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Model Consistency of Partly Smooth Regularizers
Samuel Vaiter, Gabriel Peyré and Jalal Fadili

Abstract—This paper studies least-square regression penalized
with partly smooth convex regularizers. This class of penalty
functions is very large and versatile, and allows to promote
solutions conforming to some notion of low-complexity. Indeed,
such penalties/regularizers force the corresponding solutions to
belong to a low-dimensional manifold (the so-called model)
which remains stable when the penalty function undergoes small
perturbations. Such a good sensitivity property is crucial to
make the underlying low-complexity (manifold) model robust
to small noise. In a deterministic setting, we show that a
generalized “irrepresentable condition” implies stable model
selection under small noise perturbations in the observations and
the design matrix, when the regularization parameter is tuned
proportionally to the noise level. We also prove that this condition
is almost necessary for stable model recovery. We then turn to
the random setting where the design matrix and the noise are
random, and the number of observations grows large. We show
that under our generalized “irrepresentable condition”, and a
proper scaling of the regularization parameter, the regularized
estimator is model consistent. In plain words, with a probability
tending to one as the number of measurements tends to infinity,
the regularized estimator belongs to the correct low-dimensional
model manifold. This work unifies and generalizes a large body
of literature, where model consistency was known to hold, for
instance for the Lasso, group Lasso, total variation (fused Lasso)
and nuclear/trace norm regularizers. We show that under the
deterministic model selection conditions, the forward-backward
proximal splitting algorithm used to solve the penalized least-
square regression problem, is guaranteed to identify the model
manifold after a finite number of iterations. Lastly, we detail how
our results extend from the quadratic loss to an arbitrary smooth
and strictly convex loss function. We illustrate the usefulness of
our results on the problem of low-rank matrix recovery from
random measurements using nuclear norm minimization.

Index Terms—Regularization, regression, inverse problems,
model consistency, partial smoothness, sensitivity analysis, spar-
sity, low-rank.

I. INTRODUCTION

A. Problem Statement

We consider the following observation model

y = Φx0 + w,

where Φ ∈ Rp×n is the design matrix (in statistics or machine
learning) or the forward operator (in signal and imaging
sciences), x0 ∈ Rn is the vector to recover and w ∈ Rp is
the noise. The design can be either deterministic or random,
and similarly for the noise w.

Regularization is now a central theme in many fields
including statistics, machine learning and inverse problems.
It allows one to impose on the set of candidate solutions
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some prior structure on the object x0 to be estimated. We
therefore consider a proper, lower-semicontinuous (lsc) and
convex function J : Rn → R ∪ {+∞} to promote such a
prior. Without loss of generality, we also assume that J is
non-negative. This then leads to solving the following convex
optimization problem

min
x∈Rn

{
J(x) +

1

2λ
||Φx− y||2

}
, (1)

where λ > 0 is the so-called regularization parameter used to
balance the amount of regularization and loss.

To simplify the notations, we introduce the following
“canonical” parameters

θ = (µ, u,Γ) =

(
λ

p
,

Φ∗y

p
,

Φ∗Φ

p

)
∈ Θ = R+ × Rn × Rn×n

and we denote
ε =

Φ∗w

p
= u− Γx0,

where Φ∗ is the adjoint operator to the linear operator Φ. In
the following, we assume that y ∈ Im(Φ) and thus u ∈ Im(Γ).
Obviously, this does not entail any loss of generality, as the
loss term can always be written as 1

2λ ||Φx − PIm(Φ) y||2 +
1

2λ ||PIm(Φ)⊥ y||2, where PT is the orthogonal projection on
T .

With these new parameters, the original problem (1) now
reads

min
x∈Rn

E(x, θ) (Pθ)

where

E(x, θ) = J(x) +
1

2µ
〈Γx, x〉 − 1

µ
〈x, u〉+

1

2µ
〈Γ+u, u〉,

and A+ stands for the Moore-Penrose pseudo-inverse of a
matrix A. With these notations, E is a function on Rn ×Θ.

We also consider the constrained problem

min
x∈Rn

{E(x, θ0) = J(x) + ιHu(x)} (Pθ0 )

where
Hu = {x ∈ Rn ; Γx = u} ,

θ0 = (0, u,Γ), and ιC is the indicator function of the non-
empty closed convex set C, i.e. ιC(x) = 0 if x ∈ C and ιC(x) =
+∞ otherwise. Problem (Pθ0 ) can be viewed as a limit of (Pθ)
as µ→ 0+.

At this stage, it is worth mentioning that though we focus
here, for simplicity of exposition, on the squared loss x 7→
1
2 ||y − Φx||2, our results generalize to more general smooth
losses, see Section III-E for further details.

The goal of this paper is to assess the recovery performance
of (Pθ), i.e. to understand how close are the properties of the
recovered solution of (Pθ) to those of x0. More precisely,



2

we focus here on the low-noise regime, i.e. when ε is small
enough, and we investigate stability in `2 sense, but also,
and more importantly, the identifiability of the correct low-
dimensional manifold associated to x0. This unifies and extend
a large body of literature, including sparsity and low-rank
regularization, which turn to be a very special case of the
powerful theory of partly smooth regularization.

B. Notations

We recall some basic ingredients from differential geometry
and convex analysis that are essential to our exposition. For a
function J , dom(J) = {x ∈ Rp ; J(x) < +∞} is its domain.
We denote ∂J(x) the subdifferential at x of the proper, lsc
and convex function J . Geometrically, when x ∈ dom(J),
∂J(x) (if non-empty) is the set of gradients of the affine
minorants of J supporting it at x. The subdifferential ∂J(x)
is a closed convex set. We denote ri(C) (resp. rbd(C))) the
relative interior of C (resp. relative boundary), i.e. its interior
(boundary) for the topology of its affine hull (the smallest
affine space containing C).

A good source on smooth manifold theory is [32]. A set
M ⊂ Rn is a C2-smooth manifold around a point x ∈ Rn,
if x ∈ M and M consists locally around x of the solutions
of some C2-smooth equations with linearly independent gra-
dients. In this case, the tangent space of M at x is denoted
Tx(M). We define the tangent model subspace as

Tx = par(∂J(x))⊥,

where par(C) = R(C − C) is the subspace parallel to the set
C ⊂ Rn. For a linear space T , we denote PT the orthogonal
projection on T and for a matrix Γ ∈ Rn×n, ΓT = PT Γ PT .

We use the abbreviation O(ak, bk) to mean
O(max(ak, bk)).

II. PARTLY-SMOOTH FUNCTIONS

Toward the goal of studying the recovery guarantees of
problem (Pθ), our central assumption will be that J is a
partly smooth function. Partial smoothness of functions was
originally defined by [34]. Our definition hereafter specializes
it to the case of proper, lsc and convex functions. Rigorously
speaking, in the following, one should speak of C2-smooth
embedded submanifold of Rp. Nevertheless, to lighten termi-
nology, we shall state C2-manifold. For a smooth manifold
M around x ∈ M, Tx′(M) will denote the tangent space to
M at any point x′ near x in M.

Definition 1. Let J be a proper, lsc convex function, and x ∈
Rp such that ∂J(x) 6= ∅. J is partly smooth at x relative to a
set M containing x if

(i) (Smoothness) M is a C2-manifold around x and J
restricted to M is C2 around x.

(ii) (Sharpness) The tangent space Tx(M) is Tx.
(iii) (Continuity) The set-valued mapping ∂J is continuous at

x relative to M.
J is said to be partly smooth relative to a set M if M is a
manifold and J is partly smooth at each point x ∈M relative
to M. J is said to be locally partly smooth at x relative to a

set M if M is a manifold and there exists a neighbourhood
U of x such that J is partly smooth at each point x′ ∈M∩U
relative to M.

Note that in the previous definition, M needs only to be
defined locally around x, and it can be shown to be locally
unique thanks to prox-regularity of proper, lsc and convex
functions, see [27, Corollary 4.2].

Loosely speaking, a partly smooth function behaves
smoothly as we move on the identifiable manifold, and sharply
if we move normal to the manifold. Examples showing the
importance of properties (i)–(iii) and why their individual lack
will cause issue are provided in [26, Section 2.2].

Remark 1 (Discussion of the properties). Since J is proper,
lsc and convex, it is subdifferentially regular at any point in
its domain, and in particular at x. Therefore, the regularity
property [34, Definition 2.7(ii)] is automatically verified. In
view of [34, Proposition 2.4(i)-(iii)], the sharpness property
(ii) is equivalent to [34, Definition 2.7(iii)]. The continuity
property (iii) is equivalent to the fact that ∂J is inner
semicontinuous at x relative to M, that is: for any sequence
xk in M converging to x and any η ∈ ∂J(x), there exists a
sequence of subgradients ηk ∈ ∂J(xk) converging to η. This
equivalent characterization will be essential in the proof of
our main result.

A. Examples in Imaging and Machine Learning

We describe below some popular examples of partly smooth
regularizers that are routinely used in machine learning,
statistics, signal and image processing. We first expose basic
building examples (sparsity, group sparsity) and then show
how the machinery of partial smoothness enables a powerful
calculus to create new priors (using post-composition with a
linear operator, spectral lifting, positive linear combinations
and separable priors). It turns out that all these examples are
partly smooth functions as has been shown in [54].

a) `1 sparsity.: One of the most popular non-quadratic
convex regularization is the `1 norm J(x) =

∑n
i=1 |xi|, i

which promotes sparsity. Indeed, it is easy to check that J
is partly smooth at x relative to the subspace

M = Tx = {u ∈ Rn ; supp(u) ⊆ supp(x)} .

For any x ∈ Rn, M is a linear subspace, which is obviously
a C2-manifold. Moreover, on a neighborhood of x in M,
the `1 norm is locally linear and thus C2. These two facts
prove property (i). As far as property (ii) is concerned, since
again M is a linear subspace, its tangent space Tx(M) is
nothing but Tx. Finally, the subdifferential of the `1 norm
is a constant set locally around x along M, which in turns
shows property (iii). The use of sparse regularization has been
popularized in the signal processing literature under the name
of basis pursuit [13], and in the statistics literature under the
name of Lasso [52].

b) `1− `2 group sparsity.: To better capture the sparsity
pattern of natural signals and images, it is useful to structure
the sparsity into non-overlapping blocks/groups B such that⋃
b∈B b = {1, . . . , n}. This group structure is enforced by
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using typically the mixed `1 − `2 norm J(x) =
∑
b∈B ||xb||,

where xb = (xi)i∈b ∈ R|b|. We refer to [58, 3] and references
therein for more details. Unlike the `1 norm, and except the
case |b| = 1, the `1 − `2 norm is not polyhedral, but can be
still be shown to be partly smooth at x relative to the linear
manifold

M = Tx = {x′ ; suppB(x′) ⊆ suppB(x)} ,

where
suppB(x) =

⋃
{b ; xb 6= 0} .

See [54].
c) Spectral functions.: The natural spectral extension of

sparsity to matrix-valued data x ∈ Rn0×n0 (where n = n2
0)

is to impose a low-rank prior, which should be understood as
sparsity of the singular values. Denote x = Ux diag(Λx)V ∗x
an SVD decomposition of x, where Λx ∈ Rn0

+ . The nuclear
norm is defined as

J(x) = ||x||∗ = ||Λx||1. (2)

It has been used for instance in machine learning applica-
tions [3], matrix completion [45, 7] and phase retrieval [11].
The nuclear norm can be shown to be partly smooth at x
relative to the manifold [36, Example 2]

M = {x′ ; rank(x′) = rank(x)} . (3)

More generally, if j : Rn0 → R is a permutation-invariant
closed convex function, then one can consider the function
J(x) = j(Λx) which can be shown to be a convex function
as well [35]. When restricted to the linear space of symmetric
matrices, j is partly smooth at Λx for a manifold mΛx , if and
only if J is partly smooth at x relative to the manifold

M = {U diag(Λ)U∗ ; Λ ∈ mΛx , U ∈ On0
} ,

where On0
⊂ Rn0×n0 is the group of orthogonal matrices.

This result is proved in [14, Theorem 3.19], building upon the
work of [15] on manifold smoothness transfer under spectral
lifting. This result can be extended to non-symmetric (possibly
rectangular) matrices by requiring that j is an absolutely
permutation-invariant closed convex function, see [14, The-
orem 5.3]. The nuclear norm || · ||∗ is a special case where
j(Λ) = ||Λ||1.

d) Analysis regularizers.: If J0 : Rq → R ∪ {+∞} is a
proper lsc convex function and D ∈ Rn×q is a linear operator,
an analysis regularizer (following the terminology introduced
in [18]) is of the form

J(x) = J0(D∗x).

Such a prior controls the low-complexity (as measured by J0)
of the correlations between the columns of D and x. A popular
example is when taking J0 = || · ||1 and D∗ a finite-difference
approximation of the gradient of an image. This defines
the (anisotropic) total variation, which promotes piecewise
constant images, and is popular in image processing [49].
The fused Lasso [53] corresponds to J0 being the `1-norm
and D∗ is the concatenation of the identity and a finite-
difference operator. To cope with correlated covariates in linear

regression, it was devised in [25, 46] to use a family of
analysis-type priors where J0 = || · ||∗ is the nuclear norm.

If J0 is partly smooth at α = D∗x for the manifold M0
α,

then it is shown in [34, Theorem 4.2] that J is partly smooth
at x relative to the manifold

M =
{
x′ ∈ Rn ; D∗x′ ∈M0

α

}
.

provided that the following transversality condition holds [32,
Theorem 6.30(a)]

Ker(D)∩Tα(M0
α)⊥ = {0} ⇐⇒ Im(D∗)+Tα(M0

α) = RN .

Moreover, the co-dimension of M in Rp equals the co-
dimension of M0

α in Rq .
e) Mixed regularization.: Starting from a family of

proper, lsc and convex functions {J`}`∈L, L = {1, . . . , L},
it is possible to design a convex function as J`(x) =∑
`∈L ρ`J`(x), where ρ` > 0 are weights. A popular example

is to impose both sparsity and low rank of a matrix, by using
J1 = || · ||1 and J2 = || · ||∗, see for instance [22, 42].

Suppose that
⋂
`∈L ri(dom(J`)) 6= ∅. Let S ⊆ Rp be a

C2-manifold. If each J` is partly smooth at x relative to a
manifold M` ⊆ S, then it can be shown that J is also partly
smooth at x for

M =
⋂
`∈L

M` ,

with the proviso that the manifoldsM` intersect transversally,
i.e. ∑

`∈L

z` = 0

and

∀` ∈ L, z` ∈ Tx(M`)⊥ ⇒ z` ∈ Tx(S)⊥ for each ` ∈ L .

Moreover, the co-dimension of M (in S) equals the sum of
the co-dimensions of M`. This assertion is a weaker version
of [34, Corollary 4.8], since we use convexity and closedness
of the functions J`. For the case where L = 2, the above
transversality condition reads [32, Theorem 6.30(b)]

Tx(M1)⊥ ∩ Tx(M2)⊥ = Tx(S)⊥

⇐⇒ Tx(M1) + Tx(M2) = Tx(S) . (4)

f) Separable Regularization.: Let {J`}`∈L, L =
{1, . . . , L}, be a family of proper lsc convex functions. If J`
is partly smooth at x` relative to a manifold M`

x`
, then the

separable function

J ({x`}`∈L) =
∑
`∈L

J`(x`)

is partly smooth at (x1, . . . , xL) relative to M1
x1
× · · · ×

ML
xL [34, Proposition 4.5].
One fundamental problem that has attracted a lot of interest

in the recent years in data processing involves decomposing
an observed object into a linear combination of compo-
nents/constituents x`, ` ∈ L. One instance of such a problem
is image decomposition into texture and piece-wise-smooth
(cartoon) parts, see e.g. [51, 1, 43] and references therein.
Another example of decomposition is principal component
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pursuit, proposed in [8], to decompose a matrix which is
the superposition of a low-rank component and a sparse
component. In this case J1 = || · ||1 and J2 = || · ||∗.

III. MAIN RESULTS

In the following, we denote T = Tx0
, e = PT (∂J(x0)) ∈

Rn.

A. Linearized pre-certificate and minimal norm dual certifi-
cate

Before stating our main contributions, we first introduce a
central object of this paper, which controls the stability of M
when the signal to noise ratio is large enough.

Definition 2 (Linearized pre-certificate). For some matrix Γ ∈
Rn×n, assuming ker(Γ) ∩ T = {0}, we define ηΓ = ΓΓ+

T e.

Recall that J is proper lsc convex function, and we suppose
that Im(Γ̃)∩∂J(x0) 6= ∅ (so-called range or source condition
in the inverse problem community). The latter is equivalent to
the fact that x0 is a minimizer of (Pθ0). This is straightforward
to see by writing the first-order optimality condition of this
convex program.

Definition 3 (Minimal norm certificate). The minimal norm
certificate is the vector

η̊Γ̃ = Γ̃z̊Γ̃, where z̊Γ̃ = argmin
Γ̃z∈∂J(x0)

||z||. (5)

This certificate is uniquely defined as the constraint set
is non-empty closed and convex, and the solution of the
minimization problem, which is the projection of the origin
on it, is obviously unique.

Proposition 1. Assume that ker(Γ̃) ∩ T = {0}. Then,

ηΓ̃ ∈ ri(∂J(x0)) =⇒ η̊Γ̃ = ηΓ̃, (6)
η̊Γ̃ ∈ ri(∂J(x0)) =⇒ η̊Γ̃ = ηΓ̃. (7)

Under either of these conditions, x0 is the unique minimizer
to (P0,Γ̃x0,Γ̃

).

The proof is postponed to Section V-B.

B. Deterministic model consistency

We first consider the case where Φ and w (or equivalently
Γ and u) are fixed and deterministic. Our main contribution
is the following model consistency theorem, which shows
the robustness of the manifold M associated to x0 to small
perturbations on both the observations and the design matrix,
provided that µ (or equivalently λ) is well chosen. As a
product, we also get `2 stability.

Theorem 1. Assume that J is locally partly smooth at x0

relative to M and that there exists Γ̃ ∈ Rn×n such that

ker(Γ̃) ∩ T = {0}, and ηΓ̃ ∈ ri(∂J(x0)). (8)

Then, there exists a constant C > 0 such that if

max
(
||Γ− Γ̃||, ||ε||µ−1, µ

)
6 C, (9)

the solution xθ of (Pθ) is unique and satisfies

xθ ∈M and ||xθ − x0|| = O(||ε||). (10)

This theorem is proved in Section V-C.

Remark 2 (Stability constants). Observe that the non-
degeneracy and restricted injectivity conditions in (8) can be
viewed as a geometric generalization of the so-called irrep-
resentable condition in statistics (see Section III-F for further
details). They guarantee in particular that x0 is identifiable in
the exact case, i.e. a unique solution to (P0,Γx0,Γ). Theorem 1
ensures that under (8), solving (Pθ) indeed recovers a unique
solution xθ having the correct model (i.e. xθ ∈ M). In our
way of proving model consistency, we also get `2 stability to
such a small noise. When the underlying model has a low
complexity (typically M has a small dimension), this means
that the recovery will be highly stable, which is reflected both
in the constant C in (9) and the (local) Lipschitz constant
hidden behind the bound ||xθ − x0|| = O(||ε||). Obtaining
sharp estimates of these constants for general low complexity
models (manifolds) is rather challenging and will necessitate
even more involved arguments from differential geometry. The
case of regularizers J where the partial smoothness manifold
is affine was deeply investigated in [54]. There, the authors
derived explicit (though quite involved) formulae for C and the
Lipschitz constant. It is however easier to see how these con-
stants behave in the small noise limit, i.e. when ||ε|| → 0 with
µ = C0||ε|| for some large enough constant C0 (C0 > 1/C
from (9)), and where we assume for simplicity that Γ = Γ̃ for
simplicity. Indeed, as shown in the proof of Theorem 1 (see
in particular (30)), for enough small noise level, the recovery
error behaves as

||xθ − x0|| ∼ ||Γ̃+
T (ε− µex0

)|| 6 (1 + C0||ex0
||)||Γ̃+

T ||||ε||.

The operator Γ̃+
T amounts to inverting the restriction of the

operator Γ̃ to the low dimensional subspace T . The constant
||Γ̃+
T || thus captures the complexity of the model at x0, and this

term increases as the dimension of M (equal to that of T by
the sharpness property ((ii))) increases.

Remark 3 (”Distance” to degeneracy). It is worth empha-
sizing that the “distance” of ηΓ̃ to degeneracy affects both
stability of the model selection and `2 stability. Again, this
can be quantified precisely for linear manifolds as in [54]. In
the general case, it is much more difficult. Nevertheless, we can
still give some clues in the low-noise regime. Let ηθ = u−Γxθ

µ .
From the first-order condition in the proof of Theorem 1, we
have ηθ ∈ Aff(∂J(xθ)). Thus

ηθ ∈ ri(∂J(xθ)) ⇐⇒ dist
(
P∂J(xθ)(ηθ), rbd(∂J(xθ))

)
> 0.

The triangle inequality, (8), convexity and closedness of ∂J(x)



5

as well as its continuity along M then yield

dist(ηΓ̃, rbd(∂J(xθ)))

6dist(P∂J(xθ)(ηθ), rbd(∂J(xθ)))

+ ||P∂J(xθ)(ηθ)− P∂J(xθ)(ηΓ̃)||
+ ||P∂J(xθ)(ηΓ̃)− P∂J(x0)(ηΓ̃)||

6dist(P∂J(xθ)(ηθ), rbd(∂J(xθ))) + ||ηθ − ηΓ̃||
+ c||xθ − x0||||ηΓ̃||

for c > 0. To simplify the discussion, we suppose that
rbd(∂J(xθ)) ⊂ rbd(∂J(x0)) for small enough noise (this
is true for instance if J is locally polyhedral around x0).
This implies dist(ηΓ̃, rbd(∂J(x0))) 6 dist(ηΓ̃, rbd(∂J(xθ))).
Consequently, to have ηθ ∈ ri(∂J(xθ)), as required to show
uniqueness of xθ in Theorem 1, it is sufficient that

||ηθ − ηΓ̃||+ c||xθ − x0||||ηΓ̃|| < dist(ηΓ̃, rbd(∂J(x0)))

which is valid since dist(ηΓ̃, rbd(∂J(x0))) > 0 owing to (8).
In view of (31) and (35), this holds true if

C1
||ε||

dist(ηΓ̃,rbd(∂J(x0))) 6 µ 6 C2 dist(ηΓ̃, rbd(∂J(x0)))

and

||Γ− Γ̃|| 6 C3 dist(ηΓ̃, rbd(∂J(x0))),

where C1, C2 and C3 are positive constants that depend on
ηΓ̃, c and on the constants in the O(.) terms in (31) and (35).
These constants encode again the complexity of M and x0 in
them. One can clearly see that the closer ηΓ̃ to rbd(∂J(x0)),
the smaller the noise that can be tolerated for model stability.
Moreover, µ must be chosen large enough but not too large.
In particular, if µ = C1

||ε||
dist(ηΓ̃,rbd(∂J(x0))) , we have from the

previous remark that

||xθ − x0|| ∼
(

1 +
C1||ex0

||
dist(ηΓ̃,rbd(∂J(x0)))

)
||Γ̃+
T ||||ε||,

which in turn shows the influence of non-degeneracy on `2

stability. The same reasoning can be extended to the scenario
where J is the seperable sum of sublinear regularizers, in
which case the assumption rbd(∂J(xθ)) ⊂ rbd(∂J(x0)) can
be removed.

Remark 4 (Inverse problems). A typical case of application
of this result is in inverse problems that are encountered in
various disciplines in science and engineering, such as in
signal and image processing. In such a setting, the forward
operator Φ is generally fixed and known, and one then takes
Γ̃ = Γ = Φ∗Φ/p.

Remark 5 (Uncertain design/forward operator). If only a
noisy version of the forward operator (in inverse problems)
or the design (in regression) is available then this can also
be handled by Theorem 1. This scenario has been considered
for sparse recovery (i.e. J the `1-norm) by several authors for
sparse linear regression and compressed sensing, see e.g. [28,
48, 39].

Remark 6 (Random setting). In statistics or machine learn-
ing, one considers a regression problem where the design Φ
and the noise w are random, under the asymptotic regime

where the number of observations p, i.e. number of rows Φ,
grows large, so that Γ only reach Γ̃ in the limit p→ +∞. See
Theorem 2 for details.

Remark 7 (Identification of the manifold). Theorem 1 guar-
antees that, under some hypotheses on x0 and θ, xθ belongs
to M. For all the regularizations considered in Section II-A,
it turns out that actually Mxθ =M. This is because, for any
(x, x′) with x′ ∈Mx close enough to x, one hasMx′ =Mx.

The following proposition, proved in Section V-F, shows
that Theorem 1 is in some sense sharp, since the hypothesis
ηΓ ∈ ri(∂J(x0)) (almost) characterizes the stability of M.

Proposition 2. Suppose that x0 is the unique solution of
(P(0,Γ̃x0,Γ̃)) and that

ker(Γ̃) ∩ T = {0}, and ηΓ̃ /∈ ∂J(x0). (11)

Then there exists C > 0 such that if (9) holds, then any
solution xθ of (Pθ) for µ > 0 satisfies xθ /∈M.

In the particular case where ε = 0 (no noise) and Γ̃ = Γ,
this result shows that the manifold M cannot be correctly
identified by solving (P(µ,Γx0,Γ)) for any µ > 0 small enough.

Remark 8 (Critical case). The only case not covered by either
Theorem 1 or Proposition 2 is when ηΓ̃ ∈ rbd(∂J(x0)). In
this case, one cannot conclude in general, since depending on
the noise w, one can have either stability or non-stability of
M. We refer to [55] where an example illustrates this situation
for the 1-D total variation J = ||D∗DIF · ||1 (here D∗DIF is a
discretization of the 1-D derivative operator).

C. Probabilistic model consistency

We now turn to study consistency of our estimator. In this
section, we work under the classical setting where n and x0 are
fixed as the number of observations p→∞. We consider that
the design matrix and the noise are random. More precisely,
the data (ϕi, wi) are random vectors in Rn×R, i = 1, · · · , n,
where ϕi is the i-th row of Φ, are assumed independent and
identically distributed (i.i.d.) samples from a joint probabil-
ity distribution such that E (wi|ϕi) = 0, finite fourth-order
moments, i.e. E

(
w4
i

)
< +∞ and E

(
||ϕi||4

)
< +∞. Note

that in general, wi and ϕi are not necessarily independent. It
is possible to extend our result to other distribution models
by weakening some of the assumptions and strenghthening
others, see e.g. [31, 59, 3]. Let’s denote Γ̃ = E(ξ∗ξ) ∈ Rn×n,
where ξ is any row of Φ. We do not make any assumption on
invertibility of Γ̃.

To make the discussion clearer, the canonical parameters θ
will be indexed by p. The estimator xθp obtained by solving
(Pθp) for a sequence θp is said to be consistent for x0 if,
limp→+∞ Pr

(
xθp is unique

)
→ 1 and xθp converges to x0

in probability. The estimator is said to be model consistent
if limp→+∞ Pr

(
xθp ∈M

)
→ 1, where M is the manifold

associated to x0.
The following result ensures model consistency for certain

scaling of µp. It is proved in Section V-E
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Theorem 2. If conditions (8) hold and

µp = o(1) and µ−1
p = o(p1/2). (12)

Then the estimator xθp of x0 obtained by solving (Pθp) is
model consistent.

Remark 9 (Sharpness of the criterion). One can also state a
probabilistic equivalent to Proposition 2. That is, if x0 is the
unique solution of (P0,Γ̃x0,Γ̃

), and conditions (11) and (12)
hold, then the estimator xθp of x0 defined by solving (Pθn)
cannot be model consistent.

D. Algorithmic Implications

A popular iterative scheme to compute a solution of (Pθ)
is the Forward-Backward (F-B) splitting algorithm. A com-
prehensive treatment of the convergence properties of this
algorithm, and other proximal splitting schemes, can be found
in the monograph [4]. Starting from some x0 ∈ Rn, the
algorithm implements the following iteration

xk+1 = ProxτkµJ
(
xk + τk(u− Γxk)

)
, (13)

where the step size satisfies 0 < τ 6 τk 6 τ < 2/||Γ||, and
the proximity operator is defined, for γ > 0, as

ProxγJ(x) = argmin
x′∈Rn

1

2
||x− x′||2 + γJ(x′). (14)

The following theorem shows that the F-B algorithm cor-
rectly identifies the manifold M after a finite number of
iterations.

Theorem 3. Suppose that the assumptions of Theorem 1 hold.
Then, there exists k0 large enough, such that for all k > k0,
the F-B iterates satisfy xk ∈M.

Proof. Inspection of the proof of Theorem 1 shows that the
solution xθ of (Pθ), which is unique, is such that the vector
ηθ = u−Γxθ

λ satisfies ηθ ∈ ri(∂J(xθ)) when (8) and (9) hold.
Moreover, as xθ ∈ M, xθ is near x0, and J is locally partly
smooth at x0 relative to M, it is also partly smooth at xθ
relative to the same manifoldM. Altogether, this implies that
the assumptions of [38, Theorem 3.1] are fulfilled and the
manifold identification claim follows.

This result sheds light on the convergence behaviour of this
algorithm in the favourable case where condition (8) holds and
(||Γ− Γ̃||, ||ε||/µ, µ) are sufficiently small.

E. General Loss Functions

For the sake of simplicity, we have described our contribu-
tions with the squared loss function u ∈ Rp 7→ 1

2 ||y−u||
2. Our

results, however, extend readily to the case of more general
loss functions of the form F (u, y). In the following ∇2

1F (u, y)
denotes the Hessian of F with respect to the first variable
evaluated at (u, y).

We thus consider the variational problem

min
x

F (Φx, y) + λJ(x) ,

where the loss function F : Rp×Rp → R fulfills the following
assumptions:

(A.1) For any y ∈ Rp, F (·, y) ∈ C2(Rp) is σm-strongly convex
and ∇1F (·, y) is σM-Lipschitz continuous, σm > 0 and
σM > 0.

(A.2) The gradient of F with respect to the first variable,
∇1F (u, y), is such that ∇1F (u, u) = 0.

Any loss function of the form F (u, y) = G(u) − 〈u, y〉,
where G is a C2 strongly convex function and and its
gradient is Lipschitz-continuous, satisfies assumptions (A.1).
Assumption (A.2) is quite natural for a data fidelity term,
and is fulfilled for instance for some losses in the exponential
family.

In this setting, Theorem 1 (and in a similar way our other
contributions) remains valid, and one simply needs to replace
condition (9) by

max
(
||Γ̌− Γ̃||, ||ε̌||µ−1, µ

)
6 C, (15)

where now

Γ̌ =
1

p
Φ∗∇2

1F (y, y)Φ and ε̌ =
1

p
Φ∗∇2

1F (y, y)w ,

where ∇2
1F (y, y) is the Hessian with respect to the first

variable (assumed to be positive definite by assumption (A.1))
taken at (y, y). A detailed treatment on the way to adapt
the proofs to handle such a generic loss is provided in
Section V-D.

F. Relation to Previous Works

a) Works on linear convergence rates.: Following the
pioneer work [6] (who study convergence in terms of Bregman
divergence), there is a large amount of works on the study
conditions under which ||xθ − x0|| = O(||ε||) (so-called linear
convergence rate) where xθ is any solution of (Pθ), see for
instance the book [50] for an overview of these results. The
initial work of [24] proves a sharp criteria to ensure linear
convergence rate for the `1 norm, and this approach is further
extended to arbitrary convex functions by [23] and [19], who
respectively proved linear convergence rates in terms of the
penalty J and `2-norm.

These works show that if

ker(Γ) ∩ T = {0} and ∃η ∈ Im(Γ) ∩ ri(∂J(x0)) (16)

(which is often called the source condition), then linear con-
vergence rate holds. Note that condition (8) implies (16), but
it is stronger. Indeed, condition (16) does not ensure model
consistency (10), which is a stronger requirement. Model
consistency requires, as we show in our work, the use of a
special certificate, the minimal norm certificate η̊Γ, which is
equal to ηΓ if ηΓ ∈ ri(∂J(x0)) (see Proposition 1).

b) Works on model consistency.: Theorem 1 is a gen-
eralization of a large body of results in the literature. For
the Lasso, i.e. J = || · ||1, and when Γ = Γ̃, to the best of
our knowledge, this result was initially stated in [21]. In this
setting, the result (10) corresponds to the correct identification
of the support, i.e. supp(xθ) = supp(x0). Condition (8)
for J = || · ||1 is known in the statistics literature under
the name “irrepresentable condition”, see e.g. [59]. [31] have
shown estimation consistency for Lasso for fixed n and x0
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and asymptotic normality of the estimates. The authors in
[59] proved Theorem 2 for J = || · ||1, though under slightly
different assumptions on the covariance and noise distribution.
A similar result was established in [30] for the elastic net, i.e.
J = || · ||1 + ρ|| · ||22 for ρ > 0. In [2] and [3], the author has
shown Theorem 2 for two special cases, namely the group
Lasso nuclear/trace norm minimization, under a specialization
of (8) to these two penalties and in an asymptotic setting. Note
that these previous works assume that the asymptotic covari-
ance Γ̃ is invertible. We do not impose such an assumption,
and only require the weaker restricted injectivity condition
ker(Γ̃) ∩ T = {0}. In a previous work [55], we have proved
an instance of Theorem 1 when Γ = Γ̃ and J(x) = ||D∗x||1,
where D ∈ Rn×q is an arbitrary linear operator. This covers
as special cases the discrete anisotropic total variation or the
fused Lasso. This result was further generalized in [54] when
Γ = Γ̃, and J belongs to the class of partly smooth functions
relative to affine manifolds M, i.e. M = x + Tx. Typical
instances encompassed in this class are the `1−`2 norm, or its
analysis version, as well as non-negative polyhedral functions
including the `∞ norm. Note that the nuclear norm (and
composition of it with linear operators as studied for instance
in [25, 46]), whose manifold is not affine, does not fit into
the framework of [54], while it is covered by Theorem 1. [29]
investigated a class of geometrically decomposable penalties,
for which they formulated the irrepresentable condition and
used it to establish `2-consistency and model consistency.
This class of penalties turns out to be a very special case of
ours. When the noise is i.i.f. zero-mean subgaussian, These
authors also derived rank consistency of the nuclear norm
in a high-dimensional setting which can be viewed as non-
asymptotic form of [3]. Lastly, a similar result was proved
in [17] for an infinite dimensional sparse recovery problem
over space of Radon measures, when J is the total variation
of a measure (not to be confused with the total variation
semi-norm mentioned above). In this setting, an interesting
finding is that, when η̊Φ∗Φ ∈ ri(∂J(x0)), η̊Φ∗Φ is not equal to
ηΦ∗Φ but to a different certificate (called “vanishing derivative”
certificate by [17]) that can also be computed by solving a
linear system.

c) Compressed sensing: Condition (8) is often used when
Φ is drawn from the Gaussian matrix ensemble to asses the
performance of compressed sensing recovery with `1 norm,
see [56, 16]. This is extended to a more general family of
decomposable norms (including in particular `1 − `2 norms
and the nuclear norm) in [10], but only in the noiseless setting.
Our result shows that this analysis extends to the noisy setting
as well, and ensures model consistency at high signal to
low noise levels. The same condition is used to asses the
performance of matrix completion (i.e. the operator Φ is a
random masking operator) in a noiseless setting [7, 12]. It
was also used to ensure `2 robustness of matrix completion in
a noisy setting [9], and our findings shows that these results
also ensure rank consistency for matrix completion at high
signal to low noise levels.

d) Sensitivity analysis.: Sensitivity analysis is a central
theme in variational analysis. Theorems 1 can be understood
as a sensitivity analysis of the minimizers of E at the point

(x0, θ0). Classical sensitivity analysis of non-smooth optimiza-
tion problems seeks conditions to ensure smoothness of the
mapping θ 7→ xθ where xθ is a minimizer of f(·, θ), see for
instance [40, 47, 5].

This is usually guaranteed by the non-degenerate source
condition and restricted injectivity condition (16), which, as
already reviewed above, ensures linear convergence rate, and
hence Lipschitz behaviour of this mapping. The result captured
by Theorem 1 goes one step further, by assessing thatMx0

is
a stable manifold (in the sense of [57]), since the minimizer
xθ is unique and remains in Mx0

for θ close to θ0. Our
starting point for establishing Theorem 1 is the inspiring work
of [34] who first introduced the notion of partial smoothness
and showed that this broad class of functions enjoys a powerful
calculus and sensitivity theory. For convex functions (which
is the setting considered in our work), partial smoothness is
closely related to U − V-decompositions developed in [33].
In fact, the behaviour of a partly smooth function and of its
minimizers (or critical points) depend essentially on its restric-
tion to this manifold, hence offering a powerful framework
for sensitivity analysis theory. In particular, critical points of
partly smooth functions move stably on the manifold as the
function undergoes small perturbations [34, 37]. A important
and distinctive feature of Theorem 1 is that, partial smoothness
of J at x0 relative to M transfers to E(·, θ) for λ > 0, but
not when λ = 0 in general. In particular, [34, Theorem 5.7]
does not apply to prove our claim.

IV. CASE STUDY: NUCLEAR NORM REGULARIZATION

In this section, we illustrate the usefulness of our model
consistency results to derive a sharp manifold stability analysis
for the nuclear norm (a.k.a trace norm) regularization. As
detailed in Section III-F, previous consistency results due
to [3] only apply to the overdetermined setting, while our
result tackles arbitrary design Φ by only requiring the weaker
injectivity condition (8). For simplicity of exposition, we
consider recovery of square matrices of size n = n0 × n0,
but the same holds for arbitrary rectangular matrices.

A. Irrepresentability Criterion IC

The nuclear norm, defined in (2), turns out to be the tightest
convex relation of the rank function on the spectral ball. It is
then the best convex candidate to enforce a low-rank prior [20].
It is moreover partly smooth at any x0 ∈ Rn0×n0 relative to
the manifold M of fixed rank r = rank(x0) defined in (3).

Let x0 = U diag(σ(x0))V ∗ be a reduced rank-r SVD
decomposition of x0, where V,U ∈ Rn0×r have orthonormal
columns and σ(x0) ∈ (R∗+)r is the vector of singular values
of x0. The subdifferential of the nuclear norm at x0 reads (see
for instance [10])

∂|| · ||∗(x0) =
{
η ∈ Rn0×n0 ; ηT = e and ||ηS || 6 1

}
,

(17)
where ||η|| is the operator norm, T = Tx(M), S = T⊥ and
e = PT (∂J(x0)), with

T =
{
UA∗ +BV ∗ ; A,B ∈ Rn0×r

}
and e = UV ∗
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and S is the subspace of matrices spanned by the family
(wz∗), where w (resp. z) is any vector orthogonal to U (resp.
V ).

The relative interior of ∂|| · ||∗(x0) is formed by subgradients
η satisfying the inequality in (17) strictly. Thus, condition (8)
in the case Γ̃ = Γ takes the analytical form

ηΓ ∈ ri(∂J(x0)) ⇐⇒ IC(x0) < 1, (18)

where
IC(x0) = ||PS ΓΓ+

T e|| .

The value of IC(x0) can then be easily computed. Loosely
speaking, the smaller the quantity 1 − IC(x0) is, the further
ηΓ is from the relative boundary of ∂J(x0), and in turn the
smaller the stability constant controlling ||xθ−x0||/||ε|| in (10)
is.

B. Recovery from Gaussian Measurements

Bounding IC for an arbitrary operator Φ and matrix x0

is in general difficult. It is however possible to leverage tools
from random matrix theory to obtain sharp upper-bounds when
Φ is drawn from certain matrix ensembles. This strategy has
been deployed to study matrix completion problems, see for
instance [7, 12]. Another problem on which we now focus is
when Φ is drawn from the standard Gaussian ensemble, i.e.
its entries are independent identically distributed fromN (0, 1).
The following result, proved by [10], shows that IC(x0) < 1
with high probability as soon as p is larger than 6rn0 (up to
negligible terms).

Proposition 3 ([10], Theorem 1.2). Let x0 ∈ Rn0×n0 such
that rank(x0) = r. If

p > δr(6n0 − 5r) (19)

for some δ > 1, then IC(x0) < 1 with probability at least
1− 2e(1−δ)n0/8.

Combining this result with Theorem 1, this shows that
under the scaling (19) of (p, n0, r), one obtains with high
probability on the design matrix a rank-consistent estimation
of the unknown matrix x0, which is (to the best of our
knowledge) a novel result.

Figure 1 illustrates this result by computing the average
(over 25 Monte Carlo replications) values of IC(x0) for
either a varying p or rank r. The shaded area corresponds
to ±3× standard deviation across the 25 replications, and the
dashed vertical line indicates the transition predicted by (19).
This suggests numerically that the upper-bound (19) is indeed
sharp.

C. Forward-Backward Model Consistency and Unconsistency

As detailed in Section III-D, our theoretical analysis of
model consistency also sheds light on the behavior of proximal
splitting algorithms, and in particular of the celebrated F-B
scheme (13). In the special case J = || · ||∗ considered in
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(a) IC(x0) as function of p (b) IC(x0) as function of r

Fig. 1. Curves of IC(x0) (central solid line: average, blue shaded band:
±3× standard deviation) for 25 realizations of Φ ∈ Rp×n2

0 from the standard
Gaussian ensemble, where n0 = 103, and a random x0 = AB∗ of rank r
where A,B ∈ Rn0×r are Gaussian matrices. (a) IC(x0) as a function of p
for a fixed r = 4. The vertical dashed line shows the threshold p = r(6n0−
5r) indicated by (19). (b) IC(x0) as a function of r for a fixed p = 0.6n2

0.

The vertical dashed line shows the threshold r = (3n0 −
√

9n2
0 − 5p)/5

indicated by (19).

this section, the proximal mapping (14) at x ∈ Rn0×n0 is
computed by simply soft-thresholding the singular values

Proxγ||·||∗(x) = U diag(Proxγ||·||1(σ(x)))V ∗,
(20)

where Proxγ||·||1(s) = (sign(si) max(0, |si| − γ))i ,
(21)

where x = U diag(σ(x))V ∗ is a reduced SVD decomposition
of x.

As in the previous section, we consider here a compressed
sensing scenario, where again Φ ∈ Rp×n2

0 is drawn from the
standard Gaussian ensemble, and x0 ∈ Rn0×n0 has low-rank.
The observations y = Φx0 + w ∈ Rp are generated with an
additive zero-mean white Gaussian noise w of standard devia-
tion 10−3||Φx0|| (but the same conclusion holds for a noise of
arbitrary small amplitude). We then compute (approximately)
a minimizer of (1) using the F-B iterations (13), tuning the
regularization parameter µ = C0||w|| in accordance to the
noise level, as prescribed by Theorems 1 and 3. As detailed
in these theorems, the value of C0 is chosen large enough
to obtain the desired denoising effect (otherwise the solution
does not have a low complexity), but its precise value does
not affect the observed identification results we describe below.
In the numerical results reported hereafter, we used n0 = 20,
P = 3n2

0/4 = 300 and rank(x0) = 3.

Figure 2 shows how the F-B iterations behave radically dif-
ferently depending on whether the non-degeneracy condition
IC(x0) < 1 holds or not. Each curve shows the evolution
of rank(xk) during the course of iterations, for different
randomized instances of the low-rank matrix x0 to recover. As
predicted by Theorem 3, one can see that for those x0 where
model consistency holds (i.e. IC(x0) < 1, plotted in red), F-B
converges with the correct rank, i.e. rank(xk) = rank(x0) for
k large enough. In sharp contrast, when the model is not stable
(i.e. IC(x0) > 1, displayed in blue), one observes numerically
that rank(xk) > rank(x0), and that the correct rank is never
selected by the algorithm (although of course one still has
xk → x0).
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Fig. 2. Evolution of rank(xk) as a function of k during the progress of
Forward-Backward iterations (13) to solve (1) using observations y = Φx0 +
w. The light red (resp. blue) curves represent the evolution for an input x0

satisfying IC(x0) < 1 (resp. IC(x0) > 1). The bold red (resp. blue) curve
is the average of the light red (resp. blue) curves.

V. PROOFS

A. Uniqueness sufficient condition
Proposition 4. Let J be a proper lsc convex function. For a
point x, assume that

ker(Γ) ∩ Tx = {0}, and ηΓ ∈ ri(∂J(x)).

Then x is the unique minimizer of (Pθ) (resp. (P0,Γx,Γ)).

Proof. This is a consequence of [54, Corollary 1]. Though
their result was stated for J finite-valued convex, it remains
valid when it is proper lsc and convex. Indeed, in this case, J
is subdifferentially regular at x [47, Example 7.27]. Moreover,
∂J(x) 6= ∅ by assumption, and thus the directional derivative
at x is proper, sublinear and closed, and it is the support of
∂J(x) [47, Theorem 8.30]. Continuing the proof as in [54,
Corollary 1] shows the claim.

B. Proof of Proposition 1

Proof of (6) Under condition ker(Φ)∩T = {0}, we have from
the definition of Γ̃+

T , that

zΓ̃ = Γ̃+
T e = argmin

z
||z|| subject to Γ̃T z = e (22)

and thus
ηΓ̃ = Γ̃zΓ̃ .

Clearly, the constraint set of problem (22) includes that of (5),
which entails

||zΓ̃|| 6 ||̊zΓ̃|| .

If ηΓ̃ ∈ ri(∂J(x0)), then zΓ̃ is also a feasible point of
problem (5) and thus

||̊zΓ̃|| 6 ||zΓ̃|| .

Altogether, we get that ||̊zΓ̃|| = ||zΓ̃|| and, since z̊Γ̃ is the unique
minimizer of (5), we get that z̊Γ̃ = zΓ̃, which implies that
η̊Γ̃ = ηΓ̃.

Proof of (7) Let S = T⊥. Problem (5) can be conviniently
rewritten as

z̊Γ̃ = argmin
z

||z|| subject to

{
Γ̃T z = e

Γ̃Sz ∈ PS(∂J(x0)) .

The fact that η̊Γ̃ = Γ̃z̊Γ̃ ∈ ri(∂J(x0)) implies PS η̊Γ̃ =
PS Γ̃z̊Γ̃ ∈ ri(PS ∂J(x0)), and thus, the second constraint in
the last problem is inactive. We then recover problem (22),
which in turn implies that η̊Γ̃ = ηΓ̃.

Proof of uniqueness. See Proposition 4.

C. Proof of Theorem 1

In order to prove Theorem 1, we consider any sequence
θk = (µk, uk = Γkx0 +εk,Γk)k where Φk ∈ Rpk×n. Assume
that (

Γk, εk µ
−1
k , µk

)
−→ (Γ̃, 0, 0) . (23)

Then proving Theorem 1 boils down to showing that for k
large enough, the solution xk of (Pθk) is unique and satisfies
xk ∈M.

a) Constrained problem.: We consider the following
non-smooth, in general non-convex, constrained minimization
problem

xk ∈ Argmin
x∈M∩K

E(x, θk) (24)

where K is an arbitrary fixed convex compact neighbourhood
of x0.

The following key lemma establishes the convergence of xk
to x0.

Lemma 1. Under conditions (8) and (23), xk → x0.

Proof. We denote ||u||2Γ = 〈Γu, u〉 for any positive semidefi-
nite matrix Γ. Under condition (8), Proposition 4 implies that
x0 is the unique solution of (P0,Γ̃x0,Γ̃

). By optimality of xk
one has E(xk, θk) 6 E(x0, θk) and hence

1

2
||xk||2Γk − 〈xk, Γkx0 + εk〉+ µkJ(xk)

6
1

2
||x0||2Γk − 〈x0, Γkx0 + εk〉+ µkJ(x0)

which is equivalently stated as

1

2
||xk − x0||2Γk − 〈xk − x0, εk〉+ µkJ(xk) 6 µkJ(x0). (25)

Since xk ∈ K, the sequence (xk)k is bounded, and we let x?

be any cluster point. Using (23), that J is non-negative and
lsc, and J(xk) are bounded, we have

lim sup
k→∞

(µkJ(xk)) 6 lim
k→∞

µk lim sup
k→∞

J(xk) = 0 and

lim inf
k→∞

(µkJ(xk)) > lim
k→∞

µk lim inf
k→∞

J(xk)

> J(x?) lim
k→∞

µk = 0 ,

and thus limk→∞ (µkJ(xk)) = 0. Consequently, passing to
the limit in (25), using (23), and continuity of the inner product
and the norm, shows that ||x? − x0||2Γ̃ 6 0, or equivalently
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Γ̃x? = Γ̃x0, i.e. x? is a feasible point of (P0,Γ̃x0,Γ̃
). Further-

more, since 1
2 ||xk − x0||2Γk > 0, (25) yields

−〈xk − x0,
εk
µk
〉+ J(xk) 6 J(x0).

Passing again to the limit, using lower semicontinuity of J ,
(23) and continuity of the inner product, we then get

J(x?) 6 lim inf
k→∞

J(xk)

= lim inf
k→∞

(
−〈xk − x0,

εk
µk
〉+ J(xk)

)
6 lim sup

k→∞

(
−〈xk − x0,

εk
µk
〉+ J(xk)

)
= lim sup

k→∞
J(xk) 6 J(x0) .

Combining this with the previous claim on feasibility of
x? for (P0,Γ̃x0,Γ̃

) allows to conclude that x? is a solution
of (P0,Γ̃x0,Γ̃

). Since x0 is unique, this leads to x? = x0.

We now aim at showing that for k large enough, xk is the
unique solution of (Pθk).

b) Convergence of the tangent model subspace.: By def-
inition of the constrained problem (24), xk ∈ M. Moreover,
since E(·, θk) is partly smooth at x0 relative to M, the
sharpness property Definition 1((ii)) holds at all nearby points
in the manifold M [34, Proposition 2.10]. Thus as soon as k
is large enough, we have Tk = Txk(M). Using the fact that
M is of class C2, we get

Tk = Txk(M) −→ Tx0
(M) = T (26)

when (23) holds, where the convergence should be understood
over the Grassmannian of linear subspaces with the same di-
mension (or equivalently, as the convergence of the projection
operators PTk → PT ). Since ker(Γ̃) ∩ T = {0}, (26) implies
that for k large enough, when (23) holds,

ker(Γk) ∩ Tk = {0}, (27)

which we assume from now on.
c) First order condition.: Let B be the Euclidean unit

ball in Rp. Take K = x0 +rB for r > 0 sufficiently large. For
any δ > 0, ∃kδ such that ∀k > kδ , xk ∈ x0 + δB according to
Lemma 1. Thus, for k large enough, i.e. δ sufficiently small,
we indeed have xk ∈ int(K). Furthermore, it is easy to see
that ιK is locally partly smooth at x0 relative to K, and thus is
partly smooth at xk relative to K for k large enough. Moreover,
local partial smoothness of J at x0 relative to M entails that
J is also partly smooth at xk relative to M. Therefore, the
sum rule [34, Corollary 4.6] (the transversality condition is
satisfied as K is full-dimensional and xk ∈ int(K), see (4))
shows that, for all sufficiently large k, J + ιK is locally partly
smooth at xk relative to M∩K, and then so is E(·, θk) + ιK
by the smooth perturbation rule [34, Corollary 4.7]. Therefore,

[34, Proposition 2.4(a)-(b)] applies, and it follows that xk is
a critical point of (24) if, and only if,

0 ∈Aff(∂E(xk, θk) +NK(xk))

=
Γkxk − uk

µk
+ Aff(∂J(xk))

=
Γkxk − uk

µk
+ exk + Tk

⊥,

where exk = PTk(∂J(xk)). The first equality comes from
the fact that E(·, θ) is a closed convex function, and that
the normal cone of K at xk vanishes on the interior points
of K, and the second one from the decomposability of the
subdifferential. Projecting this relation onto Tk, we get, since
exk ∈ Tk,

PTk(Γkxk − uk) + µkexk = 0. (28)

d) Convergence of the primal variables.: Since both xk
and x0 belong toM, and partial smoothness implies thatM is
a manifold of class C2 around each of them, we deduce that
each point in their respective neighbourhoods has a unique
projection on M [44]. In particular, xk = PM(xk) and
x0 = PM(x0). Moreover, PM is of class C1 near xk [36,
Lemma 4]. Thus, C2 differentiability shows that

xk−x0 = PM(xk)−PM(x0) = D PM(xk)(xk−x0)+R(xk)

where R(xk) = O(||xk − x0||2) and where D PM(xk) is the
derivative of PM at xk. Using [36, Lemma 4], and recalling
that Tk = Txk(M) by the sharpness property, the derivative
D PM(xk) is given by D PM(xk) = PTk . Inserting this in
(28), we get

PTk Γk (PTk(xk − x0) +R(xk))−PTk εk+µkexk = 0. (29)

Using (27), Γk,Tk has full rank, and thus

xk − x0 = Γ+
k,Tk

(εk − µkexk − ΓkR(xk)) , (30)

where we also used that Tk⊥ ⊂ ker(Γ+
k,Tk

). One has Γ+
k,Tk
→

Γ̃+
T so that Γ+

k,Tk
Γk = O(1) and Γ+

k,Tk
= O(1). Altogether,

we thus obtain the bound

||xk − x0|| = O (||εk||, µk) . (31)

e) Convergence of the dual variables.: We define ηk =
uk−Γkxk

µk
. Arguing as above, and using (30) we have

µkηk = εk + Γk(x0 − xk)

= εk − ΓkΓ+
k,Tk

(εk − µkexk − ΓkR(xk))

= εk − Γk PTk Γ+
k,Tk

(εk − µkexk − ΓkR(xk))

= PV ⊥Tk
εk + PVTk ΓkR(xk) + µkΓkΓ+

k,Tk
exk ,

where we denoted VTk = Im(Γk PTk), and used that
Im(Γ+

k,Tk
) ⊂ Tk. We thus arrive at

||ηk − ηΓ̃|| = O
(
||εk||µ−1

k , ||ΓkΓ+
k,Tk

exk − ηΓ̃||,

||Γk||||xk − x0||2µ−1
k

)
.

Since M is a C2 manifold, and by partial smoothness (J
is C2 on M), we have x 7→ ex is C1 on M, one has

||exk − e|| = O(||xk − x0||). (32)
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Using the triangle inequality, we get

||ΓkΓ+
k,Tk
− Γ̃Γ̃+

T || 6 ||Γ
+
k,Tk
||||Γk − Γ̃||+ ||Γ̃||||Γ+

k,Tk
− Γ̃+

T ||.

Again, since Γ+
k,Tk

→ Γ̃+
T , we have ||Γ+

k,Tk
|| = O(1). More-

over, A 7→ A+ is smooth at A = ΓT along the manifold of
matrices of constant rank, and M is a C2 manifold near x0.
Thus

||Γ+
k,Tk
− Γ̃+

T || =O(||Γk,Tk − Γ̃T ||)
=O(||Γk − Γ̃||, ||PTk −PT ||)
=O(||Γk − Γ̃||, ||xk − x0||).

This shows that

||ΓkΓ+
k,Tk
− Γ̃Γ̃+

T || = O(||Γk − Γ̃||, ||xk − x0||). (33)

Putting (32) and (33) together implies

||ΓkΓ+
k,Tk

exk − ηΓ̃|| = O(||Γk − Γ̃||, ||xk − x0||).

Altogether, we get the bound

||ηk − ηΓ̃|| = O
(
||εk||µ−1

k , ||xk − x0||, ||Γk − Γ̃||,

||Γk||||xk − x0||2µ−1
k

)
. (34)

Since ||xk − x0|| is bounded according to (31), we arrive at

||ηk − ηΓ̃|| = O
(
||Γk − Γ̃||, ||εk||µ−1

k , µk

)
. (35)

f) Convergence inside the relative interior.: Using the
hypothesis that ηΓ̃ ∈ ri(∂J(x0)), we will show that for k
large enough,

ηk ∈ ri(∂J(xk)). (36)

Let us suppose this does not hold. Then there exists a sub-
sequence of ηk, that we do not relabel for the sake of
readability of the proof, such that

ηk ∈ rbd(∂J(xk)) . (37)

According to (35) and Lemma 1, under (23), (xk, ηk) →
(x0, ηΓ̃). Condition (37) is equivalently stated as, for each k

∃zk ∈ T⊥xk , ∀ η ∈ ∂J(xk), 〈zk, η − ηk〉 > 0, (38)

where one can impose the normalization ||zk|| = 1 by positive-
homogeneity. Up to a sub-sequence (that for simplicity we still
denote zk with a slight abuse of notation), since zk is in a
compact set, we can assume zk approaches a non-zero cluster
point z?.

Since T⊥xk → T⊥ because M is a C2 manifold, one has
that z? ∈ T⊥. We now show that

∀ v ∈ ∂J(x0), 〈z?, v − ηΓ̃〉 > 0. (39)

Indeed, let us consider any v ∈ ∂J(x0). In view of the
continuity property in Definition 1(iii) ∂J is continuous at x0

alongM, so that since xk → x0 there exists vk ∈ ∂J(xk) with
vk → v. Applying (38) with η = vk gives 〈zk, vk − ηk〉 > 0.
Taking the limit k → +∞ in this inequality leads to (39),
which contradicts the fact that ηΓ̃ ∈ ri(∂J(x0)). In view of
(36) and (27), using Proposition 4 shows that xk is the unique
solution of (Pθk).

D. General Loss Function

We now detail the necessary arguments to adapt the proof
of Theorem 1 to a generic loss function satisfying assump-
tions (A.1)-(A.2).

a) Proof of Proposition 4: It follows from assump-
tion (A.1) that F (·, y) is strictly convex, and the uniqueness
follows from [38, Theorem A.1].

b) Proof of Lemma 1: Problem (24) now reads

xk ∈ Argmin
x∈M∩K

F (Φkx, yk) + λkJ(x) .

Optimality of xk entails

F (Φkxk, yk) + λkJ(xk) 6 F (Φkx0, yk) + λkJ(x0) .

By assumptions (A.1)-(A.2), we have the following useful
inequalities for any u ∈ Rp, see e.g. [41, p. 57 and 64]

σm

2
||y − u||2 6 F (u, y)− F (y, y)

= F (u, y)− F (y, y)− 〈∇F (y, y), u− y〉

6
σM

2
||y − u||2 .

It then follows that

F (Φkxk, yk)− F (Φkx0, yk) >
σm

2
||yk − Φkxk||2 −

σM

2
||wk||2

and therefore

λkJ(x0) >
σm

2
||yk − Φkxk||2 −

σM

2
||wk||2 + λkJ(xk)

>
σm

2σM
||yk − Φkxk||2∇2

1F (yk,yk)

− σM

2
||wk||2 + λkJ(xk)

>
σm

2σM
||xk − x0||2Φ∗k∇2

1F (yk,yk)Φk

− σm

σM
〈xk − x0, Φ∗k∇2

1F (yk, yk)wk〉

− σM

2

(
1− σ2

m

σ2
M

)
||wk||2 + λkJ(xk) ,

where we used strong convexity of assumption (A.1) in the
second and third inequalities. Dividing both sides by 1/P we
obtain

σm

2σM
||xk − x0||2Γ̌k −

σm

σM
〈xk − x0, ε̌k〉

− σM

2

(
1− σ2

m

σ2
M

)
||n−1/2wk||2 + µkJ(xk) 6 µkJ(x0) ,

where now

Γ̌k =
1

p
Φ∗k∇2

1F (yk, yk)Φk,

and

ε̌k =
1

p
Φ∗k∇1,2F (yk, yk)wk .

Changing (23) to
(
Γ̌k, ε̌k µ

−1
k , µk

)
−→ (Γ̃, 0, 0), which entails

implicitly that n−1/2wk → 0, and arguing as in the rest of the
proof of the lemma allows to conclude that xk → x0.
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c) Proof of Theorem 1: C2-continuity of F allows to
use the smooth perturbation rule to conclude that partial
smoothness of J is preserved upon adding F . Condition (28)
now becomes

PTk Φ∗k∇1F (Φkxk, yk) + λkexk = 0.

Using again assumptions (A.1)-(A.2) and expanding
∇1F (Φkxk, yk) at (yk, yk) to the first order, we obtain

∇1F (Φkxk, yk)

=∇2
1F (yk, yk)Φk(xk − x0)−∇2

1F (yk, yk)wk

+O
(
||xk − x0||2

)
+O

(
||wk||2

)
=∇2

1F (yk, yk)Φk (PTk(xk − x0) +R(xk))−∇2
1F (yk, yk)wk

+O
(
||xk − x0||2

)
+O

(
||wk||2

)
.

Dividing by p, plugging this expansion back into the above
first-order (criticality) condition, and grouping the O(.) terms,
condition (29) becomes

Γ̌k,Tk(xk − x0)− PTk ε̌k + µkexk + PTk(n−1Φ∗k + Γ̌k)R(xk)

+ PTk Φ∗kQ(n−1/2wk) = 0 ,

where Q(n−1/2wk) = O(||n−1/2wk||2). Then with the new
notations (Γ̌k, ε̌k) in place of (Γk, εk), one sees that the proof
continues unchanged.

E. Proof of Theorem 2

It is sufficient to check that (9) is in force with probability
1 as p → +∞. Owing to classical results on convergence
of sample covariances, which apply thanks to the assumption
that the fourth order moments are finite, we get Γp − Γ̃ =
OP

(
p−1/2

)
and 1

p 〈ξi, w〉 = OP
(
p−1/2

)
, where we used the

assumption that E (〈ξi, w〉) = 0. As p is fixed, it follows that
||Γp − Γ̃|| = OP

(
p−1/2

)
and ||εp|| = OP

(
p−1/2

)
. Thus under

the scaling (12), we get(
||Γp − Γ̃||, ||εp||µ−1

p , µp

)
=

(
OP (p−1/2),

1

µpp1/2
OP (1), o(1)

)
=
(
OP (p−1/2), o(1)OP (1), o(1)

)
=
(
OP (p−1/2), o(1), o(1)

)
,

which indeed converges to 0 in probability. This concludes the
proof.

F. Proof of Proposition 2

Let (xk)k be a sequence of solutions to the constrained
problem (24). Since x0 is the unique minimizer to (P(0,Γ̃x0,Γ̃))
and (8) is satisfied, ηΓ̃ is well-defined. Moreover, arguing as
in the proof of Lemma 1 and Theorem 1, under condition (9),
we have (xk, ηk)→ (x0, ηΓ̃), and ηk ∈ ηΓ̃ + CB.

Let τ = dist(ηΓ̃, ∂J(x0)) = infη∈∂J(x0) ||η − ηΓ̃||. Since
∂J(x0) is a non-empty, closed and convex set, the infimum is
attained and one has τ > 0 since ηΓ̃ 6∈ ∂J(x0).

We now prove the claim by contradiction. Let xj be a
solution of (Pθj ) such that (9) holds at θj for j sufficiently

large (taking C smaller if necessary so that C < τ ), and
suppose that xj ∈ M. Thus, xj is also a solution of (24) for
θj , whence it follows that ηj ∈ ηΓ̃ + CB. Using the triangle
inequality, we then get

dist(ηj , ∂J(x0)) > τ − C > 0 . (40)

Now, in view of the continuity property in Definition 1((iii)),
we have ∂J(xk) → ∂J(x0) along M. This is equivalent,
since ∂J(x0) is closed and using [47, Corollary 4.7], to
dist(η, ∂J(xk))→ dist(η, ∂J(x0)) for every η ∈ Rp, i.e.

∀δ > 0,∃k0,∀k > k0,∀η ∈ Rp,
|dist(η, ∂J(xk))− dist(η, ∂J(x0))| < δ .

In particular, as xj is a minimizer of (Pθj ) for j large enough,
we have ηj ∈ ∂J(xj), and thus dist(ηj , ∂J(x0)) < δ, leading
to a contradiction with (40). Hence, xj 6∈ M.

VI. CONCLUSION

In this paper, we provided a very general and principled
analysis of the recovery performance when partly smooth func-
tions are used to regularize linear inverse/regression problems.
This class of functions encompass all popular regularizers used
in the literature. The generality of our results is unprecedented
since for the first time, a unified analysis is provided together
with a generalized “irrepresentable condition” to guarantee
consistent identification of the low-complexity manifold un-
derlying the original object. Our work also shows that model
consistency is not only of theoretical interest, but also has
algorithmic and practical consequences. Indeed, after a finite
number of iterations, the iterates of the proximal splitting al-
gorithm used to solve the original optimization problem (here
the Forward-Backward), are guaranteed to lie on the original
manifold. This opens the door to acceleration by switching
to a higher-order smooth optimization method, exploiting the
smoothness of the partly smooth objective function along the
identified smooth model manifold.
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Malick for fruitful discussions. This work has been supported
by the European Research Council (ERC project SIGMA-
Vision).

REFERENCES

[1] J.-F. Aujol et al. “Image decomposition into a bounded
variation component and an oscillating component”. In:
Journal of Mathematical Imaging and Vision 22 (2005),
pp. 71–88.

[2] F.R. Bach. “Consistency of the Group Lasso and Multi-
ple Kernel Learning”. In: Journal of Machine Learning
Research 9 (2008), pp. 1179–1225.

[3] F.R. Bach. “Consistency of Trace Norm Minimization”.
In: Journal of Machine Learning Research 9 (2008),
pp. 1019–1048.

[4] H. H. Bauschke and P.L. Combettes. Convex Analysis
and Monotone Operator Theory in Hilbert Spaces.
Springer, 2011.



REFERENCES 13

[5] J. F. Bonnans and A. Shapiro. Perturbation analysis of
optimization problems. Springer Series in Operations
Research and Financial Engineering. Springer Verlag,
2000.

[6] M. Burger and S. Osher. “Convergence rates of convex
variational regularization”. In: Inverse Problems 20.5
(2004), p. 1411.

[7] E. Candès and B. Recht. “Exact Matrix Completion
via Convex Optimization”. English. In: Foundations of
Computational Mathematics 9.6 (2009), pp. 717–772.

[8] E. J. Candès et al. “Robust Principal Component Anal-
ysis?” In: J. ACM 58.3 (June 2011), 11:1–11:37.

[9] E.J. Candès and Y. Plan. “Matrix Completion With
Noise”. In: Proceedings of the IEEE 98.6 (2010),
pp. 925–936.

[10] E.J. Candès and B. Recht. “Simple bounds for recover-
ing low-complexity models”. In: Math. Program 141.1-
2 (2013), pp. 577–589.

[11] E.J. Candès, T. Strohmer, and V. Voroninski. “PhaseLift:
Exact and Stable Signal Recovery from Magnitude
Measurements via Convex Programming”. In: Com-
munications on Pure and Applied Mathematics 66.8
(2013), pp. 1241–1274. ISSN: 1097-0312.

[12] E.J. Candès and T. Tao. “The power of convex re-
laxation: Near-optimal matrix completion”. In: IEEE
Transactions on Information Theory 56.5 (2009),
pp. 2053–2080.

[13] S.S. Chen, D.L. Donoho, and M.A. Saunders. “Atomic
decomposition by basis pursuit”. In: SIAM journal on
scientific computing 20.1 (1999), pp. 33–61.

[14] A. Daniilidis, D. Drusvyatskiy, and A. S. Lewis. “Or-
thogonal Invariance and Identifiability”. In: to appear
in SIAM J. Matrix Anal. Appl. (2014).

[15] A. Daniilidis, J. Malick, and H. Sendov. “Spectral
(Isotropic) Manifolds and Their Dimension”. In: to
appear in Journal d’Analyse Mathématique (2014).
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