
HAL Id: hal-01658631
https://hal.science/hal-01658631v1

Submitted on 7 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Temporal Conditional Preference Queries on Streams
Marcos Roberto Ribeiro, Maria Camila, N Barioni, Sandra de Amo, Claudia

Roncancio, Cyril Labbé

To cite this version:
Marcos Roberto Ribeiro, Maria Camila, N Barioni, Sandra de Amo, Claudia Roncancio, et al.. Tempo-
ral Conditional Preference Queries on Streams. 28th International Conference, DEXA 2017 Database
and Expert Systems Applications, 2017, Lyon, France. pp.143-158. �hal-01658631�

https://hal.science/hal-01658631v1
https://hal.archives-ouvertes.fr

Temporal Conditional Preference Queries on
Streams

Marcos Roberto Ribeiro1,2, Maria Camila N. Barioni2, Sandra de Amo2,
Claudia Roncancio3, and Cyril Labbé3

1 Instituto Federal de Minas Gerais, Bambuí, Brazil
marcos.ribeiro@ifmg.edu.br

2 Universidade Federal de Uberlândia, Uberlândia, Brazil
{camila.barioni, deamo}@ufu.br

3 Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, F-38000 Grenoble, France
{claudia.roncancio, cyril.labbe}@imag.fr

Abstract. Preference queries on data streams have been proved very
useful for many application areas. Despite of the existence of research
studies dedicated to this issue, they lack to support the use of an im-
portant implicit information of data streams, the temporal preferences.
In this paper we define new operators and an algorithm for the efficient
evaluation of temporal conditional preference queries on data streams.
We also demonstrate how the proposed operators can be translated to
the Continuous Query Language (CQL). The experiments performed
show that our proposed operators have considerably superior perfor-
mance when compared to the equivalent operations in CQL.

Keywords: Data streams, Preference queries, Temporal preferences

1 Introduction
There is a variety of application domains which data naturally occur in the form
of a sequence of values, such as financial applications, sport players monitoring,
telecommunications, web applications, sensor networks, among others. An espe-
cially useful model explored by many research works to deal with this type of
data is the data stream model [2, 6, 10, 5]. Great part of these research works
has focused on the development of new techniques to answer continuous queries
efficiently [3, 9]. Other research works have been concerned with the evaluation
of preferences in continuous queries to monitor for information that best fit the
users wishes when processing data streams [7].

The research literature regarding this later issue is rich in works dealing
with processing of continuous skyline queries where the preferences are simple
independent preferences for minimum or maximum values over attributes [4, 8].
However, these works do not meet the needs of many domain applications that
require the users to express conditional preferences. That is, those applications
where the preferences over a data attribute can be affected by values of another
data attribute. Moreover, they do not take advantage of the implicit temporal
information of data streams to deal with temporal preferences.

Temporal preferences may allow users to express how an instant of time
may influence his preferences at another time moment. Therefore, it allows an
application to employ continuous queries to find sequences of patterns in data
according to user preferences. For example, considering a soccer game where
players are monitored, it is possible for a coach to check if some player behavior
matches certain preferences before making an intervention in the game. Thus, it
is possible to evaluate queries such as “Which are the best players considering
that if a player was at defensive intermediary, then I prefer that this player go
to the middle-field instead of staying in the same place?”.

The evaluation of continuous queries with conditional preference has already
been explored in previous works [1, 12]. Nevertheless, to the best of our knowl-
edge, the support for temporal conditional preference queries on data streams
began to be exploited recently in our previous paper [14]. The main goal herein
is to present an extension for the Continuous Query Language (CQL) that is
specially tailored to efficiently process temporal conditional preference queries
on data streams. Although CQL is an expressive SQL-based declarative language
[3, 2], it was not designed to deal with temporal preferences. In order to cope
with this issue, we define appropriate data structures for keeping the temporal
order of tuples and new specific operators for selecting the best sequences ac-
cording to users preferences. These new features allow our approach to achieve
a considerable better performance.

Main Contributions. The main contributions of this paper can be summarized
as follows: (1) The definition of new operators for the evaluation of continuous
queries containing temporal conditional preferences; (2) A new and efficient
incremental method for the evaluation of the proposed preference operator; (3) A
detailed demonstration of the CQL equivalences for the proposed operators;
(4) An extensive set of experiments showing that our proposed operators have
better performance than their equivalent operations in CQL.

In the following sections, we introduce a motivating example. In addition,
we present the fundamental concepts regarding the temporal conditional pref-
erences and describe the operators and algorithms proposed for the evaluation
of temporal conditional preference queries on data streams. We also discuss the
equivalent operations in CQL and the experimental results. Finally, at the end
we give the conclusions of this paper.

2 A Motivating Example

Philip is a soccer coach who uses technology to make decisions. He has access
to an information system that provides real-time data about players during a
match. The information available is the stream Event(PID, PC, PE) containing
the match events along with an identification of the involved players. The at-
tributes of the stream Event are: player identification (PID), current place (PC)
and the match event (PE). The values for PC are the regions showed in Fig. 1.
The match events (PE) are: carrying the ball (ca), completed pass (cp), dribble
(dr), losing the ball (lb), non-completed pass (ncp) and pass reception (re).

da di mf oi oa

(a)

da defensive area
di defensive intermediary
mf middle field
oi offensive intermediary
oa offensive area

(b)

Fig. 1. Values for attribute PC: (a) Field division; (b) Values description.

Based on his experience, Philip has the following preferences: [P1] If the
previous in-game event was a pass reception then I prefer a dribble than a
completed pass, independent of the place; [P2] Completed passes are better than
non-completed passes; [P3] If all previous in-game events were in the middle-field
then I prefer events in the middle-field than events in the defensive intermediary.

These preferences can be used by Philip to submit the following continuous
query to the information system: [Q1] Every instant, give me the in-game event
sequences that best fit my preferences in the last six seconds. When the coach
says “best fit my preferences” it means that if a data item X is in the query
result then it is not possible to find another response better than X according to
his preferences. The query answers could help the coach to give special attention
to a particular player having behavior fitting the coach preferences.

3 Background: Temporal Conditional Preferences

Our proposed language, called StreamPref, uses the formalism introduced in our
previous work [14] to compare sequences of tuples. LetDom(A) be the domain of
the attributeA. LetR(A1, ..., Al) be a relational schema. The set of all tuples over
R is denoted by Tup(R) = Dom(A1)×...×Dom(Al). A sequence s = 〈t1, ..., tn〉
over R is an ordered set of tuples, such that ti ∈ Tup(R) for all i ∈ {1, ..., n}. The
length of a sequence s is denoted by |s|. A tuple in the position i of a sequence s
is denoted by s[i] and s[i].A represents the attribute A in the position i of s. We
use s[i, j] to denote the subsequence s′ = 〈ti, ..., tj〉 of s = 〈t1, ..., tn〉 such that
1 ≤ i ≤ n and i ≤ j ≤ n. The concatenation s′′ of two sequences s = 〈t1, ..., tn〉
and s′ = 〈t′1, ..., t′n′〉, denoted by s + s′, is s′′ = 〈t1, ..., tn, t′1, ..., t′n′〉. We denote
by Seq(R) the set of all possible sequences over R.

Our preference model uses StreamPref Temporal Logic (STL) formulas com-
posed by propositions in the form Aθa, where a ∈ Dom(A) and θ ∈ {<, ≤, =,
6=, ≥, >} (see Definition 1). Let Q(A) be a proposition, SQ(A) = {a ∈ Dom(A) |
a |= Q(A)} denotes the set of values satisfying Q(A).

Definition 1 (STL Formulas). The STL formulas are defined as follows:
(1) true and false are STL formulas; (2) If F is a proposition then F is a STL
formula; (3) If F and G are STL formulas then (F ∧G), (F ∨G), (F Since G),
¬F and ¬G are STL formulas.

A STL formula F is satisfied by a sequence s = 〈t1, ..., tn〉 at a position
i ∈ {1, ..., n}, denoted by (s, i) |= F , according to the following conditions:
(1) (s, i) |= Q(A) if and only if s[i].A |= Q(A); (2) (s, i) |= F ∧ G if and only

if (s, i) |= F and (s, i) |= G; (3) (s, i) |= F ∨ G if and only if (s, i) |= F or
(s, i) |= G; (4) (s, i) |= ¬F if and only if (s, i) 6|= F ; (5) (s, i) |= (F since G) if
and only if there exists j where 1 ≤ j < i and (s, j) |= G and (s, k) |= F for all
k ∈ {j + 1, ..., i}. The true formula is always satisfied and the false formula is
never satisfied. We also define the following derived formulas:
Prev Q(A): Equivalent to (false since Q(A)), (s, i) |= Prev Q(A) if and only

if i > 1 and (s, i− 1) |= F ;
SomePrev Q(A): Equivalent to (true since Q(A)), (s, i) |= SomePrev Q(A)

if and only if there exists j such that 1 ≤ j < i and (s, i) |= Q(A);
AllPrev Q(A): Equivalent to ¬(SomePrev¬Q(A)), (s, i) |= AllPrev Q(A) if

and only if (s, j) |= F for all j ∈ {1, ..., i− 1};
First: Equivalent to ¬(Prev(true)), (s, i) |= First if and only if i = 1.

The Definition 2 formalizes the temporal conditions used by Definition 3
(tcp-rules and tcp-theories).

Definition 2 (Temporal Conditions). A temporal condition is a formula
F = F1 ∧ ... ∧ Fn, where F1, ..., Fn are propositions or derived formulas. The
temporal components of F , denoted by F←, is the conjunction of all derived
formulas in F . The non-temporal components of F , denoted by F •, is the con-
junction of all propositions in F and not present in F←. We use Att(F) to
denote the attributes appearing in F .

Definition 3 (TCP-Rules and TCP-Theories). Let R be a relational
schema. A temporal conditional preference rule, or tcp-rule, is an expression
in the format ϕ : Cϕ → Q+

ϕ � Q−ϕ [Wϕ], where: (1) The propositions Q+
ϕ and

Q−ϕ represent the preferred values and non-preferred values for the preference
attribute Aϕ, respectively, such that SQ+

ϕ
∩ SQ−ϕ = ∅; (2) Wϕ ⊂ R is the set of

indifferent attributes such that Aϕ /∈ Wϕ; (3) Cϕ is a temporal condition such
that Att(C•ϕ) ∩ ({Aϕ} ∪Wϕ) = ∅. A temporal conditional preference theory, or
tcp-theory, is a finite set of tcp-rules.

Example 1. Consider the coach preferences of Section 2. We can express them
by the tcp-theory Φ = {ϕ1, ϕ2, ϕ3}, where ϕ1 : Prev(PE = re) → (PE = dr) �
(PE = cp)[PC]; ϕ2 :→ (PE = cp) � (PE = ncp); ϕ3 : AllPrev(PC = mf)→ (PC =
mf) � (PC = di).

Given a tcp-rule ϕ and two sequences s, s′. We say that s is preferred to s′
(or s dominates s′) according to ϕ, denoted by s �ϕ s′ if and only if there exists
a position i such that: (1) s[j] = s′[j] for all j ∈ {1, ..., i − 1}; (2) (s, i) |= Cϕ
and (s′, i) |= Cϕ; (3) s[i].Aϕ |= Q+

ϕ and s′[i].Aϕ |= Q−ϕ ; (4) s[i].A′ = s′[i].A′ for
all A′ /∈ ({Aϕ} ∪Wϕ) (ceteris paribus semantic).

The notation �Φ represents the transitive closure of
⋃
ϕ∈Φ �ϕ. The notation

s �Φ s′ means that s is preferred to s′ according to Φ. When two sequences
cannot be compared, we say that they are incomparable. We also must consider
consistency issues when dealing with order induced by rules to avoid inferences
like “a sequence is preferred to itself”. So, we check the consistency of tcp-theories
using the test proposed in [14] before the query execution.

4 Proposed Operators

Our StreamPref language introduces the operators SEQ and BESTSEQ. The
SEQ operator extracts sequences from data streams preserving the temporal
order of tuples and the BESTSEQ operator selects the best extracted sequences
according to the defined temporal preferences. If it is necessary, our operators
can be combined with the existing CQL operators to create more sophisticated
queries. As we will see in the next section, our operators can be processed by
equivalent CQL operations. However, the definition of these equivalences is not
trivial and our operators have better performance than their CQL equivalent
operations.

The SEQ Operator. The SEQ operator retrieves identified sequences (Definition
4) over a data stream according to: a set of identifier attributes (X), a temporal
range (n) and a slide interval (d). The parameters n and d are used to select a
portion of tuples from a data stream analogous to the selection performed by the
sliding window approach [3, 13]. The parameter X is used to group the tuples
with the same identifier in a sequence. It is important to note that the values
for the identifier attributes must be unique at every instant to keep a relation
one-to-one between tuples and sequences.

Definition 4 (Identified Sequences). Let S(A1, ..., Al) be a stream. Let Y
and X be two disjoint sets such that X∪Y = {A1, ..., Al}. An identified sequence
sx = 〈t1, ..., tn〉 from S is a sequence where ti ∈ Tup(Y) for all i ∈ {1, ..., n}
and x ∈ Tup(X).

TS PID PC PE

1 1 mf re
2 1 oi dr
3 1 oi cp

TS PID PC PE

3 2 mf re
4 2 oi cp
5 2 oi lb

TS PID PC PE

6 3 mf ca
7 3 mf dr
8 3 di ncp

TS PID PC PE

8 4 mf ca
9 4 mf dr
10 4 mf cp

Fig. 2. Event stream

Example 2. Consider the Event stream of Fig. 2 where TS is the timestamp
(instant). The sequence extraction needed by query Q1 presented in the mo-
tivating example is performed by operation SEQ{PID},6,1 (Event) as follows:
TS 1: s1 = 〈(mf, re)〉; TS 2: s1 = 〈(mf, re), (oi, dr)〉, TS 3: s1 = 〈(mf, re),
(oi, dr), (oi, cp)〉, s2 = 〈(mf, re)〉; TS 4: s1 = 〈(mf, re), (oi, dr), (oi, cp)〉,
s2 = 〈(mf, re), (oi, cp)〉; TS 5: s1 = 〈(mf, re), (oi, dr), (oi, cp)〉, s2 = 〈(mf, re),
(oi, cp), (oi, lb)〉; TS 6: s1 = 〈(mf, re), (oi, dr), (oi, cp)〉, s2 = 〈(mf, re), (oi, cp),
(oi, lb)〉, s3 = 〈(mf, ca)〉; TS 7: s1 = 〈(oi, dr), (oi, cp)〉, s3 = 〈(mf, ca), (mf, dr)〉;
TS 8: s1 = 〈(oi, cp)〉, s2 = 〈(mf, re), (oi, cp), (oi, lb)〉, s3 = 〈(mf, ca), (mf, dr),
(di, ncp)〉, s4 = 〈(mf, ca)〉; TS 9: s2 = 〈(oi, cp), (oi, lb)〉, s3 = 〈(mf, ca), (mf, dr),
(di, ncp)〉, s4 = 〈(mf, ca), (mf, dr)〉; TS 10: s2 = 〈(oi, lb)〉, s3 = 〈(mf, ca),
(mf, dr), (di, ncp)〉, s4 = 〈(mf, ca), (mf, dr), (mf, cp)〉. Note that from TS 7 the
SEQ operator appends the new tuples and drops the expired positions in the
beginning of the sequences.

The BESTSEQ Operator. Let Z be a set of sequences and Φ be a tcp-theory.
The operation BESTSEQΦ(Z) returns the dominant sequences in Z according
to Φ. A sequence s ∈ Z is dominant according to Φ, if @s′ ∈ Z such that s′ �Φ s.

Example 3. Let Z be the extracted sequences of Example 2 and Φ be the
tcp-theory of Example 1. The query Q1 is computed by the operation
BESTSEQΦ(SEQ{PID},6,1(Event)) as follows: TS 1: {s1} (the unique input
sequence); TS 2: {s1} (same result of TS 1); TS 3: {s1, s2} (incomparable se-
quences); TS 4: {s1} (s1 �ϕ1 s2); TS 5: {s1} (same result of TS 4); TS 6: {s1, s3}
(s1 �ϕ1 s2 and s3 is incomparable); TS 7: {s1, s2, s3} (incomparable sequences);
TS 8: {s1, s2, s3, s4} (incomparable sequences); TS 9: {s2, s3, s4} (incomparable
sequences); TS 10: {s2, s4} (s4 �ϕ2

... �ϕ3
s3 and s2 is incomparable).

5 CQL Equivalences
This section demonstrates how our StreamPref operators can be translated to
CQL equivalent operations. It is worth noting that although this means the
StreamPref does not increase the expression power of CQL, the equivalences
are not trivial. Moreover, the evaluation of the StreamPref operators are more
efficient than their CQL equivalent operations (see Section 7). The equivalences
consider a stream S(A1, ..., Al) and the identifier X = {A1}. Although, we can
use any subset of {A1, ..., Al} as identifier without lost of generality. In addition,
the CQL equivalences represent the sequences using relations containing the
attribute POS to identify the position of the tuples.

We use the symbols π, −, on, γ, σ and ∪ for the CQL operators that are
equivalent to the traditional operations: projection, set difference, join, aggre-
gation function, selection and union, respectively. The RSTREAM is a CQL
operator to convert a relation to a stream and the symbol � is the CQL sliding
window operator. The notation TS() returns the original timestamp of the tuple.
We rename an attribute A to A′ by using the notation A 7→ A′ in the projection
operator.

Equivalence for the SEQ Operator. Equation (1) establishes the CQL equiva-
lence for the SEQ operator such that P0 = {} and i ∈ {1, ..., n}.

W0 = πPOS,A1
(�n,d(RSTREAM(πTS() 7→POS,A1,...,Al

(�1,1(S))))) (1a)
Wi = Wi−1 − Pi−1 (1b)
Pi = γA1,min(POS)7→POS(Wi) onA1,POS W (1c)

SEQ{A1},n,d(S) = π17→POS,A1,...Al
(P1) ∪ ... ∪ πn 7→POS,A1,...Al

(Pn) (1d)

Equivalence for the BESTSEQ Operator. The CQL equivalence for the BEST-
SEQ operator is computed over a relation Z(POS, A1, ..., Al) containing the input
sequences where {A1} is the identifier and POS is the position attribute. First,
Equation (2) calculates the position to compare every pair of sequences.

Z ′ = πPOS,A1 7→B′,A2 7→A′2,...,Al 7→A′l(Z) (2a)
Pnc = σA2 6=A′2∨...∨Al 6=A′l(πPOS,A1 7→B,A2,...,Al

(Z) onPOS Z
′) (2b)

P = γB,B′,min(POS) 7→POS(Pnc) (2c)

The next step is to identify the sequence positions satisfying the temporal
components of the rule conditions. Equation (3) calculates the positions satisfied
by every derived formula.

PFirst = πPOS,B(σPOS=1(P)) (3a)
PPrev
Q(A) = πPOS,B(P onPOS,B (π(POS+1) 7→POS,A1 7→B(σQ(A)(Z)))) (3b)

PSomePrev
Q(A) = πPOS,B(σPOS>POS’(P onB (γA1 7→B,min(POS)7→POS’(σQ(A)(Z))))) (3c)

Pmax = γA1 7→B,max(POS)7→POS(P) (3d)
P ′¬Q(A) = γB,min(POS)7→POS’(πPOS,A1 7→B(σ¬Q(A)(Z)) ∪ Pmax) (3e)

PAllPrev
Q(A) = πPOS,B(σPOS≤POS’∧POS>1(P onB (P ′¬Q(A)))) (3f)

Next, Equation (4) computes the relation Ri containing the positions satisfied
by condition C←ϕi

= F1 ∧ ... ∧ Fp for every tcp-rule ϕi ∈ Φ.

Pj =

PFirst, if Fj = First
PPrev
Q(A) , if Fj = Prev(Q(A))

PSomePrev
Q(A) , if Fj = SomePrev(Q(A))

PAllPrev
Q(A) , if Fj = AllPrev(Q(A))

(4a)

Ri = (P1) onPOS,B ... onPOS,B (Pp) (4b)

Equation (5) performs the direct comparisons for every ϕi ∈ Φ. This equation
also consider the tuples of Tup(S) for posterior computation of the transitive
closure. The relations D+

i and D−i represent the tuples satisfying respectively
the preferred values and the non-preferred values of ϕi. These tuples include
original tuples (from existing positions) and fake tuples from Tup(S). We use
the attribute At to separate these tuples (At = 1 for original tuples and At = 0
for fake tuples). Note that the Equation (5e) applies the filter Eϕi : (Ai1 = A′i1)∧
... ∧ (Aij = A′ij) such that {Ai1 , ..., Aij} = ({A1, ..., Al} − {Aϕi

, B,B′} −Wϕi
).

This filter is required to follow the ceteris paribus semantic.

Z+
i = πPOS,B(Ri) onPOS,B (σC•ϕi

∧Q+
ϕi
(πPOS,A1 7→B,...,Al,17→At

(Z))) (5a)

D+
i = Z+

i ∪ (πPOS,B(Ri) onB (πA1 7→B,...,Al,07→At
(σC•ϕi

∧Q+
ϕi
(Tup(S))))) (5b)

Z−i = πPOS,B′(Ri) onPOS,B′ (σC•ϕi
∧Q−ϕi

(πPOS,A1 7→B′,...,Al,17→At
(Z))) (5c)

D−i = Z−i ∪ (πPOS,B′(Ri) onB′ (πA1 7→B′,...,Al,07→At
(σC•ϕi

∧Q−ϕi
(Tup(S))))) (5d)

Di = σEϕi
(P onPOS,B,B′ (D

+
i onPOS (πPOS,B′,A2 7→A′2,...,Al 7→A′l,At 7→A′t(D

−
i)))) (5e)

Equation (6) calculates the transitive closure. The relations T ′i , T ′′i and Ti
are computed for i ∈ {2, ...,m}. In the end, Tm has all comparisons imposed by
Φ where m = |Φ| is the number of tcp-rules.

T1 = D1 ∪ ... ∪Dm (6a)
T ′i = π(POS,B,B′,A2,...,Al,At,A′2 7→A′′2 ,...,A′l 7→A

′′
l ,A
′
t 7→A′′t)(Ti−1) (6b)

T ′′i = π(POS,B,B′,A2 7→A′′2 ,...,Al 7→A′′l ,At 7→A′′t ,A′2,...,A′l,A
′
t)
(Ti−1) (6c)

Ti = πPOS,B,B′,A2,...,Al,At,A′2,...,A
′
l,A
′
t
(T ′i onPOS,B,B′,A′′2 ,...,A

′′
l
T ′′i) ∪ Ti−1 (6d)

Equation (7) calculates the dominant sequences. Observe that just compar-
isons between original tuples are considered (At = 1 ∧A′t = 1).

BESTSEQΦ(Z) = Z onA1 (π′A1
(Z)− π′B′ 7→A1

(σAt=1∧A′t=1(Tm))) (7)

6 Data Structures and Algorithms

Our previous work [14] proposed the algorithm ExtractSeq for extracting se-
quences and the algorithm BestSeq for computing the dominant sequences. The
StreamPref operators SEQ and BESTSEQ can be evaluated by the algorithms
ExtractSeq and BestSeq, respectively. However, only the algorithm ExtractSeq
uses an incremental method suitable for data streams scenarios. In this paper
we propose a new incremental method to evaluate the BESTSEQ operator.

Index Structure. The main idea of our incremental method is to keep an index
tree built using the sequence tuples. Given a sequence s = 〈t1, ..., tn〉, every tuple
ti is represented by a node in the tree. The tuple t1 is a child of the root node.
For the remaining tuples, every ti is a father of ti+1. The sequence s is stored in
the node tn.

Example 4. Consider the sequences of the Example 2 at TS 6. Fig. 3(a) shows
how these sequences are stored in the index tree. The root node, represented by
black circle, is an empty node without an associated tuple.

•

(mf, ca)

[s3]
(mf, re)

(oi, cp)

(oi, lb)

[s2]

(oi, dr)

(oi, cp)

[s1]

(a)

Partitions
b1 p() = {(oi, cp), (oi, dr)

+

}

b2 p() = {(oi, cp)
−

, (oi, dr)
+

}

b3 p() = {(oi, cp), (oi, dr)}

b4 p(PE=cp) = {(oi, cp)}, p(PE=dr) = {(oi, dr)}

b1 p(PC=oi) = {(oi, cp)
+

, (oi, dr)}

(b)

Fig. 3. Preference hierarchy: (a) Index tree; (b) Partitions imposed by KΓ of (oi, 1, la).

Starting from the root node, it is possible to find the position where two
sequences must be compared. For instance, consider the sequences s1 and s2 in
the tree of Fig. 3(a). The paths from the root to these sequences are different in
the second node. Thus, the comparison of s1 and s2 happens in the position 2.

The index is updated only for changed sequences and new sequences. The
new sequences are just inserted in the tree. When positions are deleted from
a sequence s (and s is still no empty), we reinsert s in the tree. The empty
sequences are dropped from the tree. If a sequence s has new tuples (and no
expired tuples), we move s to a child branch of its current node.

Given a node nd, nd.t is the tuple associated to nd and nd.Z represents the
set of sequences stored in nd. The children of nd are stored in a hash-table nd.Ch
mapping the associated tuples to the respective child nodes. In addition, each

node nd stores a preference hierarchy nd.H over the tuples of the child nodes.
The preference hierarchy allows to determine if a child node is dominant or is
dominated. Thus, it is possible to know if a sequence dominates another one.

Preference Hierarchy. Our preference hierarchy structure is based on the prefer-
ence partition technique originally proposed in our previous work [15]. The main
idea is to build a knowledge base for the preferences valid in a node and keep
a structure containing the preferred and non-preferred tuples according to such
preferences. Given a set of non-temporal preference rules Γ . The knowledge base
KΓ over Γ is a set of comparisons in the format b : F+

b � F−b [Wb]. The terms
F+
b and F−b are formulas representing the preferred values and non-preferred

values, respectively. The term Wb is the set of indifferent attributes of b. For
more details about the construction of the knowledge base, please see [15].

After the construction of KΓ , the preference hierarchy is built by grouping
the child node tuples into subsets called partitions. For every comparison b ∈ KΓ ,
we group the tuples into partitions according to the attribute values not in Wb.
If a partition does not contain preferred tuples (those satisfying F+

b), then all
tuples of this partition are dominant. On the other hand, if a partition has at
least one preferred tuple, then all non-preferred tuples (those satisfying F−b)
are dominated. Therefore, a tuple t is dominant if t is not dominated in any
partition.

Example 5. Consider again the tcp-theory Φ of the Example 2 and the tree of
the Fig. 3(a). The preference hierarchy of the node (mf, re) is built using the
non-temporal components of the rules temporally valid in the last position of
the sequence s = 〈(mf, re), t〉, where t is any tuple (t is not used to temporally
validate the rules). For this node, all rules are used. So, we have the knowledge
base KΓ over Γ = {ϕ•1, ϕ•2, ϕ•3} containing the comparisons b1 : (PE = dr) �
(PE = ncp) [PC, PE]; b2 : (PE = dr) � (PE = cp) [PC, PE]; b3 : (PC = mf) ∧
(PE = dr) � (PC = di) ∧ (PE = ncp) [PC, PE]; b4 : (PC = mf) � (PC = di) [PC];
b5 : (PE = cp) � (PE = ncp) [PE]. Fig. 3(b) shows the partitions imposed by
KΓ . The symbols + and − indicate if the tuple is preferred or non-preferred,
respectively. We can see that (oi, cp) is dominated because it is a non-preferred
tuple in the partition of the comparison b2 containing a preferred tuple.

Our technique uses just the essential information to update the index effi-
ciently. For every partition p, we keep the mappings Pref(p) and NonPref(p)
representing the number of preferred tuples in p and the set on non-preferred
tuples in p, respectively. Thus, a node nd is dominated if there exists p such that
Pref(p) > 0 and nd.t ∈ NonPref(p).

The construction of the knowledge base is not a trivial task since we must
compute comparisons representing the transitive closure imposed by the pref-
erences [15]. Thus, we also use a pruning strategy to avoid the construction of
unnecessary preference hierarchies. Nodes having a unique child, do not need
preference hierarchy since this child is always dominant. In addition, dominated
nodes and their descendants do not require preference hierarchy. For example,
in the tree of Fig. 3(a), we know that (oi, dr) dominates (oi, cp) according to the

hierarchy of (mf, re). Thus, we do not need preference hierarchies for nodes in
the branch starting at (oi, cp).

Algorithms. Our full index structure is composed by the tree nodes represented
by its root and the mapping SeqNod. For every identified sequence sx, SeqNod(x)
stores (sx, nd) where nd is the node where sx is stored. In addition, we use the
sequence attributes deleted and inserted to keep the number of deletions and
insertions in the last instant.

The algorithm IndexUpdate (see Algorithm 1) incrementally updates the
index according to sequence changes. The first loop (lines 2-11) processes
the changes for every sequence sx already stored. If sx has expired positions
(sx.deleted > 0), we remove sx from the index. When sx is not empty (|sx| > 0),
we add sx into I to be reinserted later since sx must be repositioned in the
index tree. If sx has no expired positions and has inserted positions, the routine
AddSeq reallocates sx from its current node. The second loop (lines 12-13) looks
for sequences in Z not stored in the index and adds them into I. At the end, the
algorithm stores the sequences of I and calls the routine Clean to remove empty
nodes.

Algorithm 1: IndexUpdate(idx, Z)
1 I ← {};
2 foreach x ∈ idx.SeqNod do
3 (sx, nd)← idx.SeqNod(x);
4 if sx.deleted > 0 then
5 nd.Z.Del(sx);
6 idx.SeqNod.Del(x);
7 if |sx| > 0 then I.add(sx);
8 else if sx.inserted > 0 then
9 nd.Z.Del(sx);

10 new← AddSeq(nd, sx);
11 idx.SeqNod.Put(x 7→ (sx,new));

12 foreach sx ∈ Z do
13 if x 6∈ idx.SeqNod then I.add(sx);

14 foreach sx ∈ I do
15 nd← AddSeq(idx.root, sx);
16 idx.SeqNod.Put(x 7→ (sx, nd));

17 Clean(idx.root);

Algorithm 2: AddSeq(nd, sx)
1 d← Depth(nd);
2 if d = |sx| then
3 nd.Z.Add(sx);
4 return nd;

5 t← sx[d+ 1];
6 if t ∈ nd.Ch then
7 child← nd.Ch(t);
8 else
9 child← NewChild(nd, t);

10 return AddSeq(child, s);

Algorithm 3: IncBestSeq(nd)
1 Z ← nd.Z;
2 foreach dominant child of nd do
3 Z ← Z ∪ IncBestSeq(child);

4 return Z;

The routine AddSeq (see Algorithm 2) performs the insertion of a sequence
sx in the index tree. First, the routine checks if the depth (d) of node nd is equal
to the length of sx (d = |sx|). If true, sx is stored into nd since the full path
containing the tuples of sx is already created. Otherwise, the routine selects an
existing child or creates a new one. At the end, the routine makes a recursion
over this child node.

The algorithm IncBestSeq (see Algorithm 3) employs the index tree to eval-
uate the BESTSEQ operator incrementally. The execution starts at idx.root.

The algorithm acquires the sequences of input node nd and uses the preference
hierarchy to select the dominant children of nd. Thus, for every dominant child,
the algorithm makes a recursive call to retrieve all dominant sequences.

Example 6. Consider again the index tree of Fig. 3(a) (the dominant nodes are
in gray). The execution of IncBestSeq over this index tree works as follows:
(1) The execution starts at the root node. This node has no sequences and

the algorithm makes a recursion over the dominant children (mf, ca) and
(mf, re);

(2) At (mf, ca) the algorithm reaches the sequence s3. So, Z = {s3};
(3) At (mf, re), the algorithm performs a recursion over (oi, dr);
(4) At (oi, dr), the algorithm starts a recursion over (oi, cp);
(5) The algorithm reaches the sequence s1 and returns Z = {s1, s3}.

Complexity. The complexity analysis of the algorithms takes into account the
number of input sequences (k), the length of the largest sequence (n) and the
number of tcp-rules in Φ (m). We also assume a constant factor for the number
of attributes. In the worst case, the insertion or the deletion of a node tuple in
the preference hierarchy has the cost O(m4) (the size of KΓ [15]). Moreover, in
the worst case scenario, the degree of nodes is O(k), the tree depth is O(n) and
the number of partitions associated to a child node is O(|KΓ |). Our mapping
structures SeqNod, Ch, Pref and NonPrefSet are implemented using hash-tables.
So, the retrieval and the storage of elements is performed with a cost of O(1).

In the worst case, the routine AddSeq reaches a leaf node and the routine
Clean scans all tree nodes. So, the costs of AddSeq and Clean are O(nm4)
and O(knm4), respectively. The complexity of the algorithm IndexUpdate is
O(knm4). Regarding the algorithm IncBestSeq, the selection of the dominant
children has a cost of O(km4). Thus, the complexity of IncBestSeq is O(knm4).

7 Experimental Results

Our experiments confront our proposed operators against their CQL counter-
parts to analyze the performance (runtime) and memory usage of both ap-
proaches. All experiments were carried out on a machine with a 3.2 GHz twelve-
core processor and 32 GB of main memory, running Linux. The algorithms and
all CQL operators were implemented in Python language.

Synthetic Datasets. Due to the nonexistence of data generators suitable for the
experiment parameters employed herein, we designed our own generator of syn-
thetic datasets4. The synthetic datasets are in the format of streams composed
by integer attributes. Table 1 shows the parameters (with default values in bold).

Table 1(a) presents the parameters related to the dataset generation. The
number of attributes (ATT) allows to evaluate the behavior of the algorithms
according to data dimensionality. The number of sequences (NSQ) allows to

4 http://streampref.github.io

Table 1. Parameters for the experiments over synthetic data: (a) Dataset generation;
(b) Sequence extraction; (c) Preferences.

(a)

Param. Variation
ATT 8, 10, 12, 14, 16
NSQ 4, 8, 16, 24, 32

(b)

Param. Variation
RAN 10, 20, 40, 60, 80, 100
SLI 1, 10, 20, 30, 40

(c)

Param. Variation
RUL 4, 8, 16, 24, 32
LEV 1, 2, 3, 4, 5, 6

evaluate how the number of tuples per instant (equal to NSQ × 0.5) affects
the algorithms. Table 1(b) displays the parameters used for sequence extrac-
tion. These parameters are temporal range (RAN) and slide interval (SLI) and
they allow to evaluate how the selection of the stream elements influences the
algorithms. Table 1(c) shows the parameters number of rules (RUL) and max-
imum preference level (LEV) employed for the generation of the preferences.
These parameters allow us to evaluate how different preferences affect the cost
of the sequence comparison done by the algorithms. We use rules in the form
ϕi : First ∧ Q(A3) → Q+(A2) � Q−(A2)[A4, A5] and ϕi+1 : PrevQ(A3) ∧
SomePrevQ(A4)∧AllPrevQ(A5)∧Q(A3)→ Q+(A2) � Q−(A2)[A4, A5] hav-
ing variations on propositions Q+(A2), Q−(A2), Q(A3), Q(A4), Q(A5). The
number of iterations is RAN plus maximum slide interval and the sequence
identifier is the attribute A1. The definition of the parameter values was based
on the experiments of related works [14, 15, 8, 11, 13]. For each experiment, we
varied one parameter and fixed the default value for the others.

Real Datasets. We also used a real dataset containing play-by-play data of the
2014 soccer world cup5. This dataset contains 10,282 tuples from the last 4
matches. For this dataset we varied the parameters RAN and SLI. The values
for RAN were 6, 12, 18, 24 and 30 seconds, where the default was 12 seconds.
The values for SLI were 1, 3, 6, 9 and 12 seconds, where the default was 1
second. The experiments consider the average runtime per match which is the
total runtime of all matches divided by the number of matches.

Experiments with the SEQ Operator. Fig. 4(a) and Fig. 4(b) show the experi-
ment results with synthetic data confronting the SEQ operator (evaluated by the
algorithm ExtractSeq) and its CQL equivalence. The first experiment considers
the variation on the parameter ATT. Even for few attributes, the SEQ opera-
tor outperforms the CQL equivalence. Regarding the NSQ parameter, the SEQ
operator has the best performance again. When there are more sequences, there
are more tuples to be processed and the CQL operations are more expensive.

When examining the results obtained with different temporal ranges, it is
possible to see that higher temporal ranges had greater impact on the CQL
equivalence due to the generation of bigger sequences. Considering the results
obtained for the SLI parameter, bigger slides caused more tuples expiration. So,
once the sequences are smaller, the SEQ operator had the best performance.
Finally, considering all experiments shown in Fig. 4(a), it is possible to see that
the SEQ operator is more efficient than its CQL equivalence. Moreover, when
comparing the memory usage displayed on Fig. 4(b), it is possible to verify that
5 Extracted from data available in http://data.huffingtonpost.com/2014/world-cup

8 10 12 14 16

10−1

100

101

Attributes number (ATT)

R
u
n
ti

m
e

(s
ec

)

SEQ (ExtractSeq) CQL

4 8 16 24 32

100

102

Sequences number (NSQ)

1
0

2
0

4
0

6
0

8
0

1
0
0

100

102

Temporal range (RAN)

1 10 20 30 40

10−1

100

101

Slide interval (SLI)

(a)

8 10 12 14 16
20

30

40

50

Attributes number (ATT)

M
em

o
ry

(M
B
)

4 8 16 24 32

20

40

60

80

Sequences number (NSQ)

1
0

2
0

4
0

6
0

8
0

1
0
0

40

80

120

Temporal range (RAN)

1 10 20 30 40
20

30

40

50

Slide interval (SLI)

(b)

6 12 18 24 30

100

101

102

Temporal range (RAN)

R
u
n
ti

m
e

(s
ec

)

1 3 6 9 12

100

101

Slide interval (SLI)

(c)

6 12 18 24 30
20

24

28

32

Temporal range (RAN)

M
em

o
ry

(M
B
)

1 3 6 9 12

22

24

26

28

Slide interval (SLI)

(d)

Fig. 4. Experiment results for the SEQ operator: (a) Synthetic data runtime; (b)
Synthetic data memory usage; (c) Real data runtime; (d) Real data memory usage.

the CQL equivalence for the SEQ operator had a high memory usage in all
experiments due to the extra tuples stored by the intermediary operations.

Fig. 4(d) and Fig. 4(c) present the results obtained with the real data. These
results are analogous to the ones obtained with the synthetic data. Analyzing
these figures, it is possible to see that the SEQ operator outperforms the CQL
equivalence for all the experiments.

Experiments with the BESTSEQ Operator. Fig. 5(a) shows the runtime and
Fig. 5(b) shows the memory usage for the experiments with the BESTSEQ
operator with synthetic data. Notice that the runtime graphs are in logarithm
scale. We can see that the CQL equivalence is slower than the remaining algo-
rithms due to the processing of the intermediary operations. In addition, the
incremental algorithm outperforms the naive algorithm due to the index tree
and the pruning strategy. The same behavior is observed for the memory usage.

The results obtained for the parameters NSQ, RAN and RUL deserve to be
highlighted. Considering the NSQ parameter, the behavior of the BESTSEQ
algorithms is explained by the fact that when the number of sequences increases,
we have more repetition of sequence identifiers and more chances for pruning.
So, the updates in the index tree affect fewer branches and the incremental
algorithm outperforms the naive algorithm.

Considering the RAN parameter, the incremental algorithm presents an ad-
vantage over the naive algorithm since longer sequences have more chances for
overlapping. This behavior results in a more compact index tree and in a better
performance for the incremental algorithm.

8 10 12 14 16

100

102

Attributes number (ATT)

R
u
n
ti

m
e

(s
ec

)

4 8 16 24 32

10−1

101

103

Sequences number (NSQ)

BESTSEQ (Naive) BESTSEQ (Incremental) CQL

1
0

2
0

4
0

6
0

8
0

1
0
0

10−1

101

103

Temporal range (RAN)

1 10 20 30 40
10−1

101

103

Slide interval (SLI)

R
u
n
ti

m
e

(s
ec

)

4 8 16 24 32
10−1

101

103

Rules number (RUL)
1 2 3 4 5 6

100

102

Preference level (LEV)

(a)

8 10 12 14 16

0

1000

2000

Attributes number (ATT)

M
em

o
ry

(M
B
)

4 8 16 24 32

0

2000

4000

Sequences number (NSQ)

1
0

2
0

4
0

6
0

8
0

1
0
0

0

500

1000

1500

Temporal range (RAN)

1 10 20 30 40

0

500

1000

1500

Slide interval (SLI)

M
em

o
ry

(M
B
)

4 8 16 24 32

0

2000

4000

Rules number (RUL)
1 2 3 4 5 6

0

500

1000

Preference level (LEV)

(b)

6 12 18 24 30

100

102

104

Temporal range (RAN)

R
u
n
ti

m
e

(s
ec

)

1 3 6 9 12

100

102

104

Slide interval (SLI)

(c)

6 12 18 24 30

0

200

400

600

800

Temporal range (RAN)

M
em

o
ry

(M
B
)

1 3 6 9 12
0

100

200

300

Slide interval (SLI)

(d)

Fig. 5. Experiment results of BESTSEQ operator: (a) Synthetic data runtime; (b)
Synthetic data memory usage; (c) Real data runtime. (d) Real data memory usage.

Regarding the results obtained by the naive algorithm considering the RUL
parameter, it is worth noting that the number of rules has a great impact in its
complexity [14]. Moreover, more rules means more intermediary relations in the
CQL equivalence as addressed by Equations (4) and (5).

Fig. 5(c) and Fig. 5(d) show the results obtained for theBESTSEQ operator
with the real data. Analyzing this figure, it is possible to see that the naive and
the incremental algorithms outperform the CQL equivalence again. In addition,
the CQL runtime cannot be applied in a real situation since a regular soccer
match has duration of 5400 seconds. Regarding the memory usage, as expected,
the CQL equivalence presented the greatest memory usage due to the storage of
the intermediary relations. Both versions of BESTSEQ have a stable memory
usage in all executions (around 20 MB).

8 Conclusion
In this paper we described the StreamPref query language presenting new opera-
tors to support temporal conditional preference queries on data streams. Stream-

Pref extends the CQL language including the SEQ operator for the sequence
extraction and the BESTSEQ preference operator for the selection of dominant
sequences. Regarding the evaluation of this later operator, a new incremental al-
gorithm was proposed. In addition, we also demonstrated the CQL equivalences
for the proposed operators. It is worth noting that these equivalences are not
trivial since they involve many complex operations. In our experiments, we com-
pared the previous algorithms proposed in [14], the new incremental algorithm
and their CQL equivalences. The experimental results showed that our proposed
operators outperform the equivalent operations in CQL. Furthermore, our incre-
mental algorithm achieved the best performance for evaluating the BESTSEQ
operator.

Acknowledgments. The authors thanks the Research Agencies CNPq, CAPES and
FAPEMIG for supporting this work.

References
1. de Amo, S., Bueno, M.L.P.: Continuous processing of conditional preference

queries. In: SBBD. Florianópolis, Brasil (2011)
2. Arasu, A., Babcock, B., Babu, S., Cieslewicz, J., Datar, M., Ito, K., Motwani,

R., Srivastava, U., Widom, J.: STREAM: The Stanford Data Stream Management
System, pp. 317–336. Springer, Berlin, Heidelberg (2016)

3. Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: semantic
foundations and query execution. The VLDB Journal 15(2), 121–142 (2006)

4. Chomicki, J., Ciaccia, P., Meneghetti, N.: Skyline queries, front and back. ACM
SIGMOD Record 42(3), 6–18 (2013)

5. Golab, L., Özsu, M.T.: Issues in data stream management. ACM SIGMOD Record
32(2), 5–14 (2003)

6. Hirzel, M., Soulé, R., Schneider, S., Gedik, B., Grimm, R.: A catalog of stream
processing optimizations. ACM Computing Surveys 46(4), 46:1–46:34 (Mar 2014)

7. Kontaki, M., Papadopoulos, A.N., Manolopoulos, Y.: Continuous top-k dominating
queries. IEEE Trans. on Knowledge and Data Eng. (TKDE) 24(5), 840–853 (2012)

8. Lee, Y.W., Lee, K.Y., Kim, M.H.: Efficient processing of multiple continuous sky-
line queries over a data stream. Information Sciences 221, 316–337 (2013)

9. Liu, W., Shen, Y.M., Wang, P.: An efficient approach of processing multiple con-
tinuous queries. J. of Computer Science and Technology 31(6), 1212–1227 (2016)

10. Margara, A., Urbani, J., van Harmelen, F., Bal, H.: Streaming the web: Reasoning
over dynamic data. Web Semantics: Science, Services and Agents on the World
Wide Web 25, 24–44 (2014)

11. Pereira, F.S.F., de Amo, S.: Evaluation of conditional preference queries. JIDM
1(3), 503–518 (2010)

12. Petit, L., de Amo, S., Roncancio, C., Labbé, C.: Top-k context-aware queries on
streams. In: DEXA. pp. 397–411. Vienna, Austria (2012)

13. Petit, L., Labbé, C., Roncancio, C.: An algebric window model for data stream
management. In: ACM MobiDE. pp. 17–24. Indianapolis, Indiana, USA (2010)

14. Ribeiro, M.R., Barioni, M.C.N., de Amo, S., Roncancio, C., Labbé, C.: Reasoning
with temporal preferences over data streams. In: FLAIRS. Marco Island, USA
(2017)

15. Ribeiro, M.R., Pereira, F.S.F., Dias, V.V.S.: Efficient algorithms for processing
preference queries. In: ACM SAC. pp. 972–979. Pisa, Italy (2016)

