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The inertialess fluid-structure interaction of active and passive inextensible filaments and slender-
rods are central in many processes in nature, from the dynamics of semi-flexible polymers to cy-
toskeletal filaments, flagella and artificial swimmers, covering a wide range of scales. The nonlinear
coupling between the geometry of deformation and the physical effects invariably result on in-
tricate governing equations that negotiate elastohydrodynamical interactions with non-holonomic
constraints, as a direct consequence of the filament inextensibility. This triggers numerical instabili-
ties and require penalization methods and high-order spatiotemporal propagators. Here, we exploit
the the momentum balance in the asymptotic limit of small rod-like elements which are integrated
semi-analytically. This bypasses the nonlinearities arising via the inextensibilty constraint, avoiding
in this way the need of Langrange multipliers. The equivalence between the continuous and asymp-
totic model allows a direct comparison between the two formalisms. The nature of the asymptotic
approximation entails that coarse discretisation is possible while having a higher precision when
compared with the continuous approach. We show that the asymptotic model is also numerically
stable in situations in which the continuous formalism has a very poor performance, while the coarse
structure guarantees faster computations, over than a hundred times faster than previous schemes.
The asymptotic model is simple and intuitive to implement, and generalisations for complex interac-
tion of multiple rods, Brownian polymer dynamics, active filaments and non-local hydrodynamics are
straightforward. We demonstrate these via four exemplars: transient dynamics, force-displacement
buckling instability, magnetic artificial swimmer and cross-linked filament-bundle dynamics, and we
additionally provide the Matlab codes.

I. INTRODUCTION

The fluid-structure interaction of semi-flexible fila-
ments are found everywhere in nature [1–3]. From me-
chanics of DNA strands and the movement of polymer
chains to complex cytoskeletal microtubule and actin
cross-linking architectures to statics and dynamics of
filament-bundles whose ability to self-organize and coor-
dinate movement is observed in spermatozoa movement
[4–18]. The elastohydrodynamics of filaments perme-
ate through different branches in mathematical sciences,
physics and engineering, and their cross-fertilizing inter-
sects with biology, chemistry and even industry. The
wealth of theoretical and experimental studies on the
movement of semi-flexible filaments, termed here as fila-
ments, is extensive, thus reflecting the fundamental im-
portance of the physical interactions marring fluid and
elastic phenomena. Hitherto the elastohydrodynamics
of active and passive filaments have shed new light into
bending, buckling, active matter and self-organisation, as
well as bulk material properties of interacting active and
passive fibres across disciplines [4–13, 19].

The movement of semi-flexible filaments brings to-
gether complex fluid and elastic interactions with a hi-
erarchy of different approximations [20]. Here, we focus
our study on systems governed by low Reynolds number
inertialess hydrodynamics [21]. Both the hydrodynamic
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and elastic interactions of filaments are greatly simplified
by exploiting the filament slenderness [1, 20], reducing
the dynamics to effectively an one-dimensional system
[22]. A variety of model families have been developed
exploiting such slenderness property, and thus it would
be a challenging task to review the wealth of theoreti-
cal and empirical developments to date here. Instead we
direct the reader to excellent reviews on the subject [23–
26]. We consider the dynamics of inextensible elastic fila-
ments constrained to planar deformations. In a nutshell,
two theoretical descriptions are popularly used: the dis-
crete and continuous formulation. Discrete models, such
as the beads model, gears model, n-links model, or simi-
larly worm-like chain models, the filament is broken into
a discrete number of units, such as straight segments,
spheres or ellipsoids. The elastic interaction coupling
neighboring nodes/joints are encoded via a constitutive
energy functionals or via a discrete elastic connectors en-
coding the filament’s resistance to bending. The shape
of each constituent discrete unit defines the underlaying
approximation for the hydrodynamical interaction, i.e.
sphere hydrodynamics for the beads and gears model,
and slender-body hydrodynamics for straight filaments.
The dynamics is governed by enforcing force and torques
balance for each node. Continuous models, on the other
hand, recur to partial differential equation (PDE) sys-
tem to describe the combined action from fluid-structure
interactions [11, 27], the dynamics arises through the to-
tal balance of contact forces and contact moments along
the filament [1]. This formalism results invariably in a
nonlinear PDE system coupling a hypediffusive fourth-
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order PDE with a second-order boundary value problem
(BVP) required to ensure inextensibility via the line ten-
sion [4, 11, 27], in addition to six boundary conditions
and associated initial configuration for closeness. The
geometrical coupling guarantees that the order of the
PDE remains unchanged under transformation of vari-
ables, from the position of filament centreline X(s, t) at
an arclength s and time t relative to a fixed frame of ref-
erence, to tangent angle θ(s, t) or curvature κ(s, t) of the
filament.

While equivalence between discrete and continuum
models is generally not available, both theoretical frame-
works suffer from numerical instability and stiffness aris-
ing from the nonlinear geometrical coupling between
the filament’s curvature and its inextensibility constraint
[11]. Nonlinearities originated from curvature are well
known to drive numerical instability in moving bound-
ary systems, as found in pattern formation of interfacial
flows driven by surface tension, as well as in elastic and
fluid stresses in shells and fluid membranes. The lat-
ter often requires numerical regularization, such as the
small-scale decomposition. Contact forces of inexsten-
sible filaments are not determined constitutively. This
requires the action of Lagrange multipliers to ensure the
strict length constraint, thus inducing in both discrete
and continuous models numerical instabilities. This is
despite the fact that, for instance, discrete models auto-
matically satisfy the length constraint by construction, or
equivalently the tangent angle formulation θ(s, t) in con-
tinuous models, which preserves lengths by definition.
The issue is due to the fact that the unknown tension
line distribution is still required to resolve the under-
laying filament dynamics. In continuum models, penal-
ization strategies are often required to regularize length
errors that are augmented at each time step. Finally, the
inextensibility constraint in PDE models unnecessarily
increase the number of boundary conditions required to
closeness, thus preventing this formalism for problems in-
volving more complex boundary conditions, as we discuss
bellow. The latter causes imposes severe spatiotemporal
discretization constraints, augmenting not only the com-
putational time for non-linearities triggered by high cur-
vature, but also the associated numerical errors. Other
strategy is to enforce inextensibility indirectly, by con-
sidering instead an extensible filament characterised by
constitutive relations encoding large resistance to com-
pression/extension. This method increases the number
of strain variables to keep track during the dynamics,
whilst the system is still prone to numerical instability
and length variations near inextensible regime.

The aim of this paper is to resolve the current bottle-
neck of interaction between the hyperdiffusive elastohy-
drodynamic coupling and the inextensibility constraint.
For this we consider a hybrid continuum-discrete ap-
proach. Our starting point is the continuum formalism,
from which the total balance of contact forces and mo-
ments can be integrated asymptotically for a coarse rod-
like discretization, thus automatically encoding inexten-

sibility and preventing the need for an explicit length
constraint. This results in linear system that couples
all constituent elements along the filament via the total
momentum balance which can be readily solved numeri-
cally, without requiring explicit computation of unknown
internal forces afore mentioned. This hybrid continuum-
discrete method arises through the asymptotic integra-
tion of the moment balance system, instead of mapping
the system into a higher order system of partial differ-
ential equations (PDE). This greatly decreases the im-
plementation complexity, the number of boundary con-
ditions required, computational time and numerical stiff-
ness. The simplicity of such hybrid framework allows its
application to systems that would be prohibitive using
previous models.

We contrast the continuous differential model with the
asymptotic approach. The asymptotic model is observed
to be numerically stable in situations in which the contin-
uous formalism has a very poor performance. The coarse
structure of the linear system also results in faster com-
putations, over than a hundred times faster, with increas-
ingly better performance for tolerance to error below that
1%. Furthermore, we show that the asymptotic model is
simple and intuitive to implement, and generalisations for
complex interaction of multiple rods, Brownian polymer
dynamics, active filaments and non-local hydrodynam-
ics are straightforward. We demonstrate these via four
exemplars: transient dynamics, force-displacement buck-
ling instability, magnetic artificial swimmer and cross-
linked filament-bundle dynamics, and we additionally
provide the Matlab codes.

The paper is structured as follows: First we describe
the momentum balance for an inextensible filament em-
bedded in a inertialess fluid and derive the elastohydro-
dynamic system and the associated asymptotic approx-
imation in Section II, based on the standard elastic rod
theory and lowest order approximation for the slender-
body hydrodynamics. In Section III, we contrast the
the elastohydrodynamic and the assympotitic model and
their respective performances. Finally, we abandon the
elastohydrodynamic euqations and present several ap-
plications of the asymptotic model that would be pro-
hibitive otherwise in Section IV: the buckling instabil-
ity, magnetic-driven micro-swimmers and the counter-
bend phenomenon in filament-bundles [28]. All Matlab
codes are provided in github free repository.

II. THE ELASTOHYDRODYNAMIC
FILAMENT THEORY

Consider an inextensible elastic rod of length L,
parametrized by its arclength. The position of a point
of arclength s on the filament is denoted by x(s). Two
types of forces are applied to the rod [1]: contact forces
n(s), induced by the filament itself, and external forces,
that have a force density f(s) (by unit of length), later
this will incorporate the hydrodynamic effects. The sec-
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(a) (b)

FIG. 1. Parametrization of the continuous and discrete filaments

ond Newton’s law ensures the balance of forces and mo-
ments:

ns + f = 0, (1)

ms + xs × n + p = 0, (2)

where the subscripts denote derivatives with respect to
arclength s, m(s) is the contact moment, p(s) is the
external moment. The dynamical system (1)-(2) is fur-
ther specified by the geometry of the deformation and
the constitutive relations characterising the elastic prop-
erties of this he filament. Here we focus on inextensible,
unshearable hyperelastic filaments undergoing planar de-
formations. Thus the contact forces are not defined con-
stitutively whilst the bending moment is linearly related
to the local curvature.

The position of the filament centreline is denoted by
x(t, s). The Frenet basis moving with the filament is
given by (e‖, e⊥), tangent and normal vector respectively.
The angle between the x-axis of frame of reference and
e‖ is θ, where the normal vector to the plane in which
deformation occurs is ez, see Figure 1. The filament is
characterised by a bending stiffness Eb, and thus elastic
moments are simply m(s) = Ebθsez. The latter can be
used in conjuction with (2), using θsse⊥ = xsss, to get

n(s) = −Ebxssse⊥ + τe‖,

where τ(s) is the unknown Lagrange multiplier. The hy-
drodynamical friction experienced by a slender-body in
low Reynolds number regime can be simplified to the
asymptotically by employing the Resistive Force Theory
[29], in which hydrodynamic friction is related with to
velocity via an anisotropic operator

f = −(ξe⊥ · e⊥ + ηe‖ · e‖)xt,

where η and ξ are the parallel and perpendicular restive
coefficients, respectively. Using (1) and nondimension-
alizing the system with respect to the length scale L,

time scale ω−1, force density Eb/L
3, and noticing that

e‖ = xs, the dimensionless elatohydrodynamic equation
for a passive filament deforming in a viscous environment
reads:

Sp4xt = −xssss − (γ − 1)(xs · xssss)xs + (τxss + γτsxs),
(3)

with the dimensionless parameters Sp = L(ωξ/Eb)
1/4

and γ = ξ/η. The unknown line tension is obtained by
invoking the inextensibility constraint

∂

∂t
(xs · xs) = 0, (4)

which together with (3) provides a nonlinear second-
order boundary value problem for the line tension,

γτss−(xss ·xss)τ = −3γ(xsss ·xsss)−(3γ+1)(xss ·xssss).
(5)

In practice, however, the inextensibility condition above
is prone to numerical erros [11] causing the filament
length to vary over time. A penalisation term is thus
added on the right-hand side of (4) to remove spurious
incongruousnesses of the tangent vector [11].

The non-linear, geometrically exact elastohydrody-
namical system Eqs. (3) and (5) requires a set initial
and boundary conditions for closeness. At the filament
boundaries force and torque balance or the endpoints
movements are specified. Here we consider the distal end
free from external forces and moments

∀t, −xsss(t, L) + τxs(t, L) = 0, xss(t, L) = 0.

At the proximal end, several scenarios may be considered:
(i) Free torque and force condition, thus the above equa-
tions is applied at s = 0. (ii) Pivoting, pinned or hinged
condition: the extremity has a fixed position but it is free
rotate around it, xt(t, 0) = 0,xss(t, 0) = 0. (iii) Clamped
condition: the extremity has a fixed position and orienta-
tion, xt(t, 0) = 0,xst(t, 0) = 0. Finally, initial conditions
are required for further closeness of the elastohydrody-
namic system. Boundary conditions for the tension line
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(5) boundary value system are derived from the above
constraint accordingly. The boundary constraints for τ
are generally unknown, coupling simultaneously (3) and
(5).

Numerical scheme for the PDE system

The equations (3) and (5) contain fourth-order deriva-
tives of x, and are therefore numerically challenging.
The numerical scheme proposed in [30] uses an implicit-
explicit scheme (more details below). The results ob-
tained have been validated against known numerical so-
lutions, and experimental data (in particular for a peri-
odically actuated filament, see [30]) with very good ac-
curacy in most cases. However, a few issues remain:

• As stated above, when solved numerically, the to-
tal length of the filament does not remain perfectly
constant due to the inevitable numerical errors in-
duced by the high-order terms in both equations.
This length variation is negligible if the curvature of
the filament is small enough but can become prob-
lematic for sharp curvatures.

• In the case of a floppy filament (high Sp number),
the scheme works very quickly, i.e. the time and
space steps do not have to be very small. But
lower sperm numbers are not well supported by the
solver. One has to unreasonably decrease the time
step in order for the solution to converge, leading
to very long computing times.

• Some boundary conditions may be hard to embed
in the system, because they would need to know
unknown forces applied at the filament ends.

Overall, the PDE model lacks robustness, accuracy, and
versatility. In the following section, we present a model
based on a discretized filament, that leads to a system of
ordinary differential equations. We will then confront the
two models and compare their numerical performances.

A. From continuous to discrete ODE model

We now describe a second model for an elastic filament.
This time, it is a “discrete” filament made of N rigid
segments. This model has been introduced in [31] and
[32]. We will widely use their notations in what follows.

Consider a filament of length L consisting on N rigid
segments connected on each other by torsional springs
with stiffness κ. These torsional springs play the role of
the bending stiffness for the continuous elastic filament
studied above.

The N segments, called Si for i ∈ {1, . . . , N}, have
same length ` = ∆s = L/N and same hydrodynamic
drag coefficients ξ and η. The filament can move in the
2d-plane defined by the vectors ex and ey. Let us define

ez = ex × ey.For each i ∈ {1, . . . , N}, we define xi =
x((i − 1)/N) = (xi, yi) the coordinates of the end of Si,
(ei,‖, ei,⊥) the orthonormal basis associated to Si and θi
the angle between ex and ei,‖. Finally, we set α1 = θ1

and, for i ∈ {2, . . . , N}, we define αi as the angle between
ei−1,‖ and ei,‖, i.e. αi = θi − θi−1.

Figure 1 shows all these parameters on a picture.
Moreover, for every i ∈ {2, . . . , n}, one has the follow-
ing kinematic relations:

αi = θi − θi−1

θi =
∑i
k=1 αk

xi = x1 +
∑i−1
k=1 ` cos θk

yi = y1 +
∑i−1
k=1 ` sin θk

A few more details about the parametrization are given
in Appendix VI A.

The filament is fully described by the N+2 parameters
(x1, y1, α1, α2, . . . , αN ): the coordinates of the first end,
and one “shape” angle for each segment. In order to solve
the dynamics of this filament, we are therefore going to
write N + 2 scalar equations.

As previously, we can apply Newton’s laws to the fil-
ament. The balance of forces (similar to (1)) over the
whole filament reads

n(L)− n(0) +

∫ L

0

f(s)ds = 0.

Since there are no contact forces at the ends of the fila-
ment, n(L) = n(0) = 0. We separate the integral over
each link to get

N∑
i=1

∫ i∆s

(i−1)∆s

f(s)ds = 0.

The quantity
∫ i∆s

(i−1)∆s
f(s)ds represents force applied to

the i-th segment. Let us call it, naturally, Fhi . Hence we
get the first equation :

N∑
i=1

Fhi = 0. (6)

This first vectorial equation gives two scalar equations
(by projecting on x- and y-axis). We need N more to
be able to solve the dynamics. To this purpose, we write
the balance of moments over N different parts of the
filament, giving N independent equations. In order to
take into account the elastic contribution at each link
junction, we will consider the whole filament, and sub-
systems {Si + Si+1 + · · ·+ SN} for i ∈ {2, . . . , N}. Each
of these subsystems represents a part of the discrete fil-
ament that goes from the i-th link to the end of the
filament – therefore allowing the elastic effects to appear
in the equations. This set of subsystems is not the only
one that would lead to N independent equations. We
chose it over others because it yields a relatively simple
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equation system, due to the fact that every subsystem in
it has a free end.

For the whole filament, since m(L) = m(0) = 0, and
assuming there are no external moments (p = 0), we get

N∑
i=1

∫ i∆s

(i−1)∆s

x′(s)× n(s)ds = 0.

We then integrate by parts to get

N∑
i=1

([
(x(s)− x1)×n(s)

](i+1)∆s

i∆s

−
∫ i∆s

(i−1)∆s

(x(s)− x1)×n′(s)ds
)

= 0.

Similarly to above, we denote by Mh
i+1,x1

the quantity∫ (i+1)∆s

i∆s
(x(s)−x1)×n′(s), which is the torque applied to

the segment Si, with respect to the point x1, hence the
x1 subscript. The nonintegral terms in the sum cancel
each other, yielding the second equation:

N∑
i=1

Mh
i,x1

= 0. (7)

Let j ∈ {2, . . . , N}. We repeat the integration of (2),
this time over the subsystem {Sj +Sj+1 + · · ·+SN} and
integrate by parts to get a balance of torques equation,
with respect to xj :

−M(j∆s) +

N∑
i=j

Mh
i,xj

= 0. (8)

Here, the term −M(j∆s) is the elastic contribution from
the torsional spring at the j-th link. Let us therefore call
it Mel

j . With equations (6), (7) and (8) for j ∈ {2 . . . N},
we obtain a system of N + 1 equations that reads

∑N
i=1 F

h
i = 0∑N

i=1 M
h
i,x1

= 0∑N
i=2 M

h
i,x2

= −Mel
2

...
...

...
Mh

N,xN
= −Mel

N

(9)

This system gives N + 2 scalar equations by projecting
the first line on (Ox) and (Oy) and the N others on (Oz).
Let us emphasize on the fact that this system allows to
solve the dynamics of the filament. In the PDE case, the
inextensibility equation (4) is needed in addition. In this
model, the inextensibility is intrisic.

From this system, we can express every term with re-
spect to the parameters. As for the equations (1) to (2),
they will depend on the assumptions made: we will use
the Resistive Force Theory here for the hydrodynamics,
and use a linear torsional spring term to model the con-
tact force between links as stated before, but other ex-
pressions could be considered. For example, in the case

of a filament moving close to a wall, the hydrodynamics
change; then another expression would have to be cho-
sen for the hydrodynamic contributions in (9). Nonlinear
elasticity effects could be taken into account as well.

Since the Reynolds number is low enough, we can as-
sume that the system is in Stokes regime, hence the speed
of displacement depends linearly on the forces, and we are
able to express the system (9) with respect to the deriva-
tives of the parameters (ẋi, ẏi, α̇i) as follows. This will
allow to implement a numerical scheme.

Hydrodynamics

As before, we assume that the dynamics stands within
the frame of the Resistive Force Theory (see [29]). There-
fore, the drag force per unit length intensity is propor-
tional to the velocity and to the hydrodynamics coeffi-
cients ξ and η. Again, we take γ = ξ/η. Let x(s) be a
point on one of the segments Si. In the moving frame
(ei,‖, ei,⊥), the drag force exerted on this point reads

fi(x(s)) = −ξ(ẋ(s) · ei,‖)ei,‖ − η(ẋ(s) · ei,⊥)ei,⊥

We have ui,‖(s) = ẋ(s).ei,‖ and ui,⊥(s) = ẋ(s).ei,⊥.

Hence, the hydrodynamic force Fhi exerted on Si is given
by :

Fhi =

∫
Si

fi(x(s))ds

=

∫ i∆s

(i−1)∆s

(
−ξ(ẋ(s) · ei,‖)ei,‖ − η(ẋ(s) · ei,⊥)ei,⊥

)
ds.

Since that

ẋ(s) =

(
ẋi − (s− (i− 1)∆s)θ̇i sin θi
ẏi + (s− (i− 1)∆s)θ̇i cos θi

)
,

ei,‖ =

(
cos θi
sin θi

)
, ei,⊥ =

(
− sin θi
cos θi

)
in the reference frame, the force reads after calculating
the integral

Fhi = η∆s G(θi)
T

 ẋi
ẏi

∆s θ̇i

 ,

G(θ) =

− cos2 θ − γ sin2 θ (γ − 1) cos θ sin θ
(γ − 1) cos θ sin θ −γ cos2 θ − sin2 θ

1
2 sin θ − 1

2 cos θ


(10)

Moreover, for i and j in {1, . . . N} the drag torque for Sj
with respect to xi takes the form

Mh
j,xi

=

∫
Sj

(x(s)− x0)× fj(x(s))ds,

After computation, the torque for the j-th filament with
respect to xi reads

Mh
j,xi
· ez = η∆s

 ∆s
xj − xi
yj − yi

T

M(θj)

 ẋj
ẏj

∆s θ̇j

 (11)
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FIG. 2. Graphic visualization of the filament relaxation starting from a half-circle shape with (a) 7 and (b) 70 links. The
graphs on the second colums show the total curvature with respect to time. It is very similar for both cases. The graphs on
the third column show a colormap of the curvature (blue for no curvature, yellow for a high curved region) with time step in
abscissa and link number in ordinate.

with

M(θ) =

 − 1
2 cos θ 1

2 sin θ − 1
3

(1−γ) cos θ sin θ − cos2 θ−γ sin2 θ − 1
2 cos θ

γ cos2 θ+sin2 θ (γ−1) cos θ sin θ − 1
2 sin θ

 . (12)

Elasticity

The torsional springs which connect the filament seg-
ments exert a torque mel proportional to the shape angles
αi. This allows to match the linear elastic theory used for
the continuous model. Thus,for i ∈ 2 . . . N , the torque
exerted by Si−1 on Si is given by

mel
i = καiez = κ (θi − θi−1)ez. (13)

Let us recall the expression of the elastic torque in the
continuous filament model: m(s) = Eb

∂θ
∂sez, Eb being

the bending stiffness of the filament. By choosing

κ =
NEb
L

=
Eb
∆s

,

we get the convergence of mel
i towards the “continuous”

elastic effect when N goes to infinity. Thus, provided the
stiffness of the torsional spring is chosen as above, the N-
link ODE model is equivalent to the continuous filament
model.

Nondimensionalization

Finally, we proceed to a nondimensionalization with
respect to length scale ∆s and time scale ω. This allows
to factorize equations (10) and (11) by ηω∆s3, letting a
new parameter appear :

SpN = ∆s
(ηω
κ

)1/3

Note that, since κ = Eb/∆s, we get the relation

SpN =

(
Sp

N

)4/3

,

where Sp is the sperm number obtained in the dimension-

less PDE model : Sp = L
(
ηω
Eb

)1/4

. For a given sperm

number in the continuous model, we get a different sperm
number for the ODE model in order for it to match the
behaviour of the continuous filament.

Using the expressions above, we can write the ODE
system as a matricial system. All the entries of the ma-
trices, allowing a quick numerical implementation, are
given in appendix VI B.

B. Comparison between the two models

The main difference between the two models consists
in the time where a discretization is performed. In the
first case, the base system (1)-(2) is derived into a purely
analytic PDE system, then discretized in the numeric
part, according to a particular numerical scheme. On
the contrary, in the discrete filament case, we perform
a first discretization on the filament model, allowing to
integrate the equations into an ODE system – hence the
term “ semianalytical”, that can be solved numerically
with any standard scheme.

III. COMPARISON PDE VS ODE: THE
RELAXATION CASE

In this section, we will show that the numerical solu-
tions given by the N -link swimmer model converge to-
wards those given by the PDE model.

All simulations were run on an Intel Core i5-6500 pro-
cessor at 3.20 GHz, using Matlab software.
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FIG. 3. Relaxation when the initial shape is a parabola arc. The second row zooms in on a smaller time interval at the start,
to highlight an interesting phenomenon: at first, the sharp curvature in the middle of the filament starts travelling towards the
ends, temporarily increasing the total curvature.

A. Numerical methods

For the discrete filament, a classic Runge-Kutta
scheme would work for instance; however, we choose to
use here the ode15s solver embedded in the Matlab
software. It uses a variable-order, variable-step method
based on the numerical differentiation formulas (NDFs)
of orders 1 to 5 [33], hence giving better performances
than a standard fixed step scheme.

The numerical scheme used to deal with them in [30] is
a second-order implicit-explicit scheme (IMEX) [], that
treats the highest-order terms implicitly, and all the
lower-order terms explicitly. Spatial and temporal dis-
cretizations are uniform. The numerical scheme is ini-
tiated with a first-order scheme, then each iteration is
made of three steps:

• knowing the position of the filament x at time tn,
using Equation 5, we can obtain the tension and
derivatives along all the filament at time tn with
eq.

• the boundary conditions allow to get the tension at
time tn at both ends of the filament

• knowing x and τ at time tn, we can get x at time
tn+1 along the filament, and go back to the first
step.

B. Test description

We will compare the results of the two models over a
relaxation test : the initial shape of the filament is set to a
half-circle initial shape and the solution is computed until
it is at rest, i.e. at straight position. More precisely, for

the N -link filament, the initial condition for the relative
angles between the segments is

α1(0) =
π

2
+

π

2N
, α2(0) = · · · = αN (0) =

π

2N
.

A graphic visualization of this relaxation test, for two
different numbers of links, can be seen on the first column
of Figure 2 (a) and (b).

C. Error criterion

In order to compare the movement of a (theoretically)
continuous filament and a discrete filament, or even be-
tween two discrete filaments with different numbers of
links, we need to set an invariant criterion. A good can-
didate for this purpose is the total curvature along the
filament. It is easy to define for a continuous filament –
the integral of the curvature over the filament and for a
discrete filament – the sum of the relative shape angles.
This criterion is invariant with respect to the geometric
parametrization of the filament and also to the number
of links considered in the discrete model, which makes it
convenient to compare the results of two filaments with
different numbers of links.

The second column of Figure 2 shows the variation
of total curvature over time for the relaxation test, for
filaments made of 7 links (row (a)) and 70 links (row (b)).
We can see that the total curvature decreases over time,
as the filament relaxes to a straight shape, corresponding
to a total curvature of zero.

The total curvature is not necessarily always decreas-
ing: when the filament is sharply curved, such as on Fig-
ure 3, it can increase at first. These cases are more nu-
merically challenging for there are very short time scales
come into play.
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FIG. 4. Discrete total curvature error between N links and
N + 1 links, with respect to N.

The difference in total curvature between two given
filaments can be computed over the whole relax-
ation time. The maximum of this difference over
the time interval gives us the total curvature er-
ror criterion. Hence, we define the total curva-
ture error : given (xN (t), yN (t), αN1 (t), . . . , αNN (t)) and
(xM (t), yM (t), αM1 (t), . . . , αMM (t)) be the solutions of the
system (9), for respectively N - and M -link-filaments, for
some given initial conditions, over [0, T ], the discrete to-
tal curvature error between the two solutions reads

εN,MTC = ‖TCN (t)− TCM (t)‖∞,[0,T ]

= ‖
∑N
i=1 α

N
i (t)−

∑M
i=1 α

M
i (t)‖∞,[0,T ].

The continuous equivalent of the discrete total curvature
is given by the integral of the local curvature over the

filament : TC(t) =
∫ 1

0
κ(s, t)ds =

∫ 1

0
‖∂

2X(s,t)
∂s2 ds‖. The

error between continuous and discrete filaments reads

εN,cont
TC = ‖TCN (t)− TC(t)‖∞,[0,T ].

D. Comparison between continuous and discrete
models

The first numerical experiment consists in checking
that the ODE model converges towards a solution when
one increases the number of links. Figure 4 shows the dis-
crete total curvature error between two successive num-
bers of links for the relaxation test, with Sp = 4. It
decreases like 1/N2. The error reaches an order of mag-
nitude of 10−4 from around 50 to 60 links.

In order to test the accuracy of the ODE model with
respect to the number of links, we compared it against the
PDE model results. For the PDE results model, we chose
100 space steps and 104 time steps, therefore ensuring
that it would give excellent results in our case (i.e. the
numerical problems that occur with this model will not
occur here). This parameter choice matches the one from
[30]. The comparison between the PDE and ODE models
appears on Figure 5. The error decreases proportionally
to the inverse of the number of links. It therefore ensures
that both models give similar results numerically.

Let us now compare the computing times of both mod-
els for two relaxation tests. In Table III D, we compare

FIG. 5. Inverse of the total curvature error between N -link
swimmer and continuous model, with respect to N. As one
can see, the error is proportional to 1/N .

the time needed to get a numerical solution for two re-
laxation tests:

• a relaxation from half a circle to the straight shape,
used above to validate the N-link model

• a relaxation from a parabola arc to the straight
shape, more challenging than the first one due to
sharper initial curvature

We show the computing time for three different levels of
precision and two different sperm numbers. When the
sperm number is smaller, the filament is more rigid and
relaxes faster, thus more difficult to solve numerically
without errors. The precision level is obtained by check-
ing the total length relative error over the solving time
interval to remain within the tolerance. We chose the
smallest possible time- and space steps that fit in the
precision requirements, in order to get the smallest pos-
sible computing time for the PDE model.

As we can see on Table III D, the PDE model gives bad
numerical performances when the filament is rigid and
when the curvature is sharp. On the contrary, the dis-
crete filament model seems to easily be able to bear sharp
curvatures initially or during its movement. Indeed, by
construction, the total length of the discrete filament re-
mains constant, hence the numerical errors showing in
the PDE disappear.

Let us discuss the advantages and downsides of each
model. The continuous filament model, despite being
theoretically closer to reality than the other, lacks nu-
merical robustness. It gives bad performances with small
sperm numbers and high curvatures. In this cases, the
chosen time step has to be very small for the solution to
be satisfying. On the other hand, the numerical perfor-
mances of the discrete model are similar for a wide range
of sperm numbers.

Another noticeable advantage of the discrete filament
model is its easy implementation : it only requires to
fill the matrices of the system (21), and use any ODE
numerical scheme – though, as we saw above, some are
much more efficient than others. On the other hand, as
a PDE system, the continuous model requires a complex
specific scheme.
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Sp = 4, T = 3
Test N-link model Tolerance PDE model

N=70 on total length

1% 1.3
Half-circle 2 0.1% 249

0.01% 3750
1% 90

Parabola 1.5 0.1% 1820
0.01% > 1h

Sp = 2, T = 1
Test N-link model Tolerance PDE model

N=70 on total length

1% 97
Half-circle 3 0.1% 850

0.01% > 1h
1% > 1h

Parabola 1.7 0.1% > 1h
0.01% > 1h

TABLE I. Computing times in seconds for the two relaxation
tests and two different sperm numbers.

Test N-link model Tolerance PDE model
N=70 on total length

1% 10
Oscillation 0.9 0.1% 36

Sp=4 0.01% 155
1% 32

Oscillation 1.0 0.1% 820
Sp=2 0.01% > 1h

TABLE II. Computing times for the oscillation case.

To complete this overview, we consider another type of
regime: an oscillation test where one end of the filament
is fixed and actuated by a given sinusoidal torque. The
computing times are presented in table II. Again, we can
see that the more rigid the filament, the more difficult it
is for the PDE model to give accurate results.

Let us state a last remark about the discrete model
with very high numbers of links: artefacts occur from
roughly N = 100, or more depending on the parame-
ters and the initial condition. For such high values, the
scheme sometimes has to run an extremely long time (at
least 20 minutes, and sometimes much more) to compute
a solution. We expect this phenomenon to be due to
“areas” of extreme stiffness on the time interval, which
requires to use an unreasonably small time step. It seems
rather difficult to foresee when these bad cases are going
to happen. Nonetheless, the results obtained with 30 to
80 links have a very good accuracy. Thus, there is no
need to use higher numbers of links that lead to numeri-
cal artefacts.

IV. APPLICATIONS

The discrete model described in part II is a robust
base material, and slight additions or modifications al-
low to study a wide range of problems. External forces
and torques are easy to add in the model (the p term
in Equation (2)). Without changing the principle of the
numerical method, it is possible to add in various effects
such as shear flows, gravity effects, electromagnetic ef-
fects, and so on, that allow to study a wide scope of
problems. In the following, we describe three examples
of what can be done from the base model: examining the
buckling instability, drive a swimmer with an external
magnetic field, and study a filament bundle.

A. Buckling

[14, 28, 30] The nature of the ODE model allows more
freedom concerning the boundaries conditions and the
structure of the filament. It is relatively easy to add con-
straints, e.g. a fixed extremity, by simply adding con-
straint equations to the system (9).

The buckling phenomenon for a filament occurs when
one of its extremities is fixed, and the other one moves
towards it. It leads to an instability : the filament will
buckle in a “random” direction (see Figure 6).

As for the equations of motion, one has to add an un-
known force at each end of the filament to constraint the
ends. In the PDE model, this is very challenging, since
there already is the inextensibility constraint. The N-link
model makes it quite easier.

Let us assume that the filament is initially at rest along
the (Ox) axis. To make the filament buckle, we must
apply a contact force at each end of it. Let us call these

forces respectively f0 =

(
f0x

f0y

)
and fN =

(
fNx
fNy

)
. The

system (9) is modified : it is now

∑N
i=1 f

h
i +f0 + fN = 0∑N

i=1 m
h
i,x1

+mN,x1 = 0∑N
i=2 m

h
i,x2

+mN,x2 = −mel
2

...
...

...
mh
N,xN

+mN,xN
= −mel

N

(14)

where the mN,xi
are the moments induced by fN with

respect to the point xi:

mN,xi
= (xN+1 − xi)× fN .

We now have four new scalar unknowns: f0x, f0y, fNx,
fNy. To be able to solve the system, we need four equa-
tions, given by the buckling kinematic constraints

ẋ1 = k,
ẏ1 = 0,
ẋN = 0,
ẏN = 0.

(14b)
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(a)Sp = 2

(b)Sp = 4

FIG. 6. Visualization of the buckling phenomenon for two different sperm numbers. The filament is displayed at regular intervals
of time and translated downwards at each step to improve visibility. The randomness introduced in the initial condition leads
to different outcomes.

where k is positive. We then concatenate (14) and (14b)
to obtain a system of (N + 6) scalar equations. After the
calculations, we get a system that can be expressed as
follows:

AbẊb = Bb, (15)

where

Xb =


X
f0x

f0y

fNx
fNy

 , Bb =


B
k
0
0
0

 , Ab =

(
AQ aT

a 0

)
, (16)

a =


1 0 0 . . . . . . 0
0 1 0 . . . . . . 0

1 0 −
∑N
k=1 sin θk −

∑N
k=2 sin θk . . . − sin θN

0 1
∑N
k=1 cos θk

∑N
k=2 cos θk . . . cosθN

 .

(17)

The expressions of A, B and Q are recalled in Ap-
pendix VI B. As stated before, the initial set of parame-

ters should be
(
0 . . . 0

)T
, but this is numerically impos-

sible to deal with: Ab is not invertible in this situation
and the numerical scheme can not start at all. We need to
introduce a slight bias in the initial shape of the swimmer
in order to induce the buckling numerically. The chosen
initial condition for the following examples is, for a small
angular parameter ε:

X(0) =
(
0 0 . . . 0 ε −2ε ε 0 . . . 0

)T

The value of ε has been set to 10−3 in the simulations,
with no visible difference when setting it at lower or-
ders of magnitude. The sign of ε and the position of the
first nonzero entry are chosen randomly, to reproduce the
randomness of the buckling phenomenon. The results are
shown on figure 7, with interesting different behaviours
for different sperm numbers.

B. External effects : magnetism

Driving microswimmers with a magnetic field a rela-
tively new and promising technique ([34, 35]). Let us
go into detail on how to adapt our model to describe a
magnetized filament, leading to exciting applications.

As in [31], we can assume that each link of our fila-
ment is magnetized with a magnetic moment Mi, add a
uniform time-varying magnetic field in the surrounding
fluid and look at the magnetic effects on the swimmer.
In [31], the authors manage to make a swimmer move
forward and turn by applying a sinusoidal field.

The torque exerted by a magnetic field will appear in
the system (1)-(2) as the external moment p, that we as-
sumed to be zero until now. We now assume that a time-

varying magnetic field H(t) =

(
Hx(t)
Hy(t)

)
exerts a torque

on the segment Si proportional to its magnetization Mi:

mm
i = Miei,‖ ×H.
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(a)Low Sp, T = 0.5 (b)Medium Sp, T = 1 (c)High Sp, T = 2

FIG. 7. Results from the buckling simulation. The graphs show time on the x-axis (note that the total time T , written on
bottom of each column, varies with sperm number) and link number (discrete arclength) on the y-axis. The colours show the
curvature over time, from blue for a highly negative curvature to yellow for a highly positive one. The filament quickly takes a
waveform with less and less waves as time goes on. The higher the sperm number is, the longer it takes for the waves to vanish
(note that the total time on the graphs is longer as the sperm number increases). Moreover, the initial bias leads to different
outcomes: see, for instance, on the left column, how the top graph is almost the symmetric image to the bottom two – the
curvature is the opposite. The characteristic times for each regime seem to be similar, but more variability seems to appear as
Sp increases.

The system (9) then reads

∑N
i=1 f

h
i = 0∑N

i=1 m
h
i,x1

= mm
1∑N

i=2 m
h
i,x2

= mm
2 −mel

2
...

...
...

mh
N,xN

= mm
N −mel

N

(18)

In the matricial form (21), one just has to add to

the second member B̃ the magnetic effect vector C =(
c1 . . . cN

)T
, with c1 = c2 = 0 and ∀i ∈ {3, . . . , N + 2},

ci =

N∑
k=i

Mk(Hy cos θk −Hxθk).

The magnetic field can be chosen freely, allowing to ob-
serve a lot of different behaviours in the filament’s move-
ment. The main goal for a magnetic robot is to be able
to move efficiently in a given direction. Figure 8 shows
an example of a partially magnetized swimmer on which
we applied a sinusoidal magnetic field.

The research in the control theory field about magnetic
swimmers is very dynamic, and a lot of open problems re-
main, regarding controllability as well as optimal control.
Given a magnetized swimmer, can we find the best mag-
netic field that will drive it in a given direction as fast as
possible? The discrete model gives a good starting point
to numerically study these kind of problems.

C. The counterbend phenomenon

Due to its specific structure, the flagellum of a sperm
cell does not behave as a single passive elastic filament.
Elastic-linking proteins inside the flagellum generate tan-
gential forces when it bends. It has been observed
that the induction of curvature in one section of a pas-
sive sperm flagellum instigates non-trivial compensatory
counter-curvature elsewhere [36]. This is called the coun-
terbend phenomenon and has been dealt with in numer-
ous studies [28, 36, 37], including [19], in which the flagel-
lum is modeled as a “bundle” made of two thin filaments
linked to each other. When this bundle bends, the links
between the two filaments induce a reaction due to the
sliding displacement between them. With this effect, an
angular actuation at one end of the filament bundle gen-
erates a second oscillation at the free end of the filament.
We propose to reproduce the results obtained in that pa-
per with the N -link model.

The authors in [19] model the sliding reaction with a
torque proportional to the sliding displacement, i.e. the
angle between the tangent lines to the filament at the
current point and at the fixed end. In our discrete model,
this translates to a couple applied to each link:

Ts
i = κ′(θi − θ1), (19)

where κ′ is a stiffness constant. Adding this term to the
nondimensionalized system (9), we get a new dimension-

less constant K = κ′

κ that represents the balance between
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FIG. 8. Example of magnetic drive with a sinusoidal orthog-
onal magnetic field. One fifth of the length of the swimmer is
nonmagnetized, and the other part is constantly magnetized.
The black line is the position of the filament at the end of the
simulation. The blue and orange lines respectively show the
trajectory of the nonmagnetized end and the centroid of the
filament.

the elastic effects that are internal to the filament, and
the sliding effects that come from the bundle structure.

The results of the simulations are visible on figure 9.
To match the parameters chosen in [19], we chose Sp = 7,
K = 1

5 and applied a forced oscillation with amplitude
0.4362 rad to one end of the filament. The second trav-
elling wave generated at the free end of the filament ap-
pears on Figure 9(b). The results are in very good agree-
ment with the ones obtained in [19]-Fig.2, and again im-
proved significantly the computing time.

V. CONCLUSIONS

We studied inertialess fluid-structure interaction of in-
extensible filaments. The nonlinear coupling between
the geometry of deformation and the physical effects
invariably result on intricate governing equations that
negotiate elastohydrodynamical interactions with non-
holonomic constraints, as a direct consequence of the
filament inextensibility. This triggers numerical insta-
bilities and require penalization methods and high-order
spatiotemporal propagators.

We exploit the the momentum balance in the asymp-
totic limit of small rod-like elements which are integrated
semi-analytically. This bypasses the nonlinearities aris-
ing via the inextensibilty constraint, avoiding in this way
the need of Langrange multipliers. The equivalence be-
tween the continuous and asymptotic model allows a di-
rect comparison between the two formalisms. The na-
ture of the asymptotic approximation entails that coarse
discretisation is possible while having a higher precision
when compared with the continuous approach.

The asymptotic model observed to be numerically sta-
ble in situations in which the continuous formalism has a
very poor performance, while the coarse structure guar-
antees faster computations, over than a hundred times
faster than previous schemes. The asymptotic model is
simple and intuitive to implement, and generalisations for

complex interaction of multiple rods, Brownian polymer
dynamics, active filaments and non-local hydrodynamics
are straightforward.
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(a) (b)

FIG. 9. Simulation of the counterbend phenomenon. The color plots on the bottom show the curvature with respect to the
time in x and the link number in y (here N = 30). The left column shows an oscillation applied to the base model. The right
column shows the same oscillation applied to the bundle model. The travelling curvature wave generated by the actuation is
visible at the bottom of both color plots. One can see the second travelling wave that appears at the free end of the filament
in the bundle case, at the top of the color plot.

VI. APPENDIX

A. Parametrization of the discrete filament

The discrete filament can be fully described with two
different sets of parameters (see figure 1) :

• the N + 2 parameters X = (x1, y1, θ1, α2, . . . , αN ).

• the 3N parameters X3N =
(x1, . . . , xN , y1, . . . , yN , θ1, . . . , θN ),

The second set is not optimal, since it uses 3N parame-
ters where N + 2 are enough, but it makes the compu-
tations easier. Going from Ẋ to Ẋ3N can easily be done
with the following transformation matrices :

Ẋ = P̃Ẋ3N and Ẋ3N = Q̃Ẋ

with

P̃ =



1 0 . . . 0
0 . . . 0

0 . . . 0
1 0 . . . 0

02,N

0N 0N

1 0 . . . . . . 0
−1 1 0 . . . 0

0 −1 1
. . .

...
...

. . .
. . .

. . .
...

0 . . . 0 −1 1



and

Q̃ =



1 0
...

...
1 0

Q̃1

0 1
...

...
0 1

Q̃2

0N,2

1 0 . . . 0

1 1
. . .

...
...

. . . 0
1 . . . 1



, (20)

where Q̃1 and Q̃2 are N × N matrices whose elements
are given by the general formula

qi,j1 = −∆s
∑i−1
k=j sin

(∑k
m=1 αm

)
qi,j2 = ∆s

∑i−1
k=j cos

(∑k
m=1 αm

)
,

with qi,j1 = qi,j2 = 0 if i ≥ j. We are using “tildes” in
order to recall that we have not performed the nondi-
mensionalization yet.
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B. Matricial form of the ODE system

Using the explicit expressions of the different contribu-
tions (10), (11) and (13), and after nondimensionalizing,
we can rewrite the system (9) as a matricial system with
respect to the parameters:

Sp3
NAQẊ = B. (21)

Let us give the detailed content of the different terms.

• The matrix A is a (N + 2) × 3N matrix whose
coefficients are given, for all i in {1, . . . N} and j in
{i, . . . , N}, by

a1,i=− cos2 θi−γ sin2 θi; a2,i=(γ−1) cos θi sin θi;

a1,N+i=(γ−1) cos θi sin θi; a2,N+i=−γ cos2 θi−sin2 θi;

a1,2N+i=
1
2 sin θi; a2,2N+i=− 1

2 cos θi;

ai+2,j = v(x̃i, x̃j)M1(θj);
ai+2,N+j = v(x̃i, x̃j)M2(θj);
ai+2,2N+j = v(x̃i, x̃j)M3(θj);

where v(x̃i, x̃j) =
(
1 x̃j − x̃i ỹj − ỹi

)
and

M1,M2,M3 are the columns of the matrix (12). If
j < i, then ai+2,j = ai+2,N+j = ai+2,2N+j = 0.

• Q is the nondimensionalized version of the trans-
formation matrix (20). It is defined by replacing

Q̃1 and Q̃2 with Q1 = Q̃1/∆s and Q2 = Q̃2/∆s in

the expression of Q̃.

• B is a column vector of size N + 2, given by

B =
(
0 0 0 α2 . . . αN

)T
.
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Self-organized beating and swimming of internally driven
filaments. Phys. Rev. Lett., 82:1590, 1999.

[6] L. Bourdieu, T. Duke, M. B. Elowitz, D. A. Winkelmann,
S. Leibler, and A. Libchaber. Spiral defects in motility
assays: A measure of motor protein force. Phys. Rev.
Lett., 75:176–179, 1995.

[7] R. E. Goldstein and S. A. Langer. Nonlinear dynamics
of stiff polymers. Phys. Rev. Lett., 75:1094–1097, 1995.

[8] H. C. Fu, C. W. Wolgemuth, and T. R. Powers. Beating
patterns of filaments in viscoelastic fluids. Phys. Rev. E,
78:041913–041925, 2008.

[9] T. S. Yu, , E. Lauga, and A. E. Hosoi. Experimental
investigations of elastic tail propulsion at low reynolds
number. Phys. Fluids, 18:0917011–0917014, 2006.

[10] Sarah D. Olson, Sookkyung Lim, and Ricardo Cortez.
Modeling the dynamics of an elastic rod with intrinsic
curvature and twist using a regularized Stokes formula-
tion. Journal of Computational Physics, 238:169–187,
April 2013.

[11] A. K. Tornberg and M. J. Shelley. Simulating the dy-
namics and interactions of flexible fibers in stokes flows.
J. Comput. Phys., 196:8–40, 2004.

[12] Vasily Kantsler and Raymond E. Goldstein. Fluctua-
tions, Dynamics, and the Stretch-Coil Transition of Sin-
gle Actin Filaments in Extensional Flows. Physical Re-
view Letters, 108(3):038103, January 2012.

[13] Tim Sanchez, Daniel T. N. Chen, Stephen J. DeCamp,
Michael Heymann, and Zvonimir Dogic. Spontaneous

motion in hierarchically assembled active matter. Nature,
491(7424):431–434, November 2012.

[14] Clifford P. Brangwynne, Frederick C. MacKintosh, San-
jay Kumar, Nicholas A. Geisse, Jennifer Talbot, L. Ma-
hadevan, Kevin K. Parker, Donald E. Ingber, and
David A. Weitz. Microtubules can bear enhanced com-
pressive loads in living cells because of lateral reinforce-
ment. J Cell Biol, 173(5):733–741, June 2006.

[15] Franck Plouraboue, Ibrahima Thiam, Blaise Delmotte,
Eric Climent, PSC Collaboration, et al. Identification of
internal properties of fibers and micro-swimmers. In APS
Meeting Abstracts, 2016.

[16] Claus Heussinger, Felix Schüller, and Erwin Frey. Statics
and dynamics of the wormlike bundle model. Phys. Rev.
E, 81(2):021904, Feb 2010.

[17] M. M. A. E. Claessens, C. Semmrich, L. Ramos, and
A. R. Bausch. Helical twist controls the thickness of f-
actin bundles. Proceedings of the National Academy of
Sciences, 105(26):8819–8822, 2008.

[18] Mireille MAE Claessens, Mark Bathe, Erwin Frey, and
Andreas R Bausch. Actin-binding proteins sensitively
mediate f-actin bundle stiffness. Nature materials,
5(9):748–753, 2006.

[19] Rachel Coy and Hermes Gadelha. The counterbend
dynamics of cross-linked filament bundles and flag-
ella. arXiv:1703.04179 [physics], March 2017. arXiv:
1703.04179.

[20] Eric Lauga and Thomas R Powers. The hydrodynam-
ics of swimming microorganisms. Reports on Progress in
Physics, 72(9):096601, 2009.

[21] E.M. Purcell. Life at low reynolds number. Am. J. Phys.,
45:3, 1977.

[22] M Hines and J J Blum. Bend propagation in flagella. I.
Derivation of equations of motion and their simulation.
Biophysical Journal, 23(1):41–57, July 1978.

[23] Eric Lauga and Thomas R. Powers. The hydrodynam-
ics of swimming microorganisms. Reports on Progress
in Physics, 72(9):096601, September 2009. arXiv:
0812.2887.

[24] Thomas R Powers. Dynamics of filaments and mem-



15

branes in a viscous fluid. Reviews of Modern Physics,
82(2):1607, 2010.

[25] Michael J Shelley and Jun Zhang. Flapping and bending
bodies interacting with fluid flows. Annual Review of
Fluid Mechanics, 43:449–465, 2011.

[26] Christopher Brennen and Howard Winet. Fluid mechan-
ics of propulsion by cilia and flagella. Annual Review of
Fluid Mechanics, 9(1):339–398, 1977.

[27] M. Hines and J. J. Blum. Bend propagation in flagella.
II. Incorporation of dynein cross-bridge kinetics into the
equations of motion. Biophysical Journal, 25(3):421–441,
March 1979.
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