
HAL Id: hal-01658487
https://hal.science/hal-01658487v2

Preprint submitted on 12 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Structure-Adaptive, Variance-Reduced, and Accelerated
Stochastic Optimization

Junqi Tang, Francis Bach, Mohammad Golbabaee, Mike E. Davies

To cite this version:
Junqi Tang, Francis Bach, Mohammad Golbabaee, Mike E. Davies. Structure-Adaptive, Variance-
Reduced, and Accelerated Stochastic Optimization. 2017. �hal-01658487v2�

https://hal.science/hal-01658487v2
https://hal.archives-ouvertes.fr

Structure-Adaptive, Variance-Reduced, and Accelerated
Stochastic Optimization

Junqi Tang J.TANG@ED.AC.UK

Francis Bach FRANCIS.BACH@INRIA.FR

Mohammad Golbabaee M.GOLBABAEE@ED.AC.UK

Mike Davies MIKE.DAVIES@ED.AC.UK

School of Engineering
University of Edinburgh, Edinburgh, UK
INRIA - Sierra Project-team
Département d’Informatique de l’Ecole Normale Supérieure (CNRS - ENS - INRIA)
Paris, France

Abstract

In this work we explore the fundamental structure-adaptiveness of state of the art randomized first
order algorithms on regularized empirical risk minimization tasks, where the solution has intrinsic low-
dimensional structure (such as sparsity and low-rank). Such structure is often enforced by non-smooth
regularization or constraints. We start by establishing the fast linear convergence rate of the SAGA algo-
rithm on non-strongly-convex objectives with convex constraints, via an argument of cone-restricted strong
convexity. Then for the composite minimization task with a coordinate-wise separable convex regularization
term, we propose and analyse a two stage accelerated coordinate descend algorithm (Two-Stage APCG). We
provide the convergence analysis showing that the proposed method has a global convergence in general
and enjoys a local accelerated linear convergence rate with respect to the low-dimensional structure of the
solution. Then based on this convergence result, we proposed an adaptive variant of the two-stage APCG
method which does not need to foreknow the restricted strong convexity beforehand, but estimate it on
the fly. In numerical experiments we compare the adaptive two-stage APCG with various state of the art
variance-reduced stochastic gradient methods on sparse regression tasks, and demonstrate the effectiveness
of our approach.

1. Introduction

Consider the composite minimization task which reads:

x? ∈ arg min
x∈Rd

{
F (x) := f(x) + λg(x)

}
, (1)

where we denote f(x) = 1
n

∑n
i=1 fi(x) the data fidelity term. Each fi(x) is convex and L-smooth, while

the regularization term g(x) is a simple convex function and is possibly non-smooth.

1.1 Stochastic variance-reduced optimization and its acceleration

If the objective function F (x) is µ-strongly-convex, stochastic gradient methods with recently introduced
variance-reduction techniques SAG (Roux et al., 2012), SDCA (Shamir and Zhang, 2013), SVRG (Johnson

1

and Zhang, 2013), SAGA (Defazio et al., 2014) have a linear convergence rate:

O
(

(n+
L

µ
) log

1

ε

)
. (2)

Later researchers leveraged Nesterov acceleration (Nesterov, 1983)(Nesterov, 2007) with variance-reduced
algorithms to achieve an accelerated convergence:

O

(n+

√
nL

µ
) log

1

ε

 . (3)

This line of research starts with the accelerated SDCA (Shalev-Shwartz and Zhang, 2014) which is a dual-
based algorithm, and the accelerated coordinate descent - APCG (Lin et al., 2014), the primal-dual coordi-
nate descent method SPDC (Zhang and Lin, 2015), RPDG (Lan and Zhou, 2015); then comes the generic
acceleration scheme of Catalyst (Lin et al., 2015) which wraps any non-accelerated method into an acceler-
ated proximal point framework to achieve an accelerated rate.

Direct acceleration on stochastic gradients should usually be more tricky than accelerating coordinate
descent methods since coordinate descend is guaranteed to decrease the cost function in each iteration. The
first attempt is done by (Nitanda, 2014) which directly applies the Nesterov momentum on SVRG which
achieves an accelerated rate only when the minibatch-size is large enough; nevertheless later several directly
accelerated stochastic gradient methods with variance-reduction have been successfully designed such as
Katyusha (Allen-Zhu, 2016) and Point-SAGA (Defazio, 2016).

1.2 Restricted strong-convexity, sparsity, and faster convergence

Another line of work (Agarwal et al., 2010) (Agarwal et al., 2012)(Oymak et al., 2015) focuses on the sharp-
ness of the convergence speed of first-order methods with respect to a sharper form of strong-convexity as-
sumption, named restricted strong convexity (RSC), towards the optimum x?, in a restricted set of directions
Cx? because of the influence of the structure-enforcing regularization or constraints. In general, such types
of restricted strong convexity can be described in high-level as the following:

f(x)− f(x?)− 〈Of(x?), x− x?〉 ≥ µc‖x− x?‖22, ∀x ∈ Cx? ∈ Rd, (4)

while the global definition of the strong-convexity of f(x) is:

f(x)− f(y)− 〈Of(y), x− y〉 ≥ µf‖x− y‖22, ∀x, y ∈ Rd. (5)

Since µc ≥ µf ≥ 0, such a notion gives us better convergence speed guarantees for first-order optimiza-
tion, even in many cases when µf = 0 such as in Lasso when n < d (Karimi et al., 2016).

The quantification of the RSC constant µc is rather interesting. The first result is given by (Agarwal
et al., 2012) in a statistical estimation setting for running a composite gradient method to solve (6) with an
additional constraint Ω to restrict early iterations:

x? = arg min
x∈Ω

F (x) :=
1

n

n∑
i=1

fi(x) + λg(x)

 . (6)

With additional assumptions on decomposible regularizers g(x) and large enough regularization param-
eter, they establish a global convergence result for gradient methods with only RSC-type assumption.

2

(a) structure geometry for the constrained case

我要向高山举目 我的帮助从何来

我的帮助从造天地的耶和华而来

我要向高山举目 我的帮助从何来

我的帮助从造天地的耶和华而来

哈利路亚 哈利路亚 哈利路亚 哈利路

哈利路亚 哈利路亚 哈利路亚 哈利路

我的帮助从造天地的耶和华而来

词曲：盛晓玫

lyrics & music: Amy Sand

站在大海边 才发现自己是多渺小

(b) structure geometry for the regularized case

Figure 1: Intuitive view of the geometrical property of two type of empirical risk minimization task with sparsity structure
enforced by l1 constraint or regularization: for the l1 constrained case (A), it is straight forward to see that if we run a first order
method to find x?, all the iterates will live in the constrained set K and hence the descent direction is strictly the cone Cx? . While
for the l1 regularized case (B), as has been shown in the literature, the descent direction is only restrictive nearby the solution x?

Furthermore, if f(x) = 1
2‖Ax − b‖

2
2, A is a design matrix which obeys a sub-Gaussian distribution and

g(x) = λ‖x‖1, the RSC can be quantified w.r.t the sparsity of the true parameter / solution, and the sparser
it is, the larger µc will be and hence implies better convergence speed for gradient-base methods. Such
results has been recently extended to establish the global linear convergence (Qu and Xu, 2016) (Qu et al.,
2017) (Qu and Xu, 2017) of SVRG, SAGA and SDCA on the constrained composite minimization task (6)
when only the RSC is available.

An intuitive observation from the details of the theory in (Agarwal et al., 2012) is that for a unconstrained
composite minimization task such as Lasso with a correlated Gaussian random design matrix, the RSC is
locally quantifiable w.r.t sparsity of the solution.

On the other hand, we recall that in the case of the constrained least-squares with an l1 ball as the
constrained set:

x? = arg min
x∈Rd

{
F (x) :=

1

n
‖Ax− b‖22 + ic(‖x‖1 ≤ r)

}
, (7)

the RSC is globally quantifiable with a Gaussian width statement (Oymak et al., 2015) (Pilanci and Wain-
wright, 2015) (Pilanci and Wainwright, 2016).

1.3 This work

We start by deriving the linear convergence performance of SAGA algorithm (Defazio et al., 2014) on
minimizing empirical risk within a convex constraint via cone-restricted strong-convexity. Hence we show
that as a paradigm of the variance-reduced stochastic gradient methods, SAGA algorithm automatically
adapts to the cone-restricted strong convexity to achieve a linear convergence rate even the lost function is
not strongly convex.

In the second part of the paper we go beyond the exact constraint case and turn to the more general
setting which is the regularized empirical risk minimization. Meanwhile we go deeper algorithmically and
focus on the accelerated methods. We choose to use the accelerated coordinate descent method APCG (Lin
et al., 2014) as the foundation to build up our Two-Stage APCG method which is dedicated to actively
exploit the intrinsic low-dimension structure of the solution prompted by the (non-smooth) regularization.
The convergence analysis shows that the Two-Stage APCG has a global convergence: at the first stage, the

3

method converges sublinearly (linear convergence if we use periodic restart proposed by (Fercoq and Qu,
2016)) to the vicinity of the solution, while in the second stage the method converges towards the solution
with an accelerated linear rate with respect to the modified restricted strong convexity (Agarwal et al., 2012)
which scales with solution’s intrinsic dimension.

In practice the strong convexity and also restricted strong convexity parameter cannot be easily obtained
beforehand in general, which is necessary for the accelerated methods to achieve accelerated linear conver-
gence rate. To overcome this we propose an adaptive variant of two-stage APCG method which is based on
a simple heuristic scheme to estimate the restricted strong convexity, via a convergence speed check. Our
numerical result demonstrates the effectiveness of our algorithm.

2. Novel analysis of SAGA algorithm for constrained minimization

2.1 SAGA for constrained finite-sum minimization.

We start our work by the analyzing SAGA (Defazio et al., 2014) algorithm’s structure-adaptiveness on the
constrained minimization task which is a subset of (1):

x? = arg min
x∈K

f(x) :=
1

n

n∑
i=1

fi(x)

 , (8)

where the constrained set K is convex, and we assume that each fi(x) is convex and has L-Lipschitz con-
tinuous gradient. The SAGA algorithm is introduced below.

Algorithm 1 SAGA (Defazio et al., 2014) for constrained minimization

Inputs: x0 ∈ K.
Initialize: For each fi(.), φ0

i = x0 and calculate Ofi(φ0
i)

for k = 1, . . . ,K do
1. Pick an index j ∈ [1, n] uniformly at random.
2. Take φk+1

j = xk, compute f ′j(φ
k+1
j) and store it in the table.

3. Gradient step using f ′j(φ
k+1
j), f ′j(φ

k
j) and the table average :

wk+1 = xk − γ
[
f ′j(φ

k+1
j)− f ′j(φkj) + 1

n

∑n
i=1 Ofi(φ

k
i)
]
. (9)

4. Projection step onto convex set K :

xk+1 = PK(wk+1) := arg minu∈K ‖u− wk+1‖22. (10)

end for
Output: xK+1

In this setting we can introduce the simplest form of restricted strong convexity assumption on f(x):

4

Definition 2.1 The cone-restricted strong convexity parameter µc of f(x) in (8) is defined as the largest
positive constant which satisfies:

f(x)− f(x?)− 〈Of(x?), x− x?〉 ≥ µc
2
‖x− x?‖22, ∀x ∈ K, (11)

f(x?)− f(x)− 〈Of(x), x? − x〉 ≥ µc
2
‖x− x?‖22, ∀x ∈ K. (12)

An immediate result of (11) is the following lemma (we provide the proof in the appendix):

Lemma 2.2 Given the restricted strong convexity in the form of (11) with parameter µc, we have:

〈Of(x)− Of(x?), x− x?〉 ≥ µc‖x− x?‖22, ∀x ∈ K (13)

and:
− ‖Of(x)− Of(x?)‖22 ≤ −2µc[f(x)− f(x?)− 〈Of(x?), x− x?〉], ∀x ∈ K (14)

Based on the RSC assumption we are able to derive a new convergence result for SAGA on the con-
strained finite-sum minimization task.

Theorem 2.3 Let x? be the optimal solution of (8) and define the Lyapunov function T as:

T k := T (xk, {φki }ni=1) :=
1

n

∑
i

fi(φ
k
i)− f(x?)− 1

n

∑
i

〈Ofi(x?), φki − x?〉+ c‖xk − x?‖22 (15)

Then with step size γ = 1
6L , c = 1

γ(1+4µcγ)n , the updates of SAGA algorithm obeys:

E(T k+1) ≤

[
1−min

(
1

2n
,
µc
6L

)]
T k (16)

We provide the proof of this result in appendix 7.1. Now since each fi(.) is convex, T k ≥ c‖xk − x?‖22,
from Theorem 2.3 we can summarize:

Corollary 1 If we run SAGA with step-size γ = 1
6L to solve (8), the update at k-th iteration satisfies:

E‖xk − x?‖22 ≤

[
1−min

(
1

2n
,
µc
6L

)]k [
‖x0 − x?‖22 +

5n

18L
[f(x0)− 〈Of(x?), x0 − x?〉 − f(x?)]

]
(17)

2.2 Minibatch SAGA

From the results given by the previous subsections, we observe (in theory) that, the RSC is enough to
guarantee the linear convergence of SAGA, however, when µc is large (e.g. the solution of (8) is very
sparse), it does not benefit from the large restricted strong convexity since the linear rate is dominated by
1 − 1

2n . From here we can see that since n is the number of fi(.), hence in order to exploit the RSC, one
many wish to ”reduce” n, which means using a fixed minibatch scheme in the following form:

x? = arg min
x∈K

f(x) =
b

n

n/b∑
i=1

1

b

i+b−1∑
q=i

fq(x) :=
b

n

n/b∑
i=1

fbi(x)

 , (18)

where we denote b the minibatch size and assume mod (n, b) = 0 for the simplicity of notation. We now
present the (fixed) minibatch SAGA algorithm:

From the same procedure of the previous proof we can have:

5

Algorithm 2 Minibatch SAGA for constrained minimization

Inputs: x0 ∈ K and minibatch size b.
Initialize: For each fbi(.) := 1

b

∑i+b−1
q=i fq(x), φ0

i = x0 and calculate f ′bi(φ
0
i)

for k = 1, . . . ,K do
1. Pick an index j ∈ [1, nb] uniformly at random.
2. Take φk+1

j = xk, compute f ′bj (φ
k+1
j) and store it in the table.

3. Gradient step using f ′bj (φ
k+1
j), f ′bj (φ

k
j) and the table average :

wk+1 = xk − γ
[
f ′bj (φ

k+1
j)− f ′bj (φ

k
j) + b

n

∑n
i=1 f

′
bi

(φki)
]
. (19)

4. Projection step onto convex set K :

xk+1 = PK(wk+1) := arg minu∈K ‖u− wk+1‖22. (20)

end for
Output: xK+1

Corollary 2.4 If each of fbi(.) has Lb-Lipschitz continuous gradient, and we run minibatch SAGA with
step-size γ = 1

6Lb
to solve (8), the update at k-th iteration satisfies:

E‖xk − x?‖22 ≤

[
1−min

(
b

2n
,
µc

6Lb

)]k [
‖x0 − x?‖22 +

5n

18L
[f(x0)− 〈Of(x?), x0 − x?〉 − f(x?)]

]
(21)

It is worth noting that the above corollary for minibatch SAGA suggests a linear parallel computation speed
up thanks to the cone-restricted strong convexity. Via using minibatches to match b

2n ≈
µc

6Lb
, the overall

complexity of SAGA does not have significant change since (1 − µc
6Lb

)
k
b ≈ (1 − b

2n)
k
b ≈ (1 − 1

2n)k for
large n and k1, but this means the larger the cone-restricted strong convexity is, the more parallel speed up
minibatch SAGA can achieve. If we choose the minibatch too large such that b

2n >
µc

6Lb
, we lose this linear

speed up for parallelisation, and the overall complexity may be worse than SAGA without minibatch.

1. Due to the fact that lima→+∞(1− 1
a
)a = 1

e

6

3. Two-Stage APCG and the convergence analysis

In this section we are going deeper on the analysis of an accelerated coordinate descent algorithm’s per-
formance on solving the composite minimization (1) when the strong-convexity only holds in a restricted
manner. We first introduce the APCG algorithm (Lin et al., 2014) for (1), for cases where the regularization
term g(x) is coordinate-wise separable:

g(x) =
d∑
i=1

gi([x]i), (22)

and f(x) has coordinate-wise Lipschitz continuous gradient:

‖Oif(x+ hiei)− Oif(x)‖2 ≤ Li‖hi‖2, ∀hi ∈ R, i = 1, ..., d, x ∈ Rd. (23)

For convenience we define the weighted norm:

‖x‖V = (

d∑
i=1

Li‖[x]i‖22)
1
2 (24)

Direct structure-adaptiveness analysis of APCG could be technically challenging and hence we consider a
slightly modified version of it, where we break the iterates into epochs and reset the algorithm (let zt0 = xt0)
at the beginning of each epoch. More importantly, since the RSC here only holds locally, we introduce the
initialization stage given by APCG for non-strongly-convex functions (APCG-NS). (We use superscript t to
index outer-loop and subscript k to index inner-loop)

Algorithm 3 Two-Stage APCG

[Analyzed algorithm]
Inputs: x0

0 and restricted strong-convexity pa-
rameter µc, number of iteration K0 for the first
stage; T , K for the outer and inner loop of the
second stage.
1. First stage, start without µc:

x1
0 = APCG0(x0

0,K0) (25)

2. Second stage – exploit local accelerated linear
convergence given by µc:
for t = 1, . . . , T do

xt+1
0 = APCG(xt0,K,

µc
L) (26)

end for
Output: xT+1

0

[Implementation]
Inputs: x0

0 and restricted strong-convexity pa-
rameter µc, number of iterations K0, N for first
and second stage.
1. First stage, start without µc:

x1
0 = APCG0(x0

0,K0) (27)

2. Second stage – exploit local accelerated linear
convergence given by µc:

x2
0 = APCG(x1

0, N,
µc
L) (28)

Output: x2
0

We list the details of APCG algorithm as the following (Algorithm 4 and 5):
At each iteration, the algorithm chooses a coordinate uniformly at random to perform updates. The

update sequences xtk+1 and ztk+1 depend on the realization of the following random variable which we
denote as ξtk:

ξtk = {itk, itk−1, ..., i
t
1, i

t
0, i

t−1
k , ..., it−1

0 , ..., i0k, ..., i
0
0}, (35)

7

Algorithm 4 APCG(xt0,K, µ) –Accelerated Proximal Coordinate Gradient (Lin et al., 2014, Alg. 2)

Inputs: xt0, number of iteration K and strong-convexity parameter µ > 0.
Initialize: zt0 = xt0, a =

√
µ
d

for k = 1, . . . ,K do
1. Compute

ytk =
xtk+aztk

1+a
(29)

2. Choose ik ∈ 1, ..., d uniformly at random and compute

ztk+1 = arg minx∈Rd
[
da
2 ‖x− (1− a)ztk − aytk‖2V + 〈Oikf(ytk), [x]ik〉+ λgik([x]ik)

]
(30)

3. Compute
xtk+1 = ytk + da(ztk+1 − ztk) + da2(ztk − ytk). (31)

end for
Output: xt+1

0 := xtK+1

Algorithm 5 APCG0(xt0,K) –APCG for non-strongly convex functions (Lin et al., 2014, Alg. 3)

Inputs: xt0, number of iteration K.
Initialize: zt0 = xt0, a−1 = 1

d
for k = 1, . . . ,K do

1. Compute

ak = 1
2(
√
a4
k−1 + 4a2

k−1 − a
2
k−1), ytk = (1− ak)xtk + akz

t
k. (32)

2. Choose ik ∈ 1, ..., d uniformly at random and compute

ztk+1 = arg minx∈Rd
[
da
2 ‖x− z

t
k‖2V + 〈Oikf(ytk), [x]ik〉+ λgik([x]ik)

]
(33)

3. Compute
xtk+1 = ytk + da(ztk+1 − ztk). (34)

end for
Output: xt+1

0 := xtK+1

where itk denotes the index of coordinate the algorithm choose to update at t-th outer loop’s k-th inner loop.
For the randomness within a single outer-loop of Two-Stage APCG we specifically denote ξtk\ξ

t−1
k as

ξtk\ξt−1
k = {itk, itk−1, ..., i

t
1, i

t
0} (36)

In this section we aim at analyzing the convergence speed of APCG with respect to the low intrinsic
dimension of the solution (e.g, sparsity) enforced by the regularization. To achieve this, a special version of
RSC (Agarwal et al., 2012) needs to be considered:

f(x)− f(x?)− 〈Of(x?), x− x?〉 ≥ γ

2
‖x− x?‖22 − τg2(x− x?), ∀x ∈ Rd, (37)

8

where γ and τ are some positive constants related to the function f(.) itself. Unlike normal RSC assumptions
using Polyak-Lojasiewicz inequality (Karimi et al., 2016), this modified RSC has been shown to have a direct
connection with the low-dimensional structure of x?. As in (Agarwal et al., 2012) we first assume that g(x)
is a decomposable regularizer:

Definition 3.1 (Agarwal et al., 2012) Given a orthogonal subspace pair (M,M⊥) in Rd, g(.) is decom-
posable if:

g(a+ b) = g(a) + g(b), ∀a ∈M, b ∈M⊥. (38)

Meanwhile we define a crucial property for our structure-driven analysis, which is called the subspace
compatibility:

Definition 3.2 (Agarwal et al., 2012) With predefined g(x), we define the subspace compatibility of a model
subspaceM as:

Φ(M) := sup
v∈M\{0}

g(v)

‖v‖2
, (39)

whenM 6= {0} and Φ({0}) := 0 .

In this section we also further introduce a structured reference point x† which is assumed to be nearby
x?. In (Agarwal et al., 2012) this structured point is referred as the ground truth vector or a regression
vector in the context of statistical estimation. Throughout our analysis we align the subspaceM such that
x† ∈ M or the projection of x† onto the perturbation subspace M⊥ is close to zero such that g(x†M⊥)2

is small; for the l1 penalized sparse regression, the former case corresponds to the scenario where x† has
exact sparsity while the later corresponds to the approximate sparsity. The subspace compatibility leverages
the low-dimensional structure of x? into our analysis, for example, if g(.) = ‖.‖1, ‖x†‖0 = s andM is an
s-dimensional subspace in Rd, then we have Φ(M) =

√
s.

Then we are ready to present the effective RSC constant µc:

Lemma 3.3 (Effective RSC) Given (x?, x†), and denote ε := 2Φ(M)‖x† − x?‖2 + 4g(x†M⊥), if the reg-
ularization parameter λ and the reference point x† satisfy λ ≥ (1 + 1

c)g
∗(Of(x†)), then for any convex

functions f(.) and g(.) which satisfy:

f(x)− f(x?)− 〈Of(x?), x− x?〉 ≥ γ

2
‖x− x?‖22 − τg2(x− x?), ∀x ∈ Rd, (40)

with γ > 0, τ > 0, we have:

f(x)− f(x?)− 〈Of(x?), x− x?〉 ≥ µc‖x− x?‖22 − 2τ(1 + c)2v2, (41)

and also:
F (x)− F ? ≥ µc‖x− x?‖22 − 2τ(1 + c)2v2, (42)

where µc = γ
2 − 8τ(1 + c)2Φ2(M) and v = η

λ + ε, while x satisfies F (x)− F (x?) ≤ η.

2. Throughout this paper we denote the Euclidean projection of a vector v onto the subspace M as vM for the simplicity of
notation.

9

Remark. The effective RSC µc = γ
2 − 8τ(1 + c)2Φ2(M) provides us a framework to link the con-

vergence speed of an algorithm with the sparsity of the solution. For example, if c = 1, g(x) = ‖x‖1 and
‖x?‖0 = s, then Φ2(M) = s and hence µc = γ

2 −32τs. Further if F (x) is a Lasso problem, then for a wide
class of random design matrix we have τ = O(log d

n) and γ > 0. To be more specific, if the data matrix is a
correlated Gaussian design matrix such that each row of it is i.i.d drawn from distributionN (0,Σ) where Σ
is the covariance matrix and we denote its largest and smallest singular value as rmax(Σ) and rmin(Σ), then
it can be shown that γ = rmin(Σ)

16 and τ = rmax(Σ)81 log d
n with high probability (Raskutti et al., 2010).

The proof of this lemma follows:
Proof Let us denote ∆ = x − x†. Since we have assumed F (x) − F (x?) ≤ η, then we also have F (x) −
F (x†) ≤ η, hence:

f(x† + ∆) + λg(x† + ∆) ≤ f(x†) + λg(x†) + η, (43)

then substract both side with 〈Of(x†),∆〉 and rearrange:

f(x† + ∆)− f(x†)− 〈Of(x†),∆〉+ λg(x† + ∆)− λg(x†) ≤ −〈Of(x†),∆〉+ η. (44)

Due to the convexity of f(.) we immediately have:

λg(x† + ∆)− λg(x†) ≤ −〈Of(x†),∆〉+ η

≤ g∗(Of(x†))g(∆) + η

≤ λ

1 + 1
c

g(∆) + η,

hence by dividing both side with λ and then applying the decomposability of g we have:

g(x† + ∆)− g(x†) ≤ 1

1 + 1
c

[g(∆M) + g(∆M⊥)] +
η

λ
, (45)

and meanwhile the lower bound on the left-hand-side has been provided in (Agarwal et al., 2012), which
reads:

g(x† + ∆)− g(x†) ≥ g(∆M⊥)− 2g(x†M⊥)− g(∆M). (46)

By combining these two bounds we have:

g(∆M⊥) + g(∆M) +
(1 + 1

c)η

λ
≤ (1 +

1

c
)g(∆M⊥)− 2(1 +

1

c
)g(x†M⊥)− (1 +

1

c
)g(∆M), (47)

and then:

1

c
g(∆M⊥) ≤ (2 +

1

c
)g(∆M) + 2(1 +

1

c
)g(x†M⊥) +

(1 + 1
c)η

λ

g(∆M⊥) ≤ (1 + 2c)g(∆M) + 2(1 + c)g(x†M⊥) +
(1 + c)η

λ

g(∆) ≤ (2 + 2c)(g(∆M) + g(x†M⊥)) +
(1 + c)η

λ

Now let ∆x := x− x? where x satisfies F (x)− F (x?) ≤ η, and ∆? := x? − x†. Due to the fact that x? is
the optimal point, η can be set as 0 if x = x?, then:

g(∆?) ≤ (2 + 2c)(g(∆?
M) + g(x†M⊥)), (48)

10

and now we are able to bound g(∆x):

g(∆x) ≤ g(∆) + g(∆?)

≤ (2 + 2c)g(∆M) + (2 + 2c)g(∆?
M) + (4 + 4c)g(x†M⊥) +

(1 + c)η

λ

≤ (1 + c)

[
2g(∆M) + 2g(∆?

M) + 4g(x†M⊥) +
η

λ

]
.

then by the definition of the subspace compatibility Φ(M) := supv∈M\{0}
g(v)
‖v‖2 we can write:

g(∆x) = g(x− x?) ≤ (1 + c)

[
2Φ(M)‖x− x?‖2 + 2Φ(M)‖x† − x?‖2 + 4g(x†M⊥) +

η

λ

]
≤ (1 + c)

[
2Φ(M)‖x− x?‖2 + v

]
,

where we denote ε := 2Φ(M)‖x† − x?‖2 + 4g(x†M⊥) and v := η
λ + ε. Then because of the fact that

(a+ b)2 ≤ 2a2 + 2b2 we have:

g2(x− x?) ≤ (1 + c)2
[
8Φ2(M)‖x− x?‖2 + 2v2

]
. (49)

Then we can write:

f(x)− f(x?)− 〈Of(x?), x− x?〉

≥ γ

2
‖x− x?‖22 + τ(1 + c)2

[
8Φ2(M)‖x− x?‖2 + 2v2

]
≥

[
γ

2
− 8τ(1 + c)2Φ2(M)

]
‖x− x?‖22 − 2τ(1 + c)2v2,

which is our first claim. Then because g(.) is convex, we can write:

g(x)− g(x?)− 〈∂g(x?), x− x?〉 ≥ 0, (50)

using the fact that the x? is the optimal point we justify the second claim.

We assume a non-blowout property of the APCG iterates, which essentially means that the iterates
generated by the algorithm will not have a function error too much worse than the error of the starting point:

Definition 3.4 (Non-blowout assumption.) If we start the APCG algorithm at point xt0, we assume that
there exist a positive constant 1 ≤ ω <∞, such that the update sequence {xtk} generated by the algorithm
obeys:

F (xtk)− F ? ≤ ω
(
F (xt0)− F ?

)
, ∀t, k (51)

We claim that such a relaxed non-blowout assumption is indeed mild and reasonable for APCG. We first
recall that the non-accelerated coordinate descent method is guaranteed to not increase the cost function’s
value in each iteration and hence is strictly non-blowout with ω = 1. Meanwhile (Fercoq and Qu, 2017) has
also proved strict non-blowout property with ω = 1 for accelerated full gradient methods. For the moment
it is non-trivial to show this property for APCG and hence we temporarily cast it as a relaxed non-blowout
assumption. Then we present our key lemma for APCG convergence:

11

Lemma 3.5 Given (x?, x†), and denote ε := 2Φ(M)‖x†−x?‖2+4g(x†M⊥), if the regularization parameter
λ and the reference point x† satisfy λ ≥ (1+ 1

c)g
∗(Of(x†)). Assume that the non-blowout assumption holds

with parameter ω, the updates of the second stage of the Two-Stage APCG obeys:

EξtK\ξt−1
K

[F (xt+1
0)]− F ? ≤

(
1−
√
µc

d
√
L

)K
· 2
[
F (xt0)− F ?

]
+ 2τ(1 + c)2

√ L

µc
+ 1

 v2, (52)

where µc = γ
2 − 8τ(1 + c)2Φ2(M), v = η

λ + ε, F (xtk)− F (x?) ≤ η := ω
(
F (xt0)− F ?

)
for all t ≥ 1 and

k, L = maxi Li.

Proof From the definition of RSC we can have:

f(x)− f(x?)− 〈Of(x?), x− x?〉
≥ µc‖x− x?‖22 − 2τ(1 + c)2v2

≥ µc
L
‖x− x?‖2V − 2τ(1 + c)2v2

By observing the main proof of APCG (Lin et al., 2014), we see that there is only one place the strong-
convexity assumption on f(x) is used (after equation 3.20). Hence by replacing the original strong-convexity
with the effective RSC (41) we have the following:

Eitk [f(xtk+1) + λĝtk+1 − F ? +
µc
2L
‖ztk+1 − x?‖2V]

≤
(

1−
√
µc

d
√
L

)
Eitk−1

[f(xtk) + λĝtk − F ? +
µc
2L
‖ztk − x?‖2V] +

2τ(1 + c)2

d
v2,

(the detailed definition of ĝtk can be found in (Lin et al., 2014, Lemma 3.3), which is a convex combination
of g(zt0), g(zt1), g(zt2) g(ztk)) and then we roll up the bound:

Eξtk\ξt−1
K

[f(xtk+1) + λĝtk+1 − F ? +
µc
2L
‖ztk+1 − x?‖2V]

≤
(

1−
√
µc

d
√
L

)k
[F (xt0)− F ? +

µc
2
‖xt0 − x?‖22] +

1− (1−
√
µc/L/d)k−1

1− (1−
√
µc/L/d)

2τ(1 + c)2

d
v2

≤
(

1−
√
µc

d
√
L

)k
[F (xt0)− F ? +

µc
2
‖xt0 − x?‖22] +

2τ(1 + c)2
√
L

√
µc

v2

≤
(

1−
√
µc

d
√
L

)k
[2F (xt0)− 2F ? + 2(1 + c)2τv2] +

2τ(1 + c)2
√
L

√
µc

v2

≤
(

1−
√
µc

d
√
L

)k
· 2
[
F (xt0)− F ?

]
+ 2τ(1 + c)2

√ L

µc
+ 1

 v2

where we utilize the effective RSC again to bound the term µc
2 ‖x

t
0 − x?‖22.

Since ĝtk+1 ≥ g(xtk+1) as declared in (Lin et al., 2014), by simplifying the left hand side we can have:

Eξtk\ξt−1
K

[F (xtk+1)]− F ? ≤
(

1−
√
µc

d
√
L

)K
· 2
[
F (xt0)− F ?

]
+ 2τ(1 + c)2

√ L

µc
+ 1

 v2. (53)

Thus finishes the proof since F (xt+1
0) = F (xtK+1).

12

Now we are ready to present our main result:

Theorem 3.6 Given (x?, x†), and denote ε := 2Φ(M)‖x† − x?‖2 + 4g(x†M⊥), if the regularization pa-
rameter λ and the reference point x† satisfy λ ≥ (1 + 1

c)g
∗(Of(x†)) and we run Two-Stage APCG with

K =

⌈
log 16

log 1
α

⌉
and K0 =

⌈
2φd

√
1 +

‖x00−x?‖2V
2[F (x00)−F ?]

⌉
, then under the non-blowout assumption with param-

eter ω, for any δ > λε, the update of Two-Stage APCG obeys F (xt0) − F ? ≤ δ if the total number of
coordinate-gradient oracle calls N satisfies:

N := tK +K0 ≥

⌈
log 16

log 1
α

⌉
log4

 1
ρφ2

[
F (x0

0)− F ?
]

δ

+

2φd

√
1 +

‖x0
0 − x?‖2V

2[F (x0
0)− F ?]

, (54)

with probability at least 1 − ρ, where α := 1 −
√
µc

d
√
L

, ρ = 24

√
τ(1+c)2ω2[F (x00)−F ?]

λ2φ2

(√
L
µc

+ 1

)
, and

L = maxi Li, µc = γ
2 − 8τ(1 + c)2Φ2(M).

Remarks:

• Theorem 3.6 presents the main theoretical contribution of this paper. We generalize the structural-
analysis framework of (Agarwal et al., 2012) in Lemma 3.3 (that is, we recover their definition of
modified RSC by setting c = 1) and apply it to our two-stage APCG algorithm. This is the first time
in the literature such type of result is shown for randomized first-order method with acceleration.

• The theorem imposes a moderate requirement on the regularization parameter λ, one is λ ≥ (1 +
1
c)g
∗(Of(x†)) and the other one is in the probability statement where the λ again need to be not too

small for meaningful probability. In some sense this should not be a surprise since in a high level
argument, if we want to get a meaningful RSC w.r.t the sparsity of the solution the regularization
should be large enough to both control the sparsity and also the restricted descent directions.

• The periodic restart here is only needed for the achievable proof and in practice if the µc is known
then there is no need to restart the algorithm.

• The parameter φ denotes the accuracy of the first stage where we run a sub-linearly convergent algo-
rithm. From the proposition we see a very natural consequence – the more iteration the initialization
stage takes, the larger φ is and hence the larger the probability for which the statement is going to
hold.

• The contraction factor α = 1−
√
µc

d
√
L

occurs in (54) in a logarithmic term 1
log 1

α

which scales nearly as

1
1−α = d

√
L√
µc

. Hence we conclude that under the assumptions above, the Two-Stage APCG has a local

accelerated linear convergence Ô(d
√

maxi Li
µc

log 1
δ).

Proof Following a similar procedure in (Agarwal et al., 2012) (Qu and Xu, 2016) to roll up the residual
term v2, we also define three auxiliary sequences εt+1/εt = 1

4 and σt+1 = 2σt, and vt = 2ωσtεt
λ for

t > 1; and v0 := F (x0
0) − F ?, v1 =

2ω(F (x10)−F ?)
λ . Since we are focusing on the accuracy regime where

F (xt0)−F ? ≥ λε and the restriction on λ, such definition of the sequence vt enable us to apply Lemma 3.5

13

later, because ω[F (xt0)−F ?]
λ ≥ ε. Then according to (Lin et al., 2014) for the first stage of the algorithm we

have:

Eξ0K0
[F (x0

K0+1)]− F ? ≤
(

2d

2d+K0

)2

[F (x0
0)− F ? +

1

2
‖x0

0 − x?‖2V]

Now let ε1 = 1
φ2

[F (x0
0)− F ?] = 1

φ2
v0, then we can choose

K0 :=

2φd

√
1 +

‖x0
0 − x?‖2V

2[F (x0
0)− F ?]

, (55)

we have Eξ0KF (x1
0)− F ? = Eξ0KF (x0

K0+1)− F ? ≤ ε1, and by Markov inequality, with probability at least
1− 1

σ1
we have:

F (x1
0)− F ? ≤ σ1ε1. (56)

Next we derive the complexity of the second stage. By an induction statement, we are going to demonstrate
that if we choose:

σ1 =

√
λ2φ2

64τ(1 + c)2ω2(
√
L/µc + 1)v0

, K =

⌈
log 16

log 1
α

⌉
, (57)

then we will have:
EξtK (F (xt+1

0)− F ?) ≤ εt
4
, ∀t ≥ 1, (58)

where εt+1/εt = 1
4 and ε1 = 1

φ2
[F (x0

0)− F ?] = 1
φ2
v0, with probability at least 1−

∑t
i=1

1
σi
≥ 1− 2

σ1
:

Induction part 1: We turn to our first outer iteration in the second stage of the algorithm. by Lemma
3.5 we have:

Eξ1K\ξ0K [F (x2
0)]− F ? ≤ αK · 2(F (x1

0)− F ?) + 2τ(1 + c)2

√ L

µc
+ 1

 v2
1, (59)

and then we take expectation over ξ0
K :

Eξ1K (F (x2
0)− F ?) ≤ αK · 2Eξ0K (F (x1

0)− F ?) + 2τ(1 + c)2

√ L

µc
+ 1

 v2
1, (60)

where we need:

2τ(1 + c)2

√ L

µc
+ 1

 v2
1 ≤

ε1
8
, (61)

note that v1 =
2ω(F (x10)−F ?)

λ ≤ 2ωσ1ε1
λ it is enough to satisfy:

2τ(1 + c)2

√ L

µc
+ 1

(2ωσ1ε1
λ

)2

≤ ε1
8

(62)

14

which will be satisfied if (recall that ε1 = 1
φ2
v0):

σ1 =

√
λ2

64τ(1 + c)2ω2ε1(
√
L/µc + 1)

=

√
λ2φ2

64τ(1 + c)2ω2(
√
L/µc + 1)v0

(63)

Then if we choose:

K =

⌈
log 16

log 1
α

⌉
, (64)

we can ensure that:
Eξ1K (F (x2

0)− F ?) ≤ ε1
8

+
ε1
8

=
ε1
4

= ε2. (65)

Induction part 2: For t + 1-th outer iteration, by induction hypothesis on t-th outer iteration which
reads: Eξt−1

K
F (xt0)− F ? ≤ εt−1

4 = εt, we can write:

EξtK\ξt−1
K

(F (xt+1
0)− F ?) ≤ αK · 2(F (xt0)− F ?) + 2τ(1 + c)2

√ L

µc
+ 1

 v2
t , (66)

with probability at least 1− 1
σt

. Then we take expectation over ξt−1
K :

EξtK (F (xt+1
0)− F ?) ≤ αK · 2Eξt−1

K
(F (xt0)− F ?) + 2τ(1 + c)2

√ L

µc
+ 1

 v2
t , (67)

where we need:

2τ(1 + c)2

√ L

µc
+ 1

 v2
t ≤

εt
8
, (68)

since we have chosen that σt = 2σt−1 and εt = 1
4εt−1, then vt = 1

2vt−1, the above inequality is satisfied by
our choice of σ1.

Again if we choose:

K =

⌈
log(16)

log 1
α

⌉
, (69)

we can ensure that:
EξtK (F (xt+1

0)− F ?) ≤ εt
8

+
εt
8

=
εt
4

= εt+1. (70)

Note that:

F (x1
0)− F ? ≤ F (x0

0)− F ?

φ2
, (71)

in summary for Two-Stage APCG if we choose K :=

⌈
log 16

log 1
α

⌉
, if the number of coordinate gradient oracle

calls N satisfies:

N := tK +K0 ≥

⌈
log 16

log 1
α

⌉
log4(

σ1[F (x0
0)− F ?]
φ2δ

) +K0, (72)

Eξt−1
K
F (xt0)− F ? ≤ δ

σ1
and F (xt0)− F ? ≤ δ with probability at least 1− 1

σ1
−
∑t

i=1
1
σi
≥ 1− 3

σ1
. Then

by setting ρ = 3
σ1

we finish the proof.

15

3.1 A potentially better result via applying restart on the first stage

The Two-Stage APCG algorithm analyzed in the previous section consists by two stages: in the first stage
the algorithm runs in an accelerated sub-linear rate to draw close enough to the optimum, then the second
stage algorithm approaches to the optimum in an accelerated linear rate w.r.t the RSC. From the proposition
we see that the trade-off between the effort we spend in the first stage and second stage is reflected in the
parameter φ, which is related to the approximation accuracy of the first stage.

Algorithm 6 Two-Stage APCG+

[Analyzed algorithm]
Inputs: x0

0 and restricted strong-convexity pa-
rameter µc.
Initialize: Choose µ0 ∈ (0, 1], and set K0 =⌈

2
√

3d
√

1 + 1
µ0
− 2d+ 1

⌉
.

1. First stage, start without µc:
for j = 1, . . . , J do

x̂j = APCG0(x̂j−1,K0) (73)

end for
x1

0 = x̂J ;
2. Second stage – exploit local accelerated linear
convergence given by µc:
for t = 1, . . . , T do

xt+1
0 = APCG(xt0,K,

µc
L) (74)

end for
Output: xT+1

0

[Implementation]
Inputs: x0

0 and restricted strong-convexity pa-
rameter µc.
Initialize: Choose µ0 ∈ (0, 1], and set K0 =⌈

2
√

3d
√

1 + 1
µ0
− 2d+ 1

⌉
1. First stage, start without µc:
for j = 1, . . . , J do

x̂j = APCG0(x̂j−1,K0) (75)

end for
x1

0 = x̂J ;
2. Second stage – exploit local accelerated linear
convergence given by µc:

x2
0 = APCG(x1

0, N,
µc
L) (76)

Output: x2
0

In this section we seek to improve the convergence result when the cost function satisfies a weaker form
of strong-convexity, by applying restart at the first stage. We introduce the quadratic growth assumption:

Definition 3.7 The Quadratic Growth of F (x) is defined as:

F (x)− F ? ≥ µF
2
‖x− x?‖22,∀x ∈ Rd. (77)

From already established result in the literature, we know that if we restart the APCG0 periodically (if
quadratic growth µF > 0) we can actually turn it into a linearly convergent algorithm (Fercoq and Qu,
2016). Using this idea we provide an alternative scheme which may lead to a potentially better trade-off on
φ, when µF is not too small and µ0 is a good estimate of µF . Note that the first stage of two-stage APCG+
is an instance of (Fercoq and Qu, 2016, Alg. 4).

Proposition 3.8 Given (x?, x†), and denote ε := 2Φ(M)‖x† − x?‖2 + 4g(x†M⊥), if the regularization
parameter λ and the reference point x† satisfy λ ≥ (1 + 1

c)g
∗(Of(x†)) and we run Two-Stage APCG+

16

with K =

⌈
log 16

log 1
α

⌉
, then under the non-blowout assumption with parameter ω, and also the assumption

that for any x ∈ Rd, F (x) − F ? ≥ µF
2 ‖x − x

?‖22, for any δ > λε, the update of Two-Stage APCG+ obeys
F (xt0)− F ? ≤ δ if the total number of coordinate-gradient oracle calls N satisfies:

N ≥

⌈
log 16

log 1
α

⌉
log4

 1
ρφ2

[
F (x0

0)− F ?
]

δ

+

d
6
√

6 max

(
1
√
µ0
,
L
√
µ0

µF

)
log

(
φ2[F (x0

0)− F ? + d
2d−2‖x

0
0 − x?‖2V]

F (x0
0)− F ?

)
+ 2
√

3

√
1 +

1

µ0

,

with probability at least 1 − ρ, where α := 1 −
√
µc

d
√
L

, ρ = 24

√
τ(1+c)2ω2[F (x00)−F ?]

λ2φ2

(√
L
µc

+ 1

)
, and

L = maxi Li.

We include the proof of this result in the appendix.

4. Adaptive Two-Stage APCG via a simple heuristic procedure for estimating µc

In practice, all the state of the art accelerated randomized algorithms for solving the composite minimization
task (1) require the explicit knowledge of the strong convexity parameter to run with an accelerated linear
convergence rate. For the case where the data fidelity term f(.) is strongly convex, it is difficult in general
to calculate the strong convexity parameter before running the accelerated algorithms, let alone in our case,
the restricted strong convexity. Inspired by the recent work (Fercoq and Qu, 2017) where an adaptive restart
scheme for deterministic full gradient methods based on estimating the quadratic growth (which is a weaker
assumption of strong convexity) via checking the convergence speed on the fly with a provable convergence
speed guarantee, here we propose an adaptive variant of Two-Stage APCG based on a heuristic procedure
for estimating µc on the fly with a small fraction of computational overhead.

Now we describe the intuition of this procedure. First we observe that for F (xk) − F ? < 1, the
convergence speed of the second stage algorithm reads:

EξtK\ξt−1
K

[F (xt+1
0)]− F ? ≤

(
1−
√
µc

d
√
L

)K
· 2
[
F (xt0)− F ?

]
+ 2τ(1 + c)2

√ L

µc
+ 1

 v2

≈
(

1−
√
µc

d
√
L

)K
· 2
[
F (xt0)− F ?

]
+ o

[
F (xt0)− F ?

]
≈

(
1−
√
µc

d
√
L

)K
· 2
[
F (xt0)− F ?

]
.

Directly using this relationship to check the convergence speed is impossible because F ? is unknown be-
forehand in general, but it has been shown in (Fercoq and Qu, 2017, Prop. 4) that F (x)− F ? can be lower
bounded as:

F (x)− F ? ≥ 1

2
‖T (x)− x‖2V , (78)

17

Algorithm 7 Adaptive Two-Stage APCG(x0,K0,K, µc, C)

Inputs: x0, number of iteration K0, K , an initial guess of the restricted strong-convexity parameter
µc > 0, and a constant C ≥ 1.
Initialize: z0 = x0

1. First stage, start without µc:
x0 = APCG0(x0,K0) (80)

2. Second stage – exploit local accelerated linear convergence given by µc:
for k = 1, . . . ,K do

1. Set ak =
√
µc

d
√
L

and compute

yk = xk+akzk
1+a (81)

2. Choose ik ∈ 1, ..., d uniformly at random and compute

zk+1 = arg minx∈Rd
[
da
2 ‖x− (1− ak)zk − akyk‖2V + 〈Oikf(yk), [x]ik〉+ λgik([x]ik)

]
(82)

3. Compute
xk+1 = yk + dak(zk+1 − zk) + da2

k(zk − yk). (83)

4. Modify the estimation of µc every 10 epochs via a convergence speed check:
if mod (k, 10d) == 0
Calculate the composite gradient map:

T (xk+1) = arg minx∈Rd
nL
2 ‖xk+1 − x‖22 + 〈Of(xk+1), x− xk+1〉+ λg(x) (84)

if ‖T (xk+1)− xk+1‖22 ≥ C
(

1−
√
µc

d
√
L

)10d
‖T (xk+1−10d)− xk+1−10d‖22

µc ← µc
2 , ak+1 =

√
µc

d
√
L
, zk+1 = xk+1, (85)

else
µc ← min(L, 2µc), ak+1 =

√
µc

d
√
L
, (86)

end if
if ak+1 ≤ 2−5ak+1−50d then C ← 2C
if ak+1 ≥ 25ak+1−50d then C ← max(1, C2)

end if
end for

Output: xK+1

where T (x) is the composite gradient map:

T (x) = arg min
q∈Rd

nL

2
‖x− q‖2V + 〈Of(x), q − x〉+ λg(q), (79)

18

and meanwhile there is upper bound on F (T (x))− F ? if we assume there is quadratic-growth F (x)−
F ? ≥ µF

2 ‖x− x
?‖22:

F (T (x))− F ? ≤ 8

µF
‖T (x)− x‖2V , (87)

assuming F (xt0)− F ? = O[F (T (xt0))− F ?], we may have:

EξtK\ξt−1
K
‖T (xt+1

0)− xt+1
0 ‖2V .

(
1−
√
µc

d
√
L

)K 32

µF
O[‖T (xt0)− xt0‖2V]

Hence our heuristic procedure’s checking condition is built based on a simplified version of the above
relationship by dropping the expectation:

‖T (xt+1
0)− xt+1

0 ‖2V . C

(
1−
√
µc

d
√
L

)K
‖T (xt0)− xt0‖2V (88)

where the variable C represent the strictness of the condition. In the adaptive algorithm we check the
condition (88) every a number of epochs, if it is violated we suspect that our estimation of µc is too large
and hence we shrink it by a factor of 2 and then restart the second stage algorithm, otherwise we double
the estimate to ensure that we choose the estimation of µc as aggressive as possible. If we observe that
the algorithm is shrinking the µc for a number of times in a row, we suspect that the algorithm’s checking
condition is too strict and hence we double C to relax the condition.

5. Numerical experiments

This section provides the details of numerical results of our Adaptive Two-Stage APCG algorithm on solving
the Lasso regression problem:

x? ∈ arg min
x∈Rd

{
F (x) :=

1

2n
‖Ax− b‖22 + λ‖x‖1

}
, (89)

We set all our examples with A ∈ Rn×d where n < d, hence there is no explicit strong convexity in any part
of F (x). Since in practice the restricted strong convexity of the data-fidelity term f(x) is usually unknown
and difficult to calculate beforehand, in our experiments we apply the adaptive two-stage APCG method
which maintains an estimate of µc on the fly and compare it with state of the art variance-reduced stochastic
gradient algorithms (proximal-) SVRG (Xiao and Zhang, 2014), and Katyusha (Allen-Zhu, 2016, Algorithm
2) which has an accelerated sub-linear convergence rate for non-strongly convex functions. In particular we
also include the vanilla APCG method (Lin et al., 2014, Algorithm 3) as a comparison. All the algorithms
in our experiments do not need explicit knowledge of the (restricted) strong convexity of f(x).

For the Million Song data set we choose a subset of samples and manually add random features. This
represent the scenario where one may wish to use sparse regression via an l1 penalty to nullify the effect of
irrelevant features (Langford et al., 2009). For the Madelon dataset we take the whole training set and add
random features as described in the following table. For all the experiments we run our adaptive two-stage
APCG algorithm with initial estimate µc = 0.1, C = 1 and K0 = 20d. For all the algorithms we use
step-sizes which have been predicted by the theory.

19

Table 1: Chosen data sets for Lasso regression

DATA SET SIZE (n, d) # ADDITIONAL RANDOM FEATURES REFERENCE

YEAR(SUBSET) (1000, 2070) 1980 (LICHMAN, 2013)
REGED (500, 999) 0 (WORKBENCH TEAM, 2008B)
MADELON (2000, 4000) 3500 (LICHMAN, 2013)
MARTI2 (500, 1024) 0 (WORKBENCH TEAM, 2008A)

0 50 100 150 200 250 300 350 400 450

Epochs

-14

-12

-10

-8

-6

-4

-2

0

tr
a
in

in
g
 e

rr
o
r

(l
o
g
)

SVRG

Katyusha

APCG

Adaptive Two-Stage APCG

(a) λ = 1× 10−2, ‖x?‖0 = 39

0 50 100 150 200 250 300 350 400 450

Epochs

-14

-12

-10

-8

-6

-4

-2

0

tr
a
in

in
g
 e

rr
o
r

(l
o
g
)

SVRG

Katyusha

APCG

Adaptive Two-Stage APCG

(b) λ = 5× 10−3, ‖x?‖0 = 292

0 50 100 150 200 250 300 350 400 450

Epochs

-14

-12

-10

-8

-6

-4

-2

0

2

tr
a
in

in
g
 e

rr
o
r

(l
o
g
)

SVRG

Katyusha

APCG

Adaptive Two-Stage APCG

(c) λ = 2× 10−3, ‖x?‖0 = 636

0 50 100 150 200 250 300 350 400 450

Epochs

-10

-8

-6

-4

-2

0

2

tr
a
in

in
g
 e

rr
o
r

(l
o
g
)

SVRG

Katyusha

APCG

Adaptive Two-Stage APCG

(d) λ = 1× 10−3, ‖x?‖0 = 821

Figure 2: Lasso regression on a modified subset of Million-Song Year dataset with additional random fea-
tures (A ∈ R1000×2070)

20

0 50 100 150 200 250 300

Epochs

-14

-12

-10

-8

-6

-4

-2

0

2
lo

g
 e

rr
o

r

SVRG

Katyusha

APCG

Adaptive Two-Stage APCG

(a) λ = 5× 10−5, ‖x?‖0 = 34

0 50 100 150 200 250 300

Epochs

-14

-12

-10

-8

-6

-4

-2

0

2

lo
g

 e
rr

o
r

SVRG

Katyusha

APCG

Adaptive Two-Stage APCG

(b) λ = 2× 10−5, ‖x?‖0 = 80

0 50 100 150 200 250 300

Epochs

-12

-10

-8

-6

-4

-2

0

2

lo
g

 e
rr

o
r

SVRG

Katyusha

APCG

Adaptive Two-Stage APCG

(c) λ = 1× 10−5, ‖x?‖0 = 127

0 50 100 150 200 250 300

Epochs

-7

-6

-5

-4

-3

-2

-1

0

1

2

lo
g

 e
rr

o
r

SVRG

Katyusha

APCG

Adaptive Two-Stage APCG

(d) λ = 5× 10−6, ‖x?‖0 = 209

0 50 100 150 200 250 300

Epochs

-5

-4

-3

-2

-1

0

1

2

lo
g

 e
rr

o
r

SVRG

Katyusha

APCG

Adaptive Two-Stage APCG

(e) λ = 2× 10−6, ‖x?‖0 = 343

0 50 100 150 200 250 300

Epochs

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

lo
g

 e
rr

o
r

SVRG

Katyusha

APCG

Adaptive Two-Stage APCG

(f) λ = 1× 10−6, ‖x?‖0 = 395

Figure 3: Lasso regression on REGED dataset (A ∈ R500×999)

21

0 50 100 150 200 250 300 350 400 450

Epochs

-14

-12

-10

-8

-6

-4

-2

0
tr

a
in

in
g

 e
rr

o
r

(l
o

g
)

SVRG

Katyusha

APCG

Adaptive Two-Stage APCG

(a) λ = 1× 10−3, ‖x?‖0 = 126

0 50 100 150 200 250 300 350 400 450

Epochs

-14

-12

-10

-8

-6

-4

-2

0

tr
a

in
in

g
 e

rr
o

r
(l
o

g
)

SVRG

Katyusha

APCG

Adaptive Two-Stage APCG

(b) λ = 5× 10−4, ‖x?‖0 = 618

0 50 100 150 200 250 300 350 400 450

Epochs

-12

-10

-8

-6

-4

-2

0

tr
a

in
in

g
 e

rr
o

r
(l
o

g
)

SVRG

Katyusha

APCG

Adaptive Two-Stage APCG

(c) λ = 2× 10−4, ‖x?‖0 = 1250

0 50 100 150 200 250 300 350 400 450

Epochs

-8

-7

-6

-5

-4

-3

-2

-1

0

1

tr
a

in
in

g
 e

rr
o

r
(l
o

g
)

SVRG

Katyusha

APCG

Adaptive Two-Stage APCG

(d) λ = 1× 10−4, ‖x?‖0 = 1594

0 50 100 150 200 250 300 350 400 450

Epochs

-8

-7

-6

-5

-4

-3

-2

-1

0

1

tr
a

in
in

g
 e

rr
o

r
(l
o

g
)

SVRG

Katyusha

APCG

Adaptive Two-Stage APCG

(e) λ = 5× 10−5, ‖x?‖0 = 1777

0 50 100 150 200 250 300 350 400 450

Epochs

-6

-5

-4

-3

-2

-1

0

1

2

tr
a

in
in

g
 e

rr
o

r
(l
o

g
)

SVRG

Katyusha

APCG

Adaptive Two-Stage APCG

(f) λ = 2× 10−5, ‖x?‖0 = 1912

Figure 4: Lasso regression on Madelon dataset with additional random features (A ∈ R2000×4000)

22

0 100 200 300 400 500 600

Epochs

-14

-12

-10

-8

-6

-4

-2

0

lo
g
 e

rr
o
r

SVRG

Katyusha

APCG

Adaptive Two-Stage APCG

(a) λ = 5× 10−5, ‖x?‖0 = 25

0 100 200 300 400 500 600

Epochs

-12

-10

-8

-6

-4

-2

0

lo
g
 e

rr
o
r

SVRG

Katyusha

APCG

Adaptive Two-Stage APCG

(b) λ = 2× 10−5, ‖x?‖0 = 48

0 100 200 300 400 500 600

Epochs

-5

-4

-3

-2

-1

0

1

lo
g
 e

rr
o
r

SVRG

Katyusha

APCG

Adaptive Two-Stage APCG

(c) λ = 1× 10−5, ‖x?‖0 = 85

0 100 200 300 400 500 600

Epochs

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

lo
g
 e

rr
o
r

SVRG

Katyusha

APCG

Adaptive Two-Stage APCG

(d) λ = 5× 10−6, ‖x?‖0 = 119

Figure 5: Lasso regression on MARTI2 dataset (A ∈ R500×1024)

These numerical results on real data sets have demonstrated the effectiveness of our approach for ac-
celerating the APCG method via actively exploiting the low dimensional structure of the solution. The
non-adaptive accelerated method like Katyusha and APCG are blind to the potential for the local acceler-
ated linear rate due to the restricted strong convexity. Hence when the solution is relatively sparse, or rather,
the regularization parameter is relatively large for the data set, the adaptive two-stage APCG algorithm
appears to enjoy local linear convergence speed and significantly outperforms these baselines.

It is worth noting that there is a phase transition phenomenon for our method’s performance in all the
experiments, when the solution is not sparse enough (or rather, the regularization is not strong enough), this
local linear convergence indeed disappears, exactly as predicted by our theory. Such phase transition occurs
in various sparsity level which is dependent on the data set itself. For the first three datasets (Year, REGED,
Madelon) this phase transition appears only at a trival sparsity level, but for the fourth dataset (Marti2) we
only observe accelerated linear convergence for our method when the solution is very sparse.

23

6. Acknowledgements

JT, FB, MG and MD would like to acknowledge the support from H2020-MSCA-ITN Machine Sensing
Training Network (MacSeNet), project 642685; ERC grant SEQUOIA; EPSRC Compressed Quantitative
MRI grant, number EP/M019802/1; and ERC Advanced grant, project 694888, C-SENSE, respectively. MD
is also supported by a Royal Society Wolfson Research Merit Award. JT would like to thank Damien Scieur
and Vincent Roulet for helpful discussions during his research visit in SIERRA team.

7. Appendix

7.1 The proof for Thm 2.3 (SAGA convergence result w.r.t. RSC)

Proof This proof relies on our lemma 2.2 and the basic lemmas 1-3 in original SAGA paper (Defazio et al.,
2014) and follows the same spirit of the main theorem’s proof. We start by boudning each part of T k+1:

E

 1

n

∑
i

fi(φ
k+1
i)

 =
1

n
f(xk) + (1− 1

n
)
1

n

∑
i

fi(φ
k
i); (90)

E

− 1

n

∑
i

〈Ofi(x?), φk+1
i − x?〉

 = − 1

n
〈Of(x?), xk − x?〉 − (1− 1

n
)
1

n

∑
i

〈Ofi(x?), φki − x?〉; (91)

and for the third term:

cE‖xk+1 − x?‖22
= cE‖PK(wk+1)− PK(x? − γOOf(x?))‖22
≤ cE‖wk+1 − x? + γOf(x?)‖22
= cE‖xk − x? + wk+1 − xk + γOf(x?)‖22
= c‖xk − x?‖22 − 2cγ〈Of(xk)− Of(x?), xk − x?〉+ cE‖wk+1 − xk + γOf(x?)‖22

Up to now the analysis is exactly the same as in (Defazio et al., 2014), but now we split the second term
−2cγ〈Of(xk) − Of(x?), xk − x?〉 into two part by a constant θ ∈ (0, 1), and bound one of it by the RSC
and the other one by the Lemma 1 in (Defazio et al., 2014):

c‖xk − x?‖22 − 2cγ〈Of(xk)− Of(x?), xk − x?〉+ cE‖wk+1 − xk + γOf(x?)‖22
= c‖xk − x?‖22 − 2cγ(1− θ)〈Of(xk)− Of(x?), xk − x?〉 − 2cγθ〈Of(xk)− Of(x?), xk − x?〉

+cE‖wk+1 − xk + γOf(x?)‖22
≤ c‖xk − x?‖22 − 2cγµc(1− θ)‖xk − x?‖22 − 2cγθ〈Of(xk), xk − x?〉+ 2cγθ〈Of(x?), xk − x?〉

+cE‖wk+1 − xk + γOf(x?)‖22
≤ c‖xk − x?‖22 − 2cγµc(1− θ)‖xk − x?‖22 − 2cγθ〈Of(xk), xk − x?〉+ 2cγθ〈Of(x?), xk − x?〉
−cγ2β‖Of(xk)− Of(x?)‖22 + (1 + β−1)cγ2E‖f ′j(φkj)− f ′j(x?)‖22 + (1 + β)cγ2E‖f ′j(xk)− f ′j(x?)‖22.

24

Then we apply (Defazio et al., 2014, Lemma 1) (with µ = 0) to bound −2cγθ〈Of(xk), xk − x?〉 and
(Defazio et al., 2014, Lemma 2) to bound (1 + β−1)cγ2E‖f ′j(φkj)− f ′j(x?)‖22:

c‖xk+1 − x?‖22 ≤
[
c− 2cγµc(1− θ)

]
‖xk − x?‖22 +

[
(1 + β)cγ2 − cγθ

L

]
E‖f ′j(xk)− f ′j(x?)‖22

−2cγθ[f(xk)− f(x?)− 〈Of(x?), xk − x?〉]− cγ2β‖Of(xk)− Of(x?)‖22

+2(1 + β−1)cγ2L

 1

n

∑
i

fi(φ
k
i)− f(x?)− 1

n
〈Ofi(x?), φki − x?〉

Now we bound ‖Of(xk)− Of(x?)‖22 by Lemma 2.2:

c‖xk+1 − x?‖22 ≤
[
c− 2cγµc(1− θ)

]
‖xk − x?‖22 +

[
(1 + β)cγ2 − cγθ

L

]
E‖f ′j(xk)− f ′j(x?)‖22

−2cγθ[f(xk)− f(x?)− 〈Of(x?), xk − x?〉]
−2cγ2βµc[f(xk)− f(x?)− 〈Of(x?), xk − x?〉]

+2(1 + β−1)cγ2L

 1

n

∑
i

fi(φ
k
i)− f(x?)− 1

n
〈Ofi(x?), φki − x?〉

 .
At here we are ready to write:

E(T k+1)− T k ≤ −1

κ
T k +

[
1

κ
− 2γµc(1− θ)

]
c‖xk − x?‖22

+

[
1

κ
+ 2(1 + β−1)cγ2L− 1

n

] 1

n

∑
i

fi(φ
k
i)− f(x?)− 1

n
〈Ofi(x?), φki − x?〉

+

[
1

n
− 2cγθ − 2cγ2βµc

]
[f(xk)− f(x?)− 〈Of(x?), xk − x?〉]

+

[
(1 + β)cγ2 − cγθ

L

]
E‖f ′j(φkj)− f ′j(x?)‖22.

We denote that:

c1 =
1

n
− 2cγθ − 2cγ2βµc

c2 =
1

κ
+ 2(1 + β−1)cγ2L− 1

n

c3 =
1

κ
− 2γµc(1− θ)

c4 = (1 + β)γ − θ

L

The only remaining task now is to determine the choices of parameters to ensure all these terms are not
positive. We first set c4 = 0, with γ = θ

3L , then β = 2. Next we turn to c1:

c1 =
1

n
− 2cγ2βµc − 2cγθ

=
1

n
− 2cγ (2γµc + θ)

25

By setting c1 = 0 we will get c = 1
2γ(θ+2µcγ)n . Then we turn to c2:

c2 =
1

κ
+ 2(1 + β−1)cγ2L− 1

n

=
1

κ
+

3Lγ

2(θ + 2µcγ)n
− 1

n

=
1

κ
+

1

2(1 + 2µc
3L)n

− 1

n

≤ 1

κ
+

1

2n
− 1

n

=
1

κ
− 1

2n
,

and also c3:

c3 =
1

κ
− 2µcθ(1− θ)

3L
. (92)

Now if we choose 1
κ = min

(
1

2n ,
2µcθ(1−θ)

3L

)
we can ensure both c2 and c3 are non-positive. Then by setting

θ = 0.5 we finishes the proof.

7.2 The proof for Lemma 2.2 (the consequence of cone-restricted strong convexity)

Proof The first claim is straightforwardly obtained by summing up two copies of (11) with x and x? ex-
changed. To proof the second claim we define an auxiliary function ψ(.) with a fix point x?:

ψ(x) := f(x)− 〈Of(x?), x〉, x ∈ K (93)

which has the following property:

ψ′(x) = Of(x)− Of(x?), ψ′(x?) = 0. (94)

Then we can write:

ψ(x?)− ψ(x)− 〈ψ′(x), x? − x〉
= f(x?)− 〈Of(x?), x?〉 − f(x) + 〈Of(x?), x〉 − 〈Of(x)− Of(x?), x? − x〉
= f(x?)− f(x)− 〈Of(x), x? − x〉

≥ µc
2
‖x− x?‖22.

Then we have:

ψ(x?) ≥ ψ(x) + 〈ψ′(x), x? − x〉+
µc
2
‖x? − x‖22

≥ min
v
ψ(x) + 〈ψ′(x), v − x〉+

µc
2
‖v − x‖22

= ψ(x)− 1

2µc
‖ψ′(x)‖22

Substituting in the definition of ψ(.) yields the second claim.

26

7.3 The proof for Prop. 3.8 (Two-Stage APCG+)

Proof Since the first stage here is equivalent to the restarted APPROX presented in (Fercoq and Qu, 2016,
Algorithm 4) with a specific parameter choice, by summarizing the convergence result presented in (Fercoq
and Qu, 2016, Corollary 1), to achieve Eξ0JK0

F (x1
0) − F ? ≤ ε1, it is enough to make the total number of

coordinate gradient oracle calls in the first stage of Two-Stage APCG+ to be:

JK0 ≥

d
6
√

6 max

(
1
√
µ0
,
L
√
µ0

µF

)
log

(
F (x0

0)− F ? + d
2d−2‖x

0
0 − x?‖2V

ε1

)
+ 2
√

3

√
1 +

1

µ0

(95)

Let ε1 = 1
φ2

[F (x0
0)− F ?], we have:

JK0 ≥

d
6
√

6 max

(
1
√
µ0
,
L
√
µ0

µF

)
log

(
φ2[F (x0

0)− F ? + d
2d−2‖x

0
0 − x?‖2V]

F (x0
0)− F ?

)
+ 2
√

3

√
1 +

1

µ0

(96)
Then by using the same argument of induction for the second stage in the Two-Stage APCG proof we prove
the claim.

References

A. Agarwal, S. Negahban, and M. J. Wainwright. Fast global convergence rates of gradient methods for
high-dimensional statistical recovery. In Advances in Neural Information Processing Systems, pages 37–
45, 2010.

A. Agarwal, S. Negahban, and M. J. Wainwright. Fast global convergence rates of gradient methods for
high-dimensional statistical recovery. The Annals of Statistics, 40(5):2452–2482, 2012.

Z. Allen-Zhu. Katyusha: The first direct acceleration of stochastic gradient methods. arXiv preprint
arXiv:1603.05953, 2016.

A. Defazio, F. Bach, and S. Lacoste-Julien. Saga: A fast incremental gradient method with support for
non-strongly convex composite objectives. In Advances in Neural Information Processing Systems, pages
1646–1654, 2014.

Aaron Defazio. A simple practical accelerated method for finite sums. In D. D. Lee, M. Sugiyama,
U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing Sys-
tems 29, pages 676–684. Curran Associates, Inc., 2016. URL http://papers.nips.cc/paper/
6154-a-simple-practical-accelerated-method-for-finite-sums.pdf.

Olivier Fercoq and Zheng Qu. Restarting accelerated gradient methods with a rough strong convexity
estimate. arXiv preprint arXiv:1609.07358, 2016.

Olivier Fercoq and Zheng Qu. Adaptive restart of accelerated gradient methods under local quadratic growth
condition. arXiv preprint arXiv:1709.02300, 2017.

27

http://papers.nips.cc/paper/6154-a-simple-practical-accelerated-method-for-finite-sums.pdf
http://papers.nips.cc/paper/6154-a-simple-practical-accelerated-method-for-finite-sums.pdf

R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance reduction. In
Advances in Neural Information Processing Systems 26, pages 315–323. Curran Associates, Inc., 2013.

Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-gradient
methods under the polyak-łojasiewicz condition. In Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, pages 795–811. Springer, 2016.

Guanghui Lan and Yi Zhou. An optimal randomized incremental gradient method. arXiv preprint
arXiv:1507.02000, 2015.

J. Langford, L. Li, and T. Zhang. Sparse online learning via truncated gradient. Journal of Machine Learning
Research, 10(Mar):777–801, 2009.

M. Lichman. UCI machine learning repository, 2013. URL http://archive.ics.uci.edu/ml.

H. Lin, J. Mairal, and Z. Harchaoui. A universal catalyst for first-order optimization. In Advances in Neural
Information Processing Systems, pages 3384–3392, 2015.

Qihang Lin, Zhaosong Lu, and Lin Xiao. An accelerated proximal coordinate gradient method. In Advances
in Neural Information Processing Systems, pages 3059–3067, 2014.

Y. Nesterov. Gradient methods for minimizing composite objective function. Technical report, UCL, 2007.

Yurii Nesterov. A method of solving a convex programming problem with convergence rate o (1/k2). In
Soviet Mathematics Doklady, volume 27, pages 372–376, 1983.

Atsushi Nitanda. Stochastic proximal gradient descent with acceleration techniques. In Advances in Neural
Information Processing Systems, pages 1574–1582, 2014.

S. Oymak, B. Recht, and M. Soltanolkotabi. Sharp time–data tradeoffs for linear inverse problems. arXiv
preprint arXiv:1507.04793, 2015.

M. Pilanci and M. J. Wainwright. Randomized sketches of convex programs with sharp guarantees. Infor-
mation Theory, IEEE Transactions on, 61(9):5096–5115, 2015.

M. Pilanci and M. J. Wainwright. Iterative hessian sketch: Fast and accurate solution approximation for
constrained least-squares. Journal of Machine Learning Research, 17(53):1–38, 2016.

Chao Qu and Huan Xu. Linear convergence of svrg in statistical estimation. arXiv preprint
arXiv:1611.01957, 2016.

Chao Qu and Huan Xu. Linear convergence of sdca in statistical estimation. arXiv preprint
arXiv:1701.07808, 2017.

Chao Qu, Yan Li, and Huan Xu. Saga and restricted strong convexity. arXiv preprint arXiv:1702.05683,
2017.

Garvesh Raskutti, Martin J Wainwright, and Bin Yu. Restricted eigenvalue properties for correlated gaussian
designs. Journal of Machine Learning Research, 11(Aug):2241–2259, 2010.

28

http://archive.ics.uci.edu/ml

Nicolas L. Roux, Mark Schmidt, and Francis R. Bach. A stochastic gradient method with an exponential
convergence rate for finite training sets. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems 25, pages 2663–2671. Curran Associates,
Inc., 2012.

Shai Shalev-Shwartz and Tong Zhang. Accelerated proximal stochastic dual coordinate ascent for regular-
ized loss minimization. In International Conference on Machine Learning, pages 64–72, 2014.

Ohad Shamir and Tong Zhang. Stochastic gradient descent for non-smooth optimization: Convergence
results and optimal averaging schemes. In ICML (1), pages 71–79, 2013.

Causality workbench team. Measurement artifacts, 09 2008a. URL http://www.causality.inf.
ethz.ch/data/MARTI.html.

Causality workbench team. A genomics dataset, 09 2008b. URL http://www.causality.inf.
ethz.ch/data/REGED.html.

L. Xiao and T. Zhang. A proximal stochastic gradient method with progressive variance reduction. SIAM
Journal on Optimization, 24(4):2057–2075, 2014.

Yuchen Zhang and Xiao Lin. Stochastic primal-dual coordinate method for regularized empirical risk mini-
mization. In Proceedings of the 32nd International Conference on Machine Learning (ICML-15), pages
353–361, 2015.

29

http://www.causality.inf.ethz.ch/data/MARTI.html
http://www.causality.inf.ethz.ch/data/MARTI.html
http://www.causality.inf.ethz.ch/data/REGED.html
http://www.causality.inf.ethz.ch/data/REGED.html

	Introduction
	Stochastic variance-reduced optimization and its acceleration
	Restricted strong-convexity, sparsity, and faster convergence
	This work

	Novel analysis of SAGA algorithm for constrained minimization
	SAGA for constrained finite-sum minimization.
	Minibatch SAGA

	Two-Stage APCG and the convergence analysis
	A potentially better result via applying restart on the first stage

	Adaptive Two-Stage APCG via a simple heuristic procedure for estimating c
	Numerical experiments
	Acknowledgements
	Appendix
	The proof for Thm 2.3 (SAGA convergence result w.r.t. RSC)
	The proof for Lemma 2.2 (the consequence of cone-restricted strong convexity)
	The proof for Prop. 3.8 (Two-Stage APCG+)

