximal-point algorithm[END_REF] for its inexact version. The pointwise and ergodic iteration-complexities of the exact HPE on a similar error criterion as in our work are established in [START_REF] Monteiro | On the complexity of the hybrid proximal extragradient method for the iterates and the ergodic mean[END_REF]. Some of the splitting methods we consider in Section 5 are also covered by HPE, hence our iteration-complexity bounds coincide with those of HPE, but only for the ergodic case. While for the pointwise case, our bound is uniform and theirs is not (see further discussion in Remark 3).

Local linear convergence

Relation with [START_REF]Metric subregularity and the proximal point method[END_REF][START_REF] Li | Hölder metric subregularity with applications to proximal point method[END_REF] In [START_REF]Metric subregularity and the proximal point method[END_REF], local linear convergence of the distance to the set of zeros of a maximal monotone operator using the exact proximal point algorithm (PPA [START_REF] Martinet | Brève communication. régularisation d'inéquations variationnelles par approximations successives[END_REF][START_REF] Rockafellar | Monotone operators and the proximal point algorithm[END_REF]) is established by assuming metric sub-regularity of the operator. Local convergence rate analysis of PPA under a higher-order extension of metric sub-regularity, namely metric q-sub-regularity q ∈]0, 1], is conducted in [START_REF] Li | Hölder metric subregularity with applications to proximal point method[END_REF]. In our work, metric sub-regularity is assumed on Id -T with T being the fixed-point operator, i.e. the resolvent, rather than the maximal monotone operator in the case of PPA. Relation between metric sub-regularity of these operators is intricate in general and is beyond the scope of this paper, though we provide an instructive discussion for a simple case at the end of Section 4. Note also that the work of [START_REF]Metric subregularity and the proximal point method[END_REF][START_REF] Li | Hölder metric subregularity with applications to proximal point method[END_REF] considers PPA only in its classical form, i.e. without errors nor relaxation.

Relation with [START_REF] Bauschke | Linear and strong convergence of algorithms involving averaged nonexpansive operators[END_REF] While the first version of this paper was submitted, we became aware of the recent work of [START_REF] Bauschke | Linear and strong convergence of algorithms involving averaged nonexpansive operators[END_REF]. These authors considered (2) with λ k ≡ λ ∈ [0, 1[ and ε k ≡ 0. In [START_REF] Bauschke | Linear and strong convergence of algorithms involving averaged nonexpansive operators[END_REF]Lemma 3.8], they established local linear convergence under bounded linear regularity of T (see [START_REF] Bauschke | Linear and strong convergence of algorithms involving averaged nonexpansive operators[END_REF]Definition 2.1]). The latter coincides exactly with our metric sub-regularity assumption on Id -T (see [START_REF] Briceno-Arias | A monotone+ skew splitting model for composite monotone inclusions in duality[END_REF]). Our result is however more general as it covers the inexact case and λ k is allowed to be iteration-dependent.

Local linear rate for feasibility problems In finite dimension, based on strong regularity, [START_REF] Lewis | Local linear convergence for alternating and averaged nonconvex projections[END_REF] proves a local linear convergence of the Method of Alternating Projections (MAP) in the non-convex setting, where the sets are closed and one of which is suitably regular. The linear rate is associated with a modulus of regularity. This is refined later in [START_REF] Bauschke | Restricted normal cones and the method of alternating projections: theory[END_REF]. In [START_REF] Hesse | Nonconvex notions of regularity and convergence of fundamental algorithms for feasibility problems[END_REF], the authors develop a local linear convergence results for the MAP and DRS to solve non-convex feasibility problems, see also [START_REF] Phan | Linear convergence of the Douglas-Rachford method for two closed sets[END_REF] for an even more general setting. Their analysis relies on a local version of firm non-expansiveness together with a coercivity condition. It turns out that this coercivity condition holds for mapping T for which the fixed points are isolated and Id -T is metrically regular. The linear rate they establish, however, imposes a bound on the metric regularity modulus.

Other local linear rates with DRS For the case of a sphere intersecting a line, or more generally a proper affine subset, typically in R 2 , [START_REF] Borwein | The Douglas-Rachford algorithm in the absence of convexity[END_REF] establishes local linear convergence of DRS. Local linear convergence of (the relaxed) DRS to solve the affine constraint 1 -minimization problem (basis pursuit) is shown in [START_REF] Demanet | Eventual linear convergence of the Douglas-Rachford iteration for basis pursuit[END_REF]. For this particular instance, their regularity assumptions can be related to our metric sub-regularity assumption involving the DRS fixed-point operator. Given the level of details this relation requires, we defer it (in an even more general setting) to a forthcoming paper, hence we do not discuss this further.

Paper organization

The organization of the paper is as follows. In Section 2 we introduce our main notations and recall some necessary material on monotone operator theory. Global iteration-complexity bounds and local convergence rate of the inexact Krasnosel'skiȋ-Mann iteration are established in Section 3 and Section 4 respectively. In Section 5, illustrative examples of existing monotone operator splitting methods to which our iteration-complexity result can be applied are described. Extension to the non-stationary case is discussed in Section 6.

Preliminaries

Throughout the paper, N is the set of non-negative integers and H is a real Hilbert space with scalar product •, • , norm || • ||. Id denotes the identity operator on H. The sub-differential of a proper function f : H →] -∞, +∞] is the set-valued operator,

∂f : H → 2 H , x → g ∈ H|(∀y ∈ H), y -x, g + f (x) ≤ f (y) .
Γ 0 (H) denotes the class of proper, lower semi-continuous, convex functions from H to ] -∞, +∞]. If f ∈ Γ 0 (H), then prox f denotes the Moreau proximity operator [START_REF] Moreau | Proximité et dualité dans un espace Hilbertien[END_REF], and the Moreau envelope of index δ ∈]0, +∞[ of f is the function,

δ f : x → min y∈H f (y) + 1 2δ ||y -x|| 2 ,
and its gradient is δ -1 -Lipschitz continuous [START_REF] Moreau | Décomposition orthogonale d'un espace Hilbertien selon deux cônes mutuellement polaires[END_REF].

Let A : H → 2 H be a set-valued operator. The domain of A is domA = {x ∈ H|Ax = ∅}, the range of A is ranA = {y ∈ H|∃x ∈ H : y ∈ Ax}, the graph of A is the set graA = {(x, y) ∈ H 2 |y ∈ Ax}, the inverse of A is the operator whose graph is graA -1 = {(y, x) ∈ H 2 |x ∈ A -1 y}, and its zeros set is zerA = {x ∈ H|0 ∈ Ax} = A -1 (0).

The resolvent of A is the operator J A = (Id + A) -1 , and the reflection operator associated to

J A is R A = 2J A -Id.
We denote 1 + the set of summable sequences in [0, +∞[, and define the index set 1, n = {1, 2, • • • , n}. A sequence (x k ) k∈N is said to converge Q-linearly to x if there exists a constant r ∈]0, 1[ such that ||x k+1 -x|| ||x k -x|| ≤ r, and (x k ) k∈N is said to converge R-linearly to x if ||x k -x|| ≤ σ k and (σ k ) k∈N converges Q-linearly to 0.

Non-expansive operators and quasi-Fejér monotone sequences

Definition 1 (Non-expansive operator) An operator T :

H → H is non-expansive if ∀x, y ∈ H, ||T x -T y|| ≤ ||x -y||.
For any α ∈]0, 1[, T is α-averaged if there exists a non-expansive operator R such that T = αR + (1 -α)Id.

We denote A(α) the class of α-averaged operators on H, in particular A( 12 ) is the class of firmly non-expansive operators, whose detailed property can be found in [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF]Proposition 4.2].

Lemma 1 Let T : H → H be an α-averaged operator, then 1 2α (Id -T ) ∈ A( 1 2 ).
Proof By definition, there exists a 1-Lipschitz continuous operator R such that

T = αR + (1 -α)Id, hence 1 2α (Id -T ) = 1 2α Id -(αR + (1 -α)Id) = 1 2 Id + (-R) ∈ A( 1 2 ).
We also collect below several useful equivalent characterizations of the firmly non-expansive operators.

Lemma 2

The following statements are equivalent:

(i) T is firmly non-expansive; (ii) 2T -Id is non-expansive; (iii) ∀x, y ∈ H, ||T x -T y|| 2 ≤ T x -T y, x -y ;
(iv) T is the resolvent of a maximal monotone operator A, i.e. T = J A .

Proof For (i)-(iii), see [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF]Proposition 4.2]; For (i) ⇔ (iv), see [START_REF] Minty | Monotone (nonlinear) operators in Hilbert space[END_REF].

The next lemma shows that the class A(α) is closed under relaxation, convex combination and composition.

Lemma 3 Let (T i ) i∈ 1,n be a finite family of non-expansive operators from H to H, (ω i ) i ∈]0, 1] n such that i ω i = 1, and let

(α i ) i ∈]0, 1] n such that, for every i ∈ 1, n , T i ∈ A(α i ). Then, (i) (∀i ∈ 1, n ) (∀λ i ∈]0, 1 αi [), Id + λ i (T i -Id) ∈ A(λ i α i ); (ii) T 1 • • • T n ∈ A(α), with α = n n-1+1/(max i∈ 1,n αi) . (iii) Let α = max i {α i }, then i ω i T i is α-averaged.
Proof See [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF]Proposition 4.28,4.30,4.32].

Remark 1 For the composite operator T 1 • • • T n , a sharper bound of α can be obtained for the case n = 2 with α = α1+α2-2α1α2

1-α1α2 ∈]0, 1[ ([52, Theorem 3]).

Definition 2 (Quasi-Fejér monotone sequences)

Let Ω be a non-empty closed and convex subset of

H. A se- quence (x k ) k∈N is quasi-Fejér monotone with respect to Ω if there exists a sequence (δ k ) k∈N ∈ 1 + such that ∀x ∈ Ω, k ∈ N, ||x k+1 -x|| ≤ ||x k -x|| + δ k .

Monotone operators

Definition 3 (Monotone operator) A set-valued operator

A : H → 2 H is monotone if ∀(x, u) ∈ graA ∀(y, v) ∈ graA , x -y, u -v ≥ 0,
it is moreover maximally monotone if graA is not strictly contained in the graph of any other monotone operator.

Definition 4 (Cocoercive operator) An operator

B : H → H is called β-cocoercive for some β ∈]0, +∞[ if βB ∈ A( 1 2 ), i.e., (∀x, y ∈ H), β||Bx -By|| 2 ≤ Bx -By, x -y . Observe that β-cocoercivity implies 1 β -Lipschitz continuity. Lemma 4 Let f : H →] -∞, +∞[ be a convex differentiable function, with 1 β -Lipschitz continuous gradient, β ∈]0, +∞[. Then (i) β∇f ∈ A( 1 2 ), i.e. is firmly non-expansive; (ii) Id -γ∇f ∈ A( γ 2β ) for γ ∈]0, 2β[; Proof (i) See [4, Baillon-Haddad theorem]; (ii) See [6, Proposition 4.33].

Product Space

Let (ω i ) i ∈]0, +∞] n , consider H = H n endowed with the scalar product and norm defined as

∀x, y ∈ H, x, y = n i=1 ω i x i , y i , ||x|| = n i=1 ω i ||x i || 2 .
Define Id the identity operator on H.

Let S = {x = (x i ) i ∈ H|x 1 = • • • = x n } and its orthogonal complement S ⊥ = x = (x i ) i ∈ H| n i=1 ω i x i = 0 ⊂ H. We also define the canonical isometry C : H → S, x → (x, • • • , x). We have ∀z ∈ H, P S (z) = C n i=1 ω i z i . Clearly P S is self-adjoint, and its reflection operator is R S = 2P S -Id. Let γ = (γ i ) i ∈ ]0, +∞[ n . For arbitrary maximal monotone operators A i , i ∈ 1, n on H, define γA : H → 2 H , x = (x i ) i → × n i=1 γ i A i x i , i.e. its graph is graγA = × n i=1 graγ i A i = (x, u) ∈ H 2 |x = (x i ) i , u = (u i ) i , u i ∈ γ i A i x i . For a single-valued maximal monotone operator B, denote B : H → H, x = (x i ) i → (Bx i ) i .
It is immediate to check that both γA and B are maximal monotone. We also define the operators B S = BP S , J γA = (J γiAi ) i and R γA = 2J γA -Id.

Global iteration-complexity bounds

In this section, we present the global iteration-complexity bounds of the inexact Krasnosel'skiȋ-Mann iteration.

Definition 5 (Inexact Krasnosel'skiȋ-Mann iteration)

Let T : H → H be a non-expansive operator such that the set of fixed points fixT = {z ∈ H : z = T z} is non-empty. Let λ k ∈]0, 1], and denote

T λ k = λ k T +(1-λ k )Id.
Then the inexact Krasnosel'skiȋ-Mann iteration of T is given by

z k+1 = z k + λ k (T z k + ε k -z k ) = T λ k z k + λ k ε k , (4) 
where ε k is the error of approximating T z k . The error of the iteration is defined as

e k = (Id -T )z k = (z k -z k+1 )/λ k + ε k . (5) 
Define the following two important notions

T = Id -T and τ k = λ k (1 -λ k ), (6) 
clearly, e k = T z k . We start by collecting some useful properties that characterize the above fixed-point iteration.

Proposition 1

The following statements hold, Let's now turn to the properties of e k . Denote τ = inf k∈N τ k , τ = sup k∈N τ k , and

(i) T λ k ∈ A(λ k ) for λ k ∈]0, 1[, and if T ∈ A(α), then T λ k ∈ A(λ k α); (ii) For any z ∈ fixT , z ∈ fixT ⇐⇒ z ∈ fixT λ k ⇐⇒ z ∈ zerT ; (iii) If (τ k ) k∈N / ∈ 1 + and (λ k ||ε k ||) k∈N ∈ 1 + , then, (a) (e k ) k∈N converges strongly to 0; (b) (z k ) k∈N is quasi-
ν 1 = 2 sup k∈N ||T λ k z k - z || + sup k∈N λ k ||ε k ||, ν 2 = 2 sup k∈N ||e k -e k+1 ||.
Lemma 5 For the error term e k , the following inequality holds

1 2λ k ||e k -e k+1 || 2 ≤ e k -ε k , e k -e k+1 .
Proof By Lemma 1, 1 2 T ∈ A( 1 2 ). It then follows from Lemma 2(iii) that ∀p, q ∈ H,

|| 1 2 T (p) -1 2 T (q)|| 2 ≤ p -q, 1 2 T (p) -1 2 T (q) .
Applying this bound with p = z k and q = z k+1 , and using the definition of e k yields the desired result.

Corollary 1 If T is α-averaged, the inequality of Lemma 5 becomes

1 2αλ k ||e k -e k+1 || 2 ≤ e k -ε k , e k -e k+1 . Lemma 6 For z ∈ fixT , λ k ∈]0, 1], we have ||z k+1 -z || 2 ≤ ||z k -z || 2 -τ k ||e k || 2 + ν 1 λ k ||ε k ||.
Proof By virtue of [6, Corollary 2.14] we get

||z k+1 -z || 2 = ||T λ k z k -z + λ k ε k || 2 ≤ ||(1 -λ k )(z k -z ) + λ k (T z k -T z )|| 2 + ν 1 λ k ||ε k || = (1 -λ k )||z k -z || 2 + λ k ||T z k -z || 2 -τ k ||z k -T z k || 2 + ν 1 λ k ||ε k || ≤ ||z k -z || 2 -τ k ||e k || 2 + ν 1 λ k ||ε k ||.
This lemma indicates that (z k ) k∈N is quasi-Fejér monotone with respect to fixT as stated in Proposition 1.

Corollary 2 If T is α-averaged, the inequality of Lemma 6 holds with λ k ∈]0, 1/α] and

τ k = λ k ( 1 α -λ k ). Lemma 7 For λ k ∈]0, 1], (e k ) k∈N obeys ||e k+1 || 2 -ν 2 ||ε k || ≤ ||e k || 2 .
Proof We have

||e k+1 || 2 = ||e k+1 -e k + e k || 2 = ||e k || 2 -2 e k , e k -e k+1 + ||e k -e k+1 || 2 ≤ ||e k || 2 -2(1 -λ k ) e k -ε k , e k -e k+1 -2 ε k , e k -e k+1 ≤ ||e k || 2 -1-λ k λ k ||e k -e k+1 || 2 + ν 2 ||ε k || ≤ ||e k || 2 + ν 2 ||ε k ||
where Lemma 5 was used twice in the second and third lines.

We are now in position to the main results of this section. Denote d 0 = d(z 0 , fixT ) = inf z∈fixT ||z 0 -z||.

Theorem 1 (Pointwise iteration-complexity bound)

For the inexact fixed-point iteration (4), if there holds

0 < inf k∈N λ k ≤ sup k∈N λ k < 1 and (k + 1)||ε k || k∈N ∈ 1 + , (7) 
then, denoting

C 1 = ν 1 j∈N λ j ||ε j || + ν 2 τ ∈N ( + 1)||ε || < +∞, we have ||e k || ≤ d 2 0 + C 1 τ (k + 1) . ( 8 
)
Proof Condition [START_REF] Bauschke | Restricted normal cones and the method of alternating projections: theory[END_REF] 

= ||z 0 -z ||. From Lemma 6, ∀k ∈ N, τ k ||e k || 2 ≤ ||z k -z || 2 -||z k+1 -z || 2 + ν 1 λ k ||ε k ||.
Summing up from j = 0 to k,

k j=0 τ j ||e j || 2 ≤ ||z 0 -z || 2 -||z k+1 -z || 2 + ν 1 k j=0 λ j ||ε j ||. (9) 
From Lemma 7, we have ∀j ≤ k,

||e k || 2 -ν 2 k-1 =j ||ε || ≤ ||e j || 2 .
Substituting this back into (9) yields,

k j=0 τ j ||e k || 2 ≤ k j=0 τ j ||e j || 2 + ν 2 k j=0 τ j k-1 =j ||ε || ≤ d 2 0 + ν 1 k j=0 λ j ||ε j || + ν 2 k j=0 τ j k-1 =j ||ε ||. (10) 
Finally, since (k + 1)τ ≤ k j=0 τ j , we get,

(k + 1)τ ||e k || 2 ≤ d 2 0 + ν 1 k j=0 λ j ||ε j || + ν 2 τ k-1 =0 ( + 1)||ε ||,
which leads to the desired result [START_REF] Bauschke | Linear and strong convergence of algorithms involving averaged nonexpansive operators[END_REF].

Remark 2 (iii) For the case of first-order methods for solving smooth optimization problems, i.e. the gradient descent where T is just the gradient, the obtained pointwise bound is the best-known complexity bound [START_REF] Nesterov | Introductory lectures on convex optimization: A basic course[END_REF]. (iv) If the fixed-point iteration (4) is exact, then the sequence (||e k ||) k∈N is non-increasing (Lemma 7), hence we get ||e k || ≤ d 0 / k j=0 τ j , which recovers the result of [START_REF] Cominetti | On the rate of convergence of Krasnoselski-Mann iterations and their connection with sums of Bernoullis[END_REF]Proposition 11]. Note that we provide a sharper monotonicity property compared to them.

(i) If T is α-averaged, then condition (7) of Theorem 1 on λ k changes to 0 < inf k∈N λ k ≤ sup k∈N λ k < 1 α . (ii) Since finding z ∈ fixT is equivalent
We now turn to the ergodic iteration-complexity bound of (4). For this, let's define

Λ k = k j=0 λ j and ēk = 1 Λ k k j=0 λ j e j .

Theorem 2 (Ergodic iteration-complexity bound) Suppose that

C 2 = k∈N λ k ||ε k || < +∞. Then, ||ē k || ≤ 2(d 0 + C 2 ) Λ k . In particular, if inf k∈N λ k > 0, then ||ē k || = O(1/k). Proof Again, let z ∈ fixT such that d 0 = ||z 0 -z ||. Since T λ k is non-expansive, we have ||z k+1 -z || = ||T λ k z k -T λ k z + λ k ε k || ≤ ||z k -z || + λ k ||ε k || ≤ ||z k-1 -z || + k j=k-1 λ j ||ε j || ≤ ||z 0 -z || + k j=0 λ j ||ε j ||.
This together with the definition of ēk yields

||ē k || = || 1 Λ k k j=0 λ j e j || = 1 Λ k || k j=0 (z j -z j+1 ) + k j=0 λ j ε j || ≤ 1 Λ k ||z 0 -z || + ||z k+1 -z || + k j=0 λ j ||ε j || ≤ 2(d0+C2) Λ k .
Again, this result holds when T is α-averaged, where now λ k is allowed to vary in ]0, 1/α].

Remark 3 (i) As in the pointwise case, Theorem 2 holds when T is α-averaged, where now λ k is allowed to vary in ]0, 1/α].

(ii) When T is firmly non-expansive, i.e. the resolvent of a maximal monotone operator ((iv) of Lemma 2), an O(1/k) ergodic convergence rate is also established in [START_REF] Monteiro | On the complexity of the hybrid proximal extragradient method for the iterates and the ergodic mean[END_REF] with summable enlargement errors. For the methods which can also be cast in the HPE framework, our result coincides with the one in [START_REF] Monteiro | On the complexity of the hybrid proximal extragradient method for the iterates and the ergodic mean[END_REF]. Note that in that work, they handled the non-stationary case (i.e. the parameter of the resolvent varies); see also our extension to the non-stationary case in Section 6. For the case without errors, we recover also the bound in [START_REF] Baillon | Un théoreme de type ergodique pour les contractions non linéaires dans un espace de Hilbert[END_REF].

From Theorem 1 and 2, it is immediate to get the convergence rate bounds on the sequence (||z k -z k+1 ||) k∈N in the exact case. To lighten the notation, let

v k = z k -z k+1 and vk = 1 k+1 k j=0 v j . Corollary 3 Assume that ε k = 0 for all k ∈ N. (i) If 0 < inf k∈N λ k ≤ sup k∈N λ k < 1, then ||v k || ≤ d0 √ τ (k+1) ; (ii) If λ = inf k∈N λ k > 0, then ||v k || ≤ 2d0
k+1 . Proof (i) By definition v k = λ k e k , then from (8) we have

||v k || = ||λ k e k || ≤ λ k d0 √ τ (k+1) ≤ d0 √ τ (k+1) 
.

(ii) A direct result of Theorem 2 by replacing Λ k with k + 1.

Local linear convergence rate

In the literature, for many splitting algorithms applied to a range of optimization problems, the following typical convergence profile has been observed in practice. Globally the algorithm converges sub-linearly, and after a sufficiently large number of iterations, the algorithm enters a new regime where a local linear convergence takes over. This has been for instance observed (and sometimes proved) for DRS or FBS when solving sparsity-enforcing minimization problems, see e.g. [START_REF] Demanet | Eventual linear convergence of the Douglas-Rachford iteration for basis pursuit[END_REF][START_REF] Liang | Local linear convergence of Forward-Backward under partial smoothness[END_REF].

In this section, we study the rationale underlying this local linear convergence behaviour. Our analysis relies on a metric sub-regularity assumption of T = Id -T (Definition 5).

Definition 6 (Metric sub-regularity [25])

A set-valued mapping F : H → 2 H is called metrically sub-regular at z for ũ ∈ F (z) if there exists κ ≥ 0 along with neighborhood Z of z such that

d(z, F -1 ũ) ≤ κ d(ũ, F z), ∀z ∈ Z. ( 11 
)
The infimum of κ such that [START_REF] Briceno-Arias | Forward-Douglas-Rachford splitting and forward-partial inverse method for solving monotone inclusions[END_REF] holds is the modulus of metric sub-regularity, denoted by subreg(F ; z|ũ). The absence of metric regularity is signalled by subreg(F ; z|ũ) = +∞.

Metric sub-regularity implies that, for any z ∈ Z, d(ũ, F z) is bounded below. The metric (sub)regularity of multifunctions plays a crucial role in modern variational analysis and optimization. These properties are a key to study the stability of solutions of generalized equations, see the dedicated monograph [START_REF] Dontchev | Implicit functions and solution mappings: A view from variational analysis[END_REF].

Let's specialize this notion to T and ũ = 0. Since T is single-valued and zerT = fixT , from [START_REF] Briceno-Arias | Forward-Douglas-Rachford splitting and forward-partial inverse method for solving monotone inclusions[END_REF], metric sub-regularity of T at some z ∈ fixT for 0 is equivalent to

d(z, fixT ) ≤ κ||T z||, ∀z ∈ Z. ( 12 
)
There are several concrete examples of operators T where T fulfills [START_REF] Briceno-Arias | A monotone+ skew splitting model for composite monotone inclusions in duality[END_REF]. Using the relation between metric sub-regularity of T and bounded linear regularity of T as defined in [START_REF] Bauschke | Linear and strong convergence of algorithms involving averaged nonexpansive operators[END_REF] other instructive examples, one on DRS with two subspaces and the second on gradient descent will be discussed at the end of the section. Another interesting situation is when T is firmly non-expansive, so that T = J F for some maximal monotone operator F ((iv) of Lemma 2), in which case (4) is the relaxed inexact PPA. Let z ∈ fixT = zerF and suppose that 0 ∈ zerF . If F is metrically sub-regular at z for 0 with modulus γ, then

d(z, zerF ) = d(z, fixT ) ≤ γd(0, F z) = γd(0, T -1 z -z) = γ inf v∈T -1 z ||v -z||, ∀z ∈ Z.
Thus for all w such that z = T w ∈ Z, applying the previous inequality and using the triangle inequality, we get

d(T w, fixT ) ≤ γ||T w|| and d(w, fixT ) ≤ (1 + γ)||T w||.
Clearly, this is closely related, though not equivalent, to metric sub-regularity of T .

Metric sub-regularity implies that [START_REF] Briceno-Arias | A monotone+ skew splitting model for composite monotone inclusions in duality[END_REF] gives an estimate for how far a point z is from being the fixed-point set of T in terms of the residual ||z -T z||. This is the rationale behind using such a regularity assumption on the operator T to quantify the convergence rate on d(z k , fixT ). Thus, starting from z 0 ∈ H, and by virtue of Theorem 1, one can recover a O(1/ √ k) rate on d(z k , fixT ). In fact, we can do even better as shown in the following theorem. We use the shorthand notation d k = d(z k , fixT ).

Theorem 3 (Local convergence rate) Let z ∈ fixT , assume T is metrically sub-regular at z with neighborhood

Z of z , let κ > subreg(T ; z |0), λ k ∈]0, 1]. Given a ball B a (z ) ⊂ Z, a ≥ 0, suppose C 2 = k∈N λ k ||ε k || is small enough such that B (a+C2) (z ) ⊆ Z.
Then for any starting point z 0 ∈ B a (z ), we have for all k ∈ N,

d 2 k+1 ≤ ζ k d 2 k + c k , where ζ k = 1 -τ k κ 2 , if τ k /κ 2 ∈]0, 1] κ 2 κ 2 +τ k , otherwise ∈ [0, 1[, (13) 
and

c k = ν 1 λ k ||ε k ||. Moreover, (i) d k converges to 0 if (τ k ) k∈N / ∈ 1 + . (ii) Let χ k = k j=0 ζ j , if χ = lim sup k→+∞ k √ χ k < 1, then (d 2 k ) k∈N ∈ 1 + . When ε k = 0, then lim k→+∞ k √ d k < 1, which is R-linear convergence. (iii) If 0 < inf k∈N λ k ≤ sup k∈N λ k < 1, then there exists ζ ∈ (0, 1) such that d 2 k+1 ≤ ζ k d 2 0 + k j=0 ζ -j+1 c j .
Proof Let constants b > a > 0 such that T is metrically sub-regular at z with modulus κ. Make the radius a smaller if necessary so that B a (z ) ⊂ B b (z ) ⊆ Z and

a + C 2 ≤ b.
Pick z 0 ∈ B a (z ). If z 0 = z then, take z k = z for all k ∈ N and there is nothing more to prove. If not, then from Lemma 6 that for any z ∈ fixT ,

||z k+1 -z|| ≤ ||z k -z|| + λ k ||ε k || ≤ • • • ≤ ||z 0 -z|| + k j=0 λ j ||ε j || ≤ a + C 2 ≤ b,
which implies that starting from any point z 0 ∈ B a (z ), z k ∈ B b (z ) holds for all k ∈ N. Now for ∀k ∈ N, let z ∈ fixT be such that d k = ||z k -z|| and c k = ν 1 λ k ||ε k ||, then by virtue of the metric sub-regularity of T and Lemma 6, we have

d 2 k+1 ≤ ||z k+1 -z|| 2 ≤ ||z k -z|| 2 -τ k ||T z k -T z|| 2 + c k ≤ d 2 k -τ k κ 2 d 2 k + c k (14) ≤ d 2 k -τ k κ 2 (d 2 k+1 -c k ) + c k = d 2 k -τ k κ 2 d 2 k+1 + 1 ζ k c k . (15) 
If

τ k /κ 2 ∈]0, 1[, then from (14) we have d 2 k+1 ≤ (1 -τ k κ 2 )d 2 k + c k , or if 1 ≤ τ k /κ 2 , ( 15 
) produces d 2 k+1 ≤ κ 2 κ 2 +τ k d 2 k + c k , λ k ∈]0, 1] ensures κ 2 /(κ 2 + τ k ) ∈]0, 1]
. Therefore, we have

ζ k = 1 -τ k κ 2 , if τ k /κ 2 ∈]0, 1[ κ 2 κ 2 +τ k , if 1 ≤ τ k /κ 2 ∈]0, 1]. Furthermore, d 2 k+1 ≤ ζ k d 2 k + c k ≤ • • • ≤ χ k d 2 0 + k j=0 φ k-j c j ≤ χ k d 2 0 + k j=0 c j , (16) 
where

χ k = k j=0 ζ j and φ k-j = k =j+1 ζ . (i) From (16) we have d 2 k+1 ≤ d 2 k + c k , then the d 2 k → d ≥ 0 ([57, Lemma 2.2.2]). If (τ k ) k∈N / ∈ 1 + , then ||e k || → 0 (Theorem 1)
, and by metric sub-regularity we have (ii) For simplicity, suppose the iteration is exact, and let z ∈ fixT such that d k = ||z k -z ||. Then we have

d k ≤ κ||e k ||, therefore d = 0; (ii) If χ = lim sup k→+∞ k √ χ k < 1, then lim k→+∞ χ k = 0 and (χ k ) k∈N , (φ k ) k∈N ∈ 1 + . Since also (c k ) k∈N ∈ 1 + , hence the convolution k j=0 φ k-j c j k∈N ∈ 1 + , as a result, χ k d 2 0 + k j=0 φ k-j c j k∈N ∈ 1 + and so is (d 2 k ) k∈N . If ε k = 0, then from (16) we have lim k→+∞ k √ d k ≤ lim sup k→+∞ k √ χ k < 1. (iii) If 0 < inf k∈N λ k ≤ sup k∈N λ k < 1,
||e k || 2 = ||z k -z + T z -T z k || 2 ≤ 4d 2 k ,
which means locally, ||e k || also converges linearly to 0 given that

(τ k ) k∈N / ∈ 1 + . (iii) As far as the claim in (iii) of Theorem 3 is concerned, if ∃ξ ∈]0, 1] such that c k = O(ξ k ), then (a) If ξ < ζ, then d 2 k+1 = O(ζ k ); (b) If ξ = ζ, then d 2 k+1 = O(kζ k ) = o (ζ + δ) k , δ > 0; (c) If ξ > ζ, then d 2 k+1 = o(ξ k ).
Theorem 3 extends readily to the α-averaged case.

Corollary 4 If T is α-averaged, then Theorem 3 holds substituting λ k α for λ k and κα for κ.

Remark 5

(i) When λ k ≡ λ and ε k ≡ 0, our second rate estimate in [START_REF] Burachik | Robustness of the hybrid extragradient proximal-point algorithm[END_REF] encompasses that of [START_REF] Bauschke | Linear and strong convergence of algorithms involving averaged nonexpansive operators[END_REF]Lemma 3.8].

(ii) Equivalent characterizations of metric sub-regularity can be given, for instance in terms of derivative criteria.

In particular, as T is single-valued, metric sub-regularity of T holds if T is differentiable on a neighbourhood of z with non-singular derivatives at z around z , and the operator norms of their inverses are uniformly bounded [24, Theorem 1.2]. Computing the metric regularity modulus κ is however far from obvious in general even for the differentiable case.

Examples

DRS with two subspaces in R 2 Let U and V two subspaces in R 2 forming an angle of θ ∈]0, π/2]. Consider the problem of finding U ∩ V = {0} using DRS. It is well-known the DRS fixed point operator T DRS is firmly non-expansive. Moreover, following [8, Example 2.3 and 2.5], it can be shown T DRS = Id -T DRS is metrically sub-regular with modulus 1/ sin θ. It then follows from [START_REF] Burachik | Robustness of the hybrid extragradient proximal-point algorithm[END_REF] that the rate estimate is

ζ k = 1 -(2 -λ k )λ k sin 2 θ = (1 -λ k ) 2 + (2 -λ k )λ k cos 2 θ ∈]0, 1[, for λ k ∈]0, 2[
. This is exactly the optimal rate estimate provided in [START_REF] Liang | Activity identification and local linear convergence of Douglas-Rachford/ADMM under partial smoothness[END_REF][START_REF] Bauschke | Optimal rates of convergence of matrices with applications[END_REF].

Observe that as remarked in [START_REF] Liang | Activity identification and local linear convergence of Douglas-Rachford/ADMM under partial smoothness[END_REF], the best rate ζ k ≡ cos 2 θ is obtained for λ k ≡ 1 (no relaxation).

Gradient descent We now consider the example of minimizing a convex function f : R n → R which is locally C 2 and strongly convex on Ω ⊂ R n and has Lipschitz gradient. Clearly f has a unique minimizer, and without losing generality, we denote it as 0. Define δ m , δ M the local strong convexity and Lipschitz modulus of f respectively, then 1 δm is equivalent to metric sub-regularity of ∇f at 0 for 0 [1, Theorem 3.5]. For simplicity, consider the non-relaxed gradient descent method [START_REF] Polyak | Introduction to optimization[END_REF] for minimizing f with constant step-size, i.e.

x k+1 = x k -γ∇f (x k ),
where γ ∈]0, 2 δM [. This can be cast in our above framework by setting T = Id -γ∇f which is γδM 2 -averaged (Lemma 4). Hence T def = Id -T = γ∇f which is continuously differentiable on any neighbourhood Z ⊂ Ω. For any x ∈ Z, the Jacobian of T is just γ∇ 2 f (x), where ∇ 2 f (x) is the Hessian of f at x, which is non-singular and its inverse is uniformly bounded by 1 δm from local strong convexity. Thus, by virtue of [25, Theorem 4B.1], T is metrically regular, hence sub-regular, and the metric regularity modulus κ is precisely 1 γδm . In fact we could have anticipated this directly from the local strong monotonicity of ∇f . Specializing the rate of Theorem 3, we get , they are 0.20 and 0.60 respectively.

ζ = 1 - t(2 -t) cnd 2 ∈ [0,

Applications

In this section, we apply the obtained results to conduct quantitative convergence analysis of a class of monotone operator splitting methods in the literature, and mainly focus on the global iteration-complexity bounds. As stated in the introduction, we will rely on the fact that all the considered iterative schemes (GFB/FBS, DRS/ADMM and PDS) can be cast as Krasnosel'skiȋ-Mann iteration. Furthermore, based on the structure of the corresponding monotone inclusion problem, we also derive specific error criteria which can serve as termination tests.

Generalized Forward-Backward splitting

The GFB algorithm [START_REF] Raguet | A generalized Forward-Backward splitting[END_REF] addresses the monotone inclusion (1) when L i = Id, i ∈ 1, n , and B is β-cocoercive. By lifting the problem into product space, GFB achieves full splitting by applying the A i 's implicitly and B explicitly.

Let (ω i ) i ∈]0, 1[ n such that n i=1 ω i = 1, γ ∈]0, 2β[, λ k ∈]0, 4β-γ 2β [, (b k ) k∈N and (a i,k ) k∈N are error terms. The GFB iteration reads       For i = 1, • • • , n z i,k+1 = z i,k + λ k J γ ω i Ai (2x k -z i,k -γBx k + b k ) + a i,k -x k , x k+1 = n i=1 ω i z i,k+1 . (17) 
GFB recovers FBS for n = 1, and when B = 0, GFB recovers DRS in the product space. In the literature, the convergence properties of the FBS and DRS have been extensively studied, see [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF] and references therein. In this section, we mainly focus on the GFB method.

Recall the notation introduced in Section 2.3. Denote

u i,k+1 = J γ ω i Ai (2x k -z i,k -γBx k ), i ∈ 1, n , then (17) equivalently reads z i,k+1 = z i,k + λ k (u i,k+1 + ε i,k -x k ),
where ε i,k = J γ ω i Ai (2x k -z i,k -γBx k + b k ) + a i,k -u i,k+1 . Let ε 1,k = C(b k ), ε 2,k = (a i,k ) i , and T 1,γ = 1 2 (R γA R S + Id), T 2,γ = Id -γB S .
Using Remark 1, the composed operator T γ = T 1,γ • T 2,γ is 2β 4β-γ -averaged. Moreover, it was shown in [START_REF] Raguet | A generalized Forward-Backward splitting[END_REF] that the fixed-point iteration of GFB reads,

z k+1 = z k + λ k T 1,γ (T 2,γ z k + ε 1,k ) + ε 2,k -z k = z k + λ k (T γ z k + ε k -z k ), (18) 
where

ε k = T 1,γ (T 2,γ z k + ε 1,k ) + ε 2,k -T γ z k .
Obviously, [START_REF] Combettes | Solving monotone inclusions via compositions of nonexpansive averaged operators[END_REF] is exactly in the form of (4). Therefore, the GFB iterates converge weakly [58, Theorem 4.1], and obey the iteration-complexity bounds in Theorem 1 and 2. Moreover, we can establish certain convergence rates for the structured monotone inclusion [START_REF] Aragòn | Characterization of metric regularity of subdifferentials[END_REF].

Let

g k+1 = 1 γ x k -Bx k -1 γ i ω i u i,k+1 . Define ūi,k+1 = 1 k+1 k j=0 u i,j+1 , i ∈ 1, n , xk = 1 k+1 k j=0 x j and ḡk+1 = 1 γ xk -B xk -1 γ i ω i ūi,k+1 . Proposition 2 We have g k+1 ∈ i A i u i,k+1 . Moreover, (i) If 0 < inf k∈N λ k ≤ sup k∈N λ k < 4β-γ 2β , (k + 1)||b k || k∈N ∈ 1 + and ∀i ∈ 1, n , (k + 1)||a i,k || k∈N ∈ 1 + , then d 0, i A i u i,k+1 + B( i ω i u i,k+1 ) ≤ 1 γ d 2 0 + C 1 τ (k + 1) . (ii) If λ = inf k∈N λ k > 0, (λ k ||b k ||) k∈N ∈ 1 + and (λ k ||a i,k ||) k∈N ∈ 1 + , ∀i ∈ 1, n , then ||ḡ k+1 + B( i ω i ūi,k+1 )|| ≤ 2(d 0 + C 2 ) γλ(k + 1)
. C 1 , C 2 are the constants in Theorem 1 and 2 respectively.

Proof (i) Embarking from the definition of u i,k+1 , we have

u i,k+1 = J γ ωi Ai (2x k -z i,k -γBx k ) ⇔ 2x k -z i,k -γBx k -u i,k+1 ∈ γ ωi A i u i,k+1 ⇔ ωi γ 2x k -z i,k -γBx k -u i,k+1 + γB( i ω i u i,k+1 ) ∈ A i u i,k+1 + ω i B( i ω i u i,k+1 ).
Then sum up over i to get

1 γ x k -Bx k -1 γ i ω i u i,k+1 + B( i ω i u i,k+1 ) ∈ i A i u i,k+1 + B( i ω i u i,k+1 ). Now k∈N (k + 1)||ε k || ≤ k∈N (k + 1)||ε 1,k || + k∈N (k + 1)||ε 2,k || ≤ k∈N (k + 1)||b k || + n i=1 w i k∈N (k + 1)||a i,k || < +∞,
and thus Theorem 1 applies. Combining this with the fact that Id -γB is non-expansive ((ii) of Lemma 4), we obtain

d 0, i A i u i,k+1 + B( i ω i u i,k+1 ) ≤ ||g k+1 + γB( i ω i u i,k+1 )|| = 1 γ ||(Id -γB)x k -(Id -γB)( i ω i u i,k+1 )|| ≤ 1 γ ||x k -i ω i u i,k+1 || ≤ 1 γ ||e k || ≤ 1 γ d 2 0 + C 1 τ (k + 1)
.

(ii) Again, one can check that indeed (λ k ||ε k ||) ∈ + 1 . Thus, owing to Theorem 2 and non-expansiveness of Id-γB, we have

||ḡ k+1 + B( i ω i ūi,k+1 )|| = 1 γ ||(Id -γB)x k -(Id -γB)( i ω i ūi,k+1 )|| ≤ 1 γ ||x k -i ω i ūi,k+1 || ≤ 1 γ(k + 1) || k j=0 (z j+1 -z j -λ j ε j )/λ j || ≤ 1 γλ(k + 1) ||z 0 -z k+1 || + k j=0 λ j ||ε j || ≤ 2(d 0 + C 2 ) γλ(k + 1) . Remark 6 (i) Proposition 2 indicates that GFB provides an -accurate solution in at most O(1/ ) iterations for the criterion d 0, i A i u i,k + B( i ω i u i,k ) 2 ≤
, which also recovers the sub-differential stopping criterion of the FBS method when n = 1. This can then be viewed as a generalization of the best-known complexity bounds of the gradient descent method [START_REF] Nesterov | Introductory lectures on convex optimization: A basic course[END_REF]. (ii) In [START_REF] Briceno-Arias | Forward-Douglas-Rachford splitting and forward-partial inverse method for solving monotone inclusions[END_REF], the Forward-Douglas-Rachford splitting (FDRS) was proposed to solve (1) with A 1 = A and A 2 = N V , V is a closed vector subspace of K. FDRS has a very similar structure to GFB. Therefore, FDRS also obeys the iteration-complexity bounds established in Section 3. (iii) Using the transportation formula for cocoercive operators in [63, Lemma 2.8], one can write the non-relaxed and exact GFB method into the HPE framework introduced there, and derive the iteration-complexity bounds [START_REF] Monteiro | On the complexity of the hybrid proximal extragradient method for the iterates and the ergodic mean[END_REF] as discussed in the related work. However, we would like to point out that, to establish the iterationcomplexity bounds for GFB under the HPE framework, neither relaxation nor errors are handled, and the iteration-complexity bound would be non-uniform [START_REF] Monteiro | On the complexity of the hybrid proximal extragradient method for the iterates and the ergodic mean[END_REF] 4 .

Douglas-Rachford splitting and ADMM

As mentioned above, the DRS method [START_REF] Lions | Splitting algorithms for the sum of two nonlinear operators[END_REF] can be applied to solve (1) when B = 0, n = 2 and L i = Id, i = 1, 2.

Let γ > 0, λ k ∈]0, 2], (ε 1,k ) k∈N and (ε 2,k ) k∈N are summable error sequences. The DRS iteration reads

       u k+1 = J γA1 (2x k -z k ), z k+1 = z k + λ k (u k+1 + ε 1,k -x k ), v k+1 = J γA2 (z k+1 ), x k+1 = v k+1 + ε 2,k+1 . (19) 
When B = 0, n = 2, L 2 = Id and L 1 : H → G is some injective linear operator, then (1) can also be solved using ADMM which is DRS method applied to the dual of (1) [START_REF] Eckstein | On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators[END_REF]. In the following, we discuss only DRS.

DRS [START_REF] Combettes | Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators[END_REF] takes exactly the form (4) with

T = 1 2 (R γA1 R γA2 + Id), ε k = 1 2 (R γA1 (R γA2 z k + 2ε 2,k ) + z k ) -T z k + ε 1,k ,
see e.g. [START_REF] Combettes | Solving monotone inclusions via compositions of nonexpansive averaged operators[END_REF]. Moreover T ∈ A( 1 2 ) and (ε k ) k∈N ∈ 1 + owing to the summability of (ε 1,k ) k∈N , (ε 2,k ) k∈N . Therefore, the DRS iterates obey the iteration-complexity bounds in Section 3.

Next, we turn to the corresponding monotone inclusion problem (1), and develop a criterion similar to Proposition 2. Define

g k+1 = 1 γ (2x k -z k -u k+1 + z k+1 -v k+1 ). Proposition 3 We have g k+1 ∈ A 1 u k+1 + A 2 v k+1 . Moreover, if 0 < inf k∈N λ k ≤ sup k∈N λ k < 2, (ε 1,k ) k∈N and (ε 2,k ) k∈N ∈ 1 + , then d 0, A 1 u k+1 + A 2 v k+1 ≤ 1 + λ k γ d 2 0 + C 1 τ (k + 1) + c k , (20) 
where

c k = 1 γ (2 + λ k )||ε 2,k || + ||ε 1,k || , d 0 and C 1 are those defined in Theorem 1. Proof From (19), we have 2x k -z k -u k+1 ∈ γA 1 u k+1 , z k+1 -v k+1 ∈ γA 2 v k+1
, whose sum leads to

g k+1 = 1 γ 2x k -z k -u k+1 + z k+1 -v k+1 ∈ A 1 u k+1 + A 2 v k+1 ,
where ε 1,2,k = ε 1,k + ε 2,k . Note that v k -z k = (Id -J γA2 )z k and (Id -J γA2 ) is firmly non-expansive (Lemma 1), whence we get

d 0, A 1 u k+1 + A 2 v k+1 ≤ 1+λ k γ ||e k || + 1 γ λ k ||ε k || + ||ε 1,2,k -ε k || . ( 21 
)
For the error ||ε k ||, we have

||ε k || ≤ 1 2 ||R γA1 (R γA2 z k + 2ε 2,k ) -R γA1 R γA2 z k || + ||ε 1,k || ≤ ||ε 1,k || + ||ε 2,k ||, (22) 
and similarly we have

||ε k -ε 1,2,k || ≤ 2||ε 2,k ||. (23) 
Combining together ( 21), ( 22) and ( 23) concludes the proof.

Remark 7

(i) The summability assumption of (ε 1,k ) k∈N and (ε 1,k ) k∈N implies (c k ) k∈N is summable too, hence decays faster than 1/k, which means the right hand side of ( 20) is dominated by the first term. However, to ensure the convergence of the DRS method, one only needs λ k ||ε k || k∈N to be summable, which does not necessary mean that (ε 1,k ) k∈N and (ε 1,k ) k∈N should be summable. In [START_REF] Combettes | Quasi-Fejérian analysis of some optimization algorithms[END_REF]Remark 5.7], an example is provided where k∈N ||ε k || may diverge while

(λ k ||ε k ||) k∈N is summable. Suppose ||ε k || ≤ (1 + 1 -1/k)/k q , q ∈]0, 1], and λ k = (1 -1 -1/k)/2, then it can be verified that k∈N ||ε k || diverges but k∈N λ k ||ε k || < +∞ and k∈N λ k (2 -λ k ) = +∞.
(ii) The obtained iteration-complexity results can be readily adapted to the ADMM method, by exploiting the fact that ADMM is nothing but DRS applied to the Fenchel dual of the problem. In particular, one can then show that the pointwise iteration-complexity of ADMM is indeed O(1/ √ k). A similar result in the exact case is presented in [START_REF] He | On non-ergodic convergence rate of Douglas-Rachford alternating direction method of multipliers[END_REF] under a different metric.

Primal-Dual splitting

In [START_REF] Vũ | A splitting algorithm for dual monotone inclusions involving cocoercive operators[END_REF], a more general monotone problem is considered. Let C : H → 2 H be a maximal monotone operator, B : H → H is µ-cocoercive for some µ ∈]0, +∞[. n is a strictly positive integer, let (ω i ) i ∈]0, 1[ n such that i ω i = 1. For every i ∈ 1, n , let G i be a real Hilbert space, r i ∈ G i , A i : G i → 2 Gi is maximal monotone, D i : G i → 2 Gi is maximal monotone and ν i -strongly monotone for ν

i ∈]0, +∞[ (thus D -1 i is single-valued), A i D i = (A -1 i + D -1 i ) -1
is the parallel sum of A i and D i . Finally, let L i : H → G i be a non-zero bounded linear operator. Now, consider the following monotone inclusion problem,

Find x ∈ H such that 0 ∈ Cx + Bx + n i=1 ω i L * i (A i D i )(L i x -r i ) , (24) 
and the corresponding dual problem,

Find (v 1 ∈ G 1 , ..., v n ∈ G n ) such that (∃x ∈ H) 0 ∈ Cx + Bx + n i=1 ω i L * i v i , 0 ∈ (A i D i )(L i x -r i ) -v i , (25) 
denote by P and D the solution sets of ( 24) and ( 25) respectively. Let τ,

(σ i ) i > 0 such that η = min{ 1 τ , 1 σ1 , ..., 1 σn }(1-τ i σ i ω i L i 2 ), 2ηβ > 1 where β = min{µ, ν 1 , ..., ν n }, and λ k ∈]0, 4ηβ-1 2ηβ ]. Let (ε 1,k , ε 2,k
) k∈N be absolutely summable sequences in H, (ε 3,i,k , ε 4,i,k ) k∈N be absolutely summable sequences in G i for i ∈ 1, n . The primal-dual splitting algorithm of [START_REF] Vũ | A splitting algorithm for dual monotone inclusions involving cocoercive operators[END_REF] reads,

             p k+1 = J τ C x k -τ ( i ω i L * i v i,k + Bx k + ε 1,k ) + ε 2,k , y k+1 = 2p k+1 -x k , x k+1 = x k + λ k (p k+1 -x k ), For i = 1, • • • , n q i,k+1 = J σiA -1 i v i,k + σ i (L i y i,k+1 -D -1 i v i,k -ε 3,i,k -r i ) + ε 4,i,k , v i,k+1 = v i,k + λ k (q i,k+1 -v i,k ). (26) 
For the case of convex optimization, with n = 1, r = 0, D = 0, no errors and λ k ≡ 1, the algorithm reduces to that in [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF].

In this part, we recall briefly the fixed-point iteration corresponding to [START_REF] Douglas | On the numerical solution of heat conduction problems in two and three space variables[END_REF] whose detailed derivation can be found in [START_REF] Vũ | A splitting algorithm for dual monotone inclusions involving cocoercive operators[END_REF]Section 3]. Define the product space G = G i × • • • × G n endowed with the scalar product v 1 , v 2 G = n i=1 ω i v 1,i , v 2,i Gi and associated norm || • || G . Let K = H ⊕ G be the Hilbert direct sum with the scalar product

(x 1 , v 1 ), (x 2 , v 2 ) K = x 1 , x 2 + v 1 , v 2 G and norm || • || K .
Define the following operators on K,

C : K → 2 K , (x, v) → (Cx) × (r 1 + A -1 1 v 1 ) × • • • × (r n + A -1 n v n ), D : K → K, (x, v) → ( i ω i L * i v i , -L 1 x, • • • , -L n x), E : K → K, (x, v) → (Bx, D -1 1 v 1 , • • • , D -1 n v n ), F : K → K, (x, v) → ( 1 τ x -i ω i L * i v i , 1 σ1 v 1 -L 1 x, • • • , 1 σn v n -L n x),
C and D are maximal monotone, E is β-cocoercive, and F is self-adjoint and η-strongly positive. Then the fixed point equation of ( 26) is [START_REF] Vũ | A splitting algorithm for dual monotone inclusions involving cocoercive operators[END_REF] 

z k+1 = z k + λ k J A (z k -Bz k -ε 2,k ) + ε 1,k -z k , (27) 
where [START_REF] Eckstein | On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators[END_REF] has the structure of FBS, and by Remark 1, the fixed-point operator T

A = F -1 (C + D), B = F -1 E, z k = (x k , v 1,k , • • • , v n,k ), the errors ε 1,k = (ε 2,k , ε 4,1,k , • • • , ε 4,n,k ), ε 3,k = (ε 1,k , ε 3,1,k , • • • , ε 3,n,k ), ε 4,k = ( 1 τ ε 2,k , 1 σ1 ε 4,1,k , • • • , 1 σn ε 4,n,k ), ε 2,k = F -1 (D + E)ε 1,k + ε 3,k -ε 4,k . Iteration
= J A • (Id -B) ∈ A( 2ηβ 4ηβ-1
). Thus, ( 27) is a special instance of (4). In addition, since ε 1,k and ε 2,k (resp. ε 3,i,k and ε 4,i,k ) are summable in H (resp. in G i ), so are ε 1,k and ε 2,k in K. Therefore, the PDS iterates obey the iteration-complexity bounds in Section 3.

Observing that fixT = zer(A + B) = zer(C + D + E), we also have the following bounds. We will denote

δ = max{ 1 τ , 1 σ1 , . . . , 1 σn }, τ = inf k∈N λ k ( 4ηβ-1 2ηβ -λ k ), and 
w k+1 = (z k+1 -(1 -λ k )z k )/λ k -ε k , where ε k = (J A (z k -Bz k -ε 2,k ) + ε 1,k ) -J A (z k -Bz k ).
If T Γ k were non-expansive, then obviously (A.2) is in force, and in turn, Theorem 4 holds. In the specific scenario where ∀k ∈ N, T Γ k is α k -averaged, α k ∈]0, 1], we can further refine the choice of λ k . Here we take a different route from the one in [START_REF] Combettes | Solving monotone inclusions via compositions of nonexpansive averaged operators[END_REF]. By definition, ∀k ∈ N, there exists a non-expansive operator R

Γ k : H → H such that T Γ k = α k R Γ k +(1-α k )Id.
Let R Γ be a non-expansive operator, and λ k = α k λ k . We have the following corollary.

Corollary 5 Assume that

(A .1) fixR Γ = ∅; (A .2) ∀k ∈ N, T Γ k is α k -averaged, α k ∈]0, 1]; (A .3) λ k ∈]0, 1 α k [ such that inf k∈N λ k (1 -λ k ) > 0; (A .4) (λ k ||ε k ||) ∈ 1 + ; (A .5) ∀ρ ∈ [0, +∞[, (λ k ∆ k,ρ ) k∈N ∈ + 1 , where ∆ k,ρ = sup ||z||≤ρ ||R Γ k z -R Γ z||.
Then (e k ) k∈N converges strongly to 0, and (z k ) k∈N converges weakly to a fixed point z ∈ fixT Γ .

Assumptions (A.4)-(A.5) of Theorem 4 imply that

k∈N λ k ||π k || ≤ k∈N λ k (||ε Γ k || + ||ε k ||) < +∞.
Therefore, if we can further impose a stronger summability assumption on (π k ) k∈N as in Theorem 1, then we can obtain the iteration-complexity bounds for the non-stationary iteration [START_REF] Fortin | Augmented Lagrangian methods: applications to the numerical solution of boundary-value problems[END_REF] as well. This is stated in the following result. Recall Λ k = k j=0 λ j , ēk = 1 Λ k k j=0 λ j e j , and d 0 = inf z∈fixT Γ ||z 0 -z||. Proposition 5 Assume that (A.1) holds, and that ∀k ∈ N, T Γ k is non-expansive.

(i) Suppose that (A.3) is verified, (k + 1)||ε k || k∈N ∈ + 1 and (k + 1)∆ k,ρ k∈N ∈ + 1 , ∀ρ ∈ [0, +∞[
, where ∆ k,ρ is given by [START_REF] Gabay | A dual algorithm for the solution of nonlinear variational problems via finite element approximation[END_REF]. Then,

||e k || ≤ d 2 0 + C 1 τ (k + 1)
where C 1 is a bounded constant (see Theorem 1). (ii) Suppose that λ k ∈]0, 1] such that (A.4)-(A.5) are verified. Then

||ē k || ≤ 2(d 0 + C 2 ) Λ k
where C 2 is a bounded constant (see Theorem 2 

Application to non-stationary GFB

As discussed in Section 5.1, the fixed-point operator T γ of GFB depends on a parameter γ. Now let γ vary along the iteration, and denote the following operators

T 1,γ k = 1 2 (R γ k A R S + Id), T 2,γ k = Id -γ k B S , and 
T γ k = T 1,γ k • T 2,γ k . Recall that for (γ k ) k∈N ∈]0, 2β[, T γ k is α k -averaged with α k = 2β
4β-γ k , and T γ is α-averaged with α = 2β 4β-γ , for γ ∈]0, 2β[. Moreover, there exists non-expansive operators R γ and R γ k such that T γ = αR γ + (1 -α)Id and

T γ k = α k R γ k + (1 -α k )Id. Let ε γ k = (T γ k -T γ )z k , π k = ε γ k + ε k .
The the non-stationary version of ( 18) is defined by

z k+1 = z k + λ k (T γ z k + π k -z k ). (31) 
Theorem 5 For the non-stationary iteration [START_REF] Glowinski | Augmented Lagrangian and operator-splitting methods in nonlinear mechanics[END_REF], if the following assumptions hold By definition of R γ and R γ k , we have

(A .1) zer(B + i A i ) = ∅; (A .2) λ k ∈]0, 1 α k [, such that inf k∈N λ k ( 1 α k -λ k ) > 0; (A .3) λ k ||b k || k∈N ∈ 1 + and λ k ||a i,k || k∈N ∈ 1 + , ∀i ∈ 1, n ; (A .4) (γ k ) k∈N ∈]0, 2β[ such that 0 < γ ≤ γ k ≤ γ < 2β, γ ∈ [γ, γ],
R γ = 1 -1 α Id + 1 α T γ and R γ k = 1 -1 α k Id + 1 α k T γ k .
It then follows that 

||R γ k z -R γ z|| = || 1 α k T γ k -Id z -1 α T γ -Id z|| ≤ | 1 α k -1 α ||| T γ -Id z|| + 1 α k || T γ k -Id z -T γ -Id z|| ≤ |γ k -γ| 2β 2ρ + ||T γ 0|| + 1 α k ||T γ k z -T γ z|| . (32) 
where B(0) is bounded. Let's now turn to the second term of [START_REF] He | On convergence rate of the Douglas-Rachford operator splitting method[END_REF]. Denote z S = P S (z) and z S ⊥ = zz S , then

v = T 1,γ T 2,γ z ⇔ v = z S ⊥ + J γA (z S -z S ⊥ -γ Bz S ),
Let y = z S -z S ⊥ -γBz S , then we have 

Putting together ( 32), ( 34), ( 35) and ( 36 Consequently, (A.5) is fulfilled.

The last statement of the theorem is a simple application of Theorem 1.

Remark 9

(1) For the non-stationary versions of the methods discussed in Section 5, for instance, the DRS and FDRS methods, whose fixed-point operators also depend on γ k , Theorem 5 is also applicable. In general, the summability assumption (A .4) of Theorem 5 is hard to remove, except for some special cases. For instance for the FBS method, as stated in [START_REF] Combettes | Signal recovery by proximal Forward-Backward splitting[END_REF]Theorem 3.4], where γ k ∈]0, 2β[, but λ k ∈]0, 1[ instead of ]0, 4β-γ k 2β [ here. [START_REF] Baillon | Un théoreme de type ergodique pour les contractions non linéaires dans un espace de Hilbert[END_REF] Recall the term c k in the bound (13) of Theorem 3. Clearly, for the non-stationary GFB iteration, even if the approximation error ε k = 0, we still have c k = ν 1 λ k ε γ k = 0. Therefore, under metric sub-regularity of Id -T γ , a bound similar to (13) can be obtained, whose performance will depend on how fast |γ k -γ| converges to 0.

Conclusion

In this paper, we presented global iteration-complexity bounds for the inexact Krasnosel'skiȋ-Mann iteration built from a non-expansive operator, then under metric sub-regularity, we provided a unified quantitative analysis of local linear convergence. Extensions to the non-stationary version of the fixed-point iteration were also studied. The obtained results are applied to several monotone operator splitting algorithms and illustrated through some examples where both global sub-linear and local linear convergence profiles are observed. The local linear convergence rate depends on the sub-regularity modulus of the fixed-point operator, which is not straightforward to compute in general. Moreover, our rate estimates are not necessarily sharp in general. Sharper rates can be obtained if more structure on the problem is available and exploited wisely. These are important aspects that we will investigate in a future work.

  Fejér monotone with respect to fixT , and converges weakly to a point z ∈ fixT . Proof (i) Combine Definition 1 and (i) of Lemma 3; (ii) Straightforward; (iii) See [18, Lemma 5.1].

  to finding a zero of T ((ii) of Proposition 1), Theorem 1 tells us that O(1/ ) iterations are needed for (4) to reach an -accurate in terms of the error criterion ||T z k || 2 ≤ .

Example 1 (

 1 Projector) Suppose that T = P C , for C a non-empty closed convex subset of H. Then fixT = C and d(z, C) = ||z -P C z|| = ||T z||. Thus T is metrically sub-regular at any z ∈ C for 0 with Z = H and modulus 1.

Remark 4 (

 4 then there exists ζ = sup k∈N κ 2 /(κ 2 + τ k ) < 1 which concludes the result. i) When the fixed point is a singleton, Theorem 3 holds replacing d k by ||z k -z ||.

Fig. 1

 1 Fig. 1 Global and local convergence profiles of gradient descent to minimize f with (δm, δ M ) = (0.8, 1). For γ = 1 2δ M , the observed and

  and (λ k |γ k -γ|) k∈N ∈ + 1 ; then, the sequence (z k ) k∈N generated by[START_REF] Glowinski | Augmented Lagrangian and operator-splitting methods in nonlinear mechanics[END_REF] converges weakly to a point in fixT γ . If we further assume that ((k + 1)|γ k -γ|) k∈N ∈ + 1 , ((k + 1)||b k ||) k∈N ∈ 1 + , and ((k + 1)||a i,k ||) k∈N ∈ 1 + , ∀i ∈ 1, n , then we obtain the pointwise iteration-complexity bound for the non-stationary version of GFB algorithm as stated in (i) of Proposition 5.Proof It is sufficient to verify the conditions of Corollary 5 to conclude.• Assumption (A .1) is fulfilled thanks to (A .1) since P S (fixR γ ) = P S (fixT γ ) = zer(B+ i A i ) = ∅; • As T γ k ∈ A(α k ), T γ k ,λ k ∈ A(α k λ k ),and thus assumption (A .2) is in force; • (A .3) holds thanks to (A .2); • (A .4) follows from (A .3). • It remains to check that (A .4) implies (A .5).

1 + 2 . ( 33 )

 1233 Now, non-expansiveness of T 1,γ k yields||T γ k z -T γ z|| ≤ ||T 1,γ k T 2,γ k z -T 1,γ k T 2,γ z|| + ||T 1,γ k T 2,γ z -T 1,γ T 2,γ z|| ≤ ||T 2,γ k z -T 2,γ z|| Term ||T 1,γ k T 2,γ z -T 1,γ T 2,γ z||TermWe first bound the first term in[START_REF] He | On convergence rate of the Douglas-Rachford operator splitting method[END_REF],||T 2,γ k z -T 2,γ z|| ≤ |γ k -γ|||BP S z|| (Triangle inequality and B is β -1 -Lipschitz) ≤ (β -1 ρ + ||B(0)||)|γ k -γ|,

T 1 ,

 1 γ k T 2,γ z -T 1,γ T 2,γ z = J γ k A (y) -J γA (y). and denote u k = J γ k A y, u = J γA y. By definition of the resolvent, this is equivalent tou, yu γ ∈ gra(A) and u k , yu k γ k ∈ gra(A).Since A is monotone, and by assumptions on γ k and γ, it follows thatγ k (y -u) -γ(y -u k ), uu k ≥ 0 ⇔ ||u -u k || 2 ≤ γ k -γ γ yu, uu k .Therefore, using Cauchy-Schwartz inequality and the fact that Id -J γA ∈ A( 1 2 ) is non-expansive, ||u -u k || ≤ |γ k -γ| γ ||(Id -J γA )y|| ≤ |γ k -γ| γ (||y|| + ||J γA (0)||),(35)where||J γA (0)|| 2 = i ω i ||J γ ω i(0)|| 2 . Using the triangle inequality, the Pythagorean theorem and non-expansiveness of βBP S , we obtain ||y|| ≤ ||z S -z S ⊥ || + γ||Bz S || ≤ ρ + γ||Bz S -BP S (0)|| + γ||BP S (0)|| ≤ ρ + γβ -1 ||z|| + γ||B(0)|| ≤ ρ + γβ -1 ρ + γ||B(0)||.

  ), we get ∀ρ ∈ [0, +∞[k∈N λ k α k ∆ k,ρ = k∈N λ k α k sup ||z||≤ρ ||R γ k z -R γ z|| ≤ C k∈N λ k |γ k -γ| < +∞, where C = 2ρ + ||T γ 0|| 4β -γ + ρβ -1 (1 + β/γ + γ/γ) + (1 + γ/γ)||B(0)|| + γ -1 ||J γA (0)|| < +∞ .

  implies τ > 0, (τ k ) k∈N / ∈ 1 + and (λ k ||ε k ||) k∈N ∈ 1 + . Therefore, z k is quasi-Fejér monotone with respect to fixT ((iii) of Proposition 1). Thus, (||e k ||) k∈N and (||z k -z ||) k∈N are bounded for any z ∈ fixT . Hence ν 1 , ν 2 and C 1 are bounded constants. Choose z such that d 0

  (see our discussion in Section 1.3.2), other examples can be deduced for instance from [8, Example 2.3 and 2.5]. Two

  If metric sub-regularity assumption is imposed on Id -T Γ , a result similar to Theorem 3 can be stated. But now, we havec k = ν 1 λ k (||ε k || + ∆ k,ρ). So the actual local convergence behaviour depends also on the additional perturbation error brought by non-stationarity as captured by ∆ k,ρ , even in the exact case. Thus, similarly to Remark 4, if ||ε k || and ∆ k,ρ converge linearly, then so does d k = d(z k , fixT Γ ) locally. If the non-stationary error ∆ k,ρ decays sub-linearly, then it dominates.

). In particular, if inf k∈N λ k > 0, we get O(1/k) ergodic convergence rate. Proof (i) By assumption, we have k∈N (k + 1)||π k || < +∞. All assumptions of Theorem 1 are then fulfilled and the result follows. (ii) Similarly all required assumptions to apply Theorem 2 are in force. Remark 8

In fact, in many cases the fixed-point operator T is even α-averaged, see Definition 1.

The authors consider the case where H is any normed space.

One may observe that γ can be modified locally, once the iterates enter the appropriate neighbourhood, to get the usual optimal linear rate of gradient descent with a strongly convex objective[START_REF] Polyak | Introduction to optimization[END_REF]. But this is not our aim here.

Let (x k , v k ) ∈ graA be a sequence generated by an iterative method for solving the monotone inclusion problem 0 ∈ Ax, then the non-uniform iteration-complexity bound means that for every k ∈ N, there exists a j ≤ k such that ||v j || = O(1/ √ k).
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, where C 1 < +∞ and d 0 = inf z∈fixT ||z 0 -z|| K .

The proof is similar to that of Proposition 2 and will not be included here. Again, Proposition 4 can serve as a stopping criterion for the primal-dual monotone inclusion ( 24)-( 25). An ergodic bound can also be derived. However, for the sake of brevity, we do not pursue this further.

6 Non-stationary Krasnosel'skiȋ-Mann iteration

General convergence analysis

The fixed-point iteration discussed in Section 3 is stationary, namely, T of ( 4) is fixed along the iterations. In this section, we study the non-stationary version of it, and show that, the non-stationary case can be seen as a perturbation of the stationary one. Moreover the iterates are convergent if the extra perturbation error is absolutely summable.

Let T Γ : H → H be a non-expansive operator depending on a parameter Γ . Let λ k ∈]0, 1[. Then the nonstationary fixed-point iteration is defined by

with

The corresponding vector e k of ( 28) becomes

Comparing [START_REF] Gabay | Chapter IX: Applications of the method of multipliers to variational inequalities[END_REF] to Definition 5, a new error sequence π k is introduced. To obtain convergence of the non-stationary iteration, we adapt arguments from [START_REF] Lemaire | Stability of the iteration method for non expansive mappings[END_REF] (Banach spaces endowed with an appropriate compatible topology) and [START_REF] Lemaire | Which fixed point does the iteration method select?[END_REF] (real Hilbert spaces). For convenience, we recall that τ = inf k∈N λ k (1 -λ k ).

Theorem 4 (Convergence of (28)) Assume the following holds:

(A.1)

Then (e k ) k∈N converges strongly to 0, and (z k ) k∈N converges weakly to a point z ∈ fixT Γ .

Proof For the sequence (z k ) k∈N generated by [START_REF] Fortin | Augmented Lagrangian methods: applications to the numerical solution of boundary-value problems[END_REF], and z ∈ fixT Γ , we have

As 

In other words, the (inexact) non-stationary iteration (28) can be seen as a perturbed version of the (inexact) stationary one with an extra-error term which is summable owing to (A.5). The rest of the proof follows by applying [36, Proposition 2.1 and Remark 2.2] (see also [START_REF] Brézis | Produits infinis de résolvantes[END_REF]Remark 14]) using (A.1) and (A.3).