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The three-dimensional �3D� photoelastic interaction involved in the detection mechanism of picosecond
ultrasonics is investigated in micrometric metallic films. In pump-probe experiments, the laser source beam is
focused to a spot size of less than 1 �m. A 3D diffracted acoustic field is generated at high frequencies of
several tens of gigahertz, containing longitudinal and shear waves altogether. Their propagation changes the
dielectric permittivity tensor and the material becomes optically heterogeneous. Consequently, the detection
process is modeled through the propagation of the laser probe beam in a material with dielectric properties
varying in all directions. Thus, the solution of Maxwell’s equations leads to a differential system, the source
term of which is proportional to the acoustic field itself. In the frame of small perturbation theory, the latter is
decomposed into a continuous sum of monochromatic plane waves. The scattered electromagnetic field is
described using the matricant, and the ensuing analytical solution then allows analyzing the 3D photoelastic
interaction. The contribution of acoustic diffraction and shear wave detection to the reflectometric signal is put
into relief. Good agreement with experiments performed in a 1 �m thick aluminum film is found.
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I. INTRODUCTION

Since the early works of Thomsen et al. in the middle of
the 1980s,1,2 the potentialities of picosecond ultrasonics have
been enlarged. This technique allows the noncontact genera-
tion and detection of sound pulses at frequencies of several
tens of gigahertz. Owing to their small wavelengths, the
propagation of these high frequency elastic waves permits
evaluation of mechanical, optical, and thermal properties of
nanometric structures.

Pump-probe experiment is a widespread optical method
based on the use of two laser pulses, one for generation and
the other for detection. The absorption of the pump laser
pulse, the duration of which is a few femtoseconds, creates a
thermal stress through thermoelastic coupling.3 As a result,
the sudden volume expansion launches an acoustic wave
which propagates into the medium. Until recently, only lon-
gitudinal plane waves could be generated. However, for
some applications, such as the measurement of the sample
elasticity, transverse acoustic waves are of great interest.
Their generation has been first achieved by mode conversion
of longitudinal plane waves at the interface of polycrystalline
films deposited on anisotropic substrate with broken symme-
try axis. Their detection was performed, through the interac-
tion of the probe pulse with the acoustic waves, by
reflectometric4 or interferometric5 measurements. Lately,
pumping through a transparent layer directly inside the an-
isotropic medium with tilted axes led to a more efficient way
to obtain plane transverse waves.6,7

Over the years, several laser techniques were developed
for surface wave detection.8–10 Recently, improving the fo-
cusing of the pump beam allowed the imaging of high fre-
quency surface waves.11,12 Besides, bulk wave diffraction ef-
fects were also studied in submillimetric samples by
focusing the laser beam through a microscope objective in
order to reduce the lateral extent of the source. The far field
limit was reached by propagating the acoustic pulse on long

distances at low temperature to diminish acoustic
attenuation.13,14 Lately, increasing the magnification of the
microscope objective, in order to focus the laser beam to a
smaller spot on the surface, has allowed shear wave obser-
vation by interferometric measurements in submicrometric
films.15

In strongly absorbing materials, the probe light is almost
entirely reflected at the free surface, and only its phase is
modified by the surface displacement. Thus, to describe in-
terferometric signals in opaque materials, only the displace-
ment is required,16 and one can solve the equation of motion
for a three-dimensional geometry, without considering any
interaction with the probe beam.15,17,18 As the optical pen-
etration increases, the probe beam senses the in-depth optical
index variation due to the strain propagation. Both phase and
amplitude of the reflected light are affected. To model inter-
ferometric measurements in quasitransparent media, the in-
teraction between the laser probe beam and the three-
dimensional acoustic field must be investigated. On the other
hand, considering reflectometric measurements in any mate-
rial, whatever its optical penetration may be, this acousto-
optic coupling must be taken into account.

In the present paper, a semianalytical model is developed
to investigate the physical processes involved in the picosec-
ond ultrasonics detection. In transversally isotropic media,
the response to a laser point source can be deduced from the
response to a line source focused on the surface of the
material.19 Thus, in this work, the interaction of the laser
probe beam with a two-dimensional acoustic field, generated
by a laser line source with small lateral width, is firstly mod-
eled. Then, the results are extended analytically to account
for the three-dimensional �3D� geometry of the laser point
source.

The strain field, while propagating, changes the optical
properties in all directions through an elasto-optic coupling
phenomenon.20 The material, therefore, becomes optically
heterogeneous and, to describe the electromagnetic propaga-
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tion, Maxwell’s equations must be solved. This formulation
leads to a second-order partial differential system with coef-
ficients varying in two directions. The variation of optical
properties is linearized in one direction with the perturbation
theory in order to apply a spatial Fourier transform. Thereby,
the acoustic field is decomposed into a sum of plane waves.
Assuming the linearity of the acousto-optic coupling, the
core of the calculation is the oblique interaction of the probe
beam with only one acoustic plane wave, with no regard to
any interface.

In picosecond ultrasonics, a matrix formalism has already
been developed to describe the oblique incidence of the
probe laser beam on a plane longitudinal wave.21 Recently,
by introducing the contribution of plane shear waves through
the photoelastic tensor, the differential equations22 were
solved using Green’s functions.23 In the present paper, by
taking into account acoustic diffraction, these calculations
are extended using the matricant.24,25 This mathematical tool
is suited to solve first-order ordinary differential systems, the
coefficients of which may be varying. Thus, the optical dif-
fraction by a medium with continuously varying properties is
calculated analytically, in the time and space Fourier do-
mains, for a line source.

Through the detection of the scattered optical field, the
mechanisms of the three-dimensional elasto-optic interaction
are analyzed. We thereby report on the effects of acoustic
diffraction on the picosecond ultrasonics signal, notably
through the influence of shear waves. By using a classical
pump-probe experimental setup,26 reflectometric measure-
ments are performed. The calculated signals are then com-
pared with the experimental data to study the propagation of
diffracted longitudinal and transverse acoustic pulses, and to
put into relief the effects of acoustic diffraction.

II. ELASTICALLY INDUCED TRANSIENT
OPTICAL HETEROGENEITY

The dominant generation phenomenon in low-intensity ra-
diation interaction with metals is the thermoelastic process.2,3

The pump laser beam penetrates into the material as the elec-
tromagnetic field is absorbed, and the whole illuminated area
acts as a spatiotemporal heat distribution. The latter diffuses
inside the material, and, neglecting the electronic evolutions
which occur in metals,27 the temperature behavior is ruled by
the Fourier equation of heat diffusion.28 The thermal energy
is converted into mechanical energy through a volume dila-
tation of the sample. A thermoelastic stress, proportional to
the gradient of the temperature, is created, and the propaga-
tion of the acoustic displacement is described through the
equation of motion.18

The response to a laser point source can be expressed in
the space domain as the Hankel transform of the Fourier
spectrum of the response to a line source. It is equivalent to
the continuous sum of the responses to line sources with
different orientations on the surface of the material.19 Con-
sidering transversally isotropic media, the axisymmetry of
the physical properties allows calculating the response to
only one line source. Hence, the equations describing the
generation process are written for a laser line source in Car-

tesian coordinates �x1 ,x2 ,x3�. A free isotropic film, the thick-
ness of which is along x1, is modeled. The acoustic waves
are generated by the absorption of radiation of the incident
pump laser beam, focused on the surface along a line in the
direction x3. Due to the symmetry of this configuration, the
acoustic and electromagnetic fields do not depend on x3.

To obtain ordinary differential equations, a spatiotemporal
Fourier transform is applied in the �x2 , t� space. This math-
ematical operation will be denoted by the grapheme tilde
over the letter, and the associated dual space will be referred
to as �k2 ,��. Thereby, the analytical expression of the spec-
trum of the displacement is obtained. The expression of the

strain �2��̃̄ is finally found, calculating the symmetrical gra-
dient of the displacement. Using Auld’s contracted
notation,29 the strain tensor is expressed in its matrix form,
for the geometry previously described:

��̃�x1,k2,��� = ��̃1 �̃6 0

�̃6 �̃2 0

0 0 0
� . �1�

When the optical penetration depth is smaller than the
acoustic wavelength, the probe beam is mainly sensitive to
the displacement of the surface. The amplitude of the re-
flected light is barely affected, but its phase is significantly
modified. In this case, the interferometric response of an
opaque material can be represented by the normal displace-
ment of the free surface of the medium in the direction x1,15

and the acousto-optic interaction can be neglected. However,
if the absorption is weak, the probe beam is sensitive to the
modulation of optical properties created by the in-depth
strain �2��̄. Part of the light penetrates into the material and is
backscattered by the transient change of optical index in-
duced by the acoustic propagation. Thus, optical interfer-
ences, which affect both phase and amplitude of the scattered
light, arise. This phenomenon appears in the reflectometric
signal, as well as in the interferometric response of weakly
absorbing materials through Brillouin oscillations.2 There-
fore, the interaction of the light beam with the diffracted
acoustic field must be taken into account to represent these
detection mechanisms.

This detection process has been fully described for one-
dimensional problems.1,16 Nevertheless, in the case of point
generation and point detection, when pump and probe are at
the same position, experimental signals have demonstrated
the existence of shear waves in polycrystalline aluminum.15

Yet, the latter cannot be generated directly by a thermoelastic
point source in an infinite isotropic material. The presence of
the surface allows launching directly of shear waves T. How-
ever, for symmetry reasons, they can propagate in any direc-
tion but k2=0. Then, when reaching the other interface, to
satisfy the laws of refraction for a given k2�0, they give
birth to reflected shear waves 2T and mode converted longi-
tudinal waves TL. In the same way, longitudinal waves L are
reflected into 2L and converted into LT waves when k2�0.
Since these contributions LT and TL only travel in oblique
directions defined by k2�0, they scatter light in directions
different from the incident one. Therefore, the acoustic dif-
fraction, created by the finite size of the source, imposes to
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study the two-dimensional interaction of the normal inci-
dence probe beam with the acoustic field.

The change of the optical properties of the sample, due to
propagation of the elastic deformation inside the bulk, is de-
scribed through the linear acousto-optic interaction.20 The
variation �2��̄s of the dielectric tensor �2��̄ is related to the

strain by the fourth-order photoelastic tensor �4�P̄ through the

equation �2��̄s= �4�P̄ : �2��̄. For isotropic materials, the follow-
ing matrix form is obtained:

���x1,x2,t�� = �h�I� + ��s�x1,x2,t�� , �2�

with

��s�x1,x2,t��

= �P11�1 + P12�2 P66�6 0

P66�6 P12�1 + P11�2 0

0 0 P12��1 + �2�
�

= ��1
s �6

s 0

�6
s �2

s 0

0 0 �3
s � . �3�

In the absence of any acoustic perturbation, the dielectric
matrix is given by its homogeneous component �h�I�. Due to
longitudinal strain components �1 and �2, the diagonal ele-
ments of ��� are no longer equal. The surface of wave
normals,22 defining the optical phase velocity as a function of
space, is deformed into an ellipsoid. The off-diagonal part,
arising from the shear strain �6, changes the optical principal
axes of the material, and it rotates the surface of wave nor-
mals around the axis x3. These changes are spatially and
temporally modulated by the propagation of the elastic wave,
and the material is made continuously heterogeneous.

III. OBLIQUE LASER INTERACTION
WITH A MONOCHROMATIC

ACOUSTIC HETEROGENEITY

The perturbed dielectric tensor �2� is now introduced in
Maxwell’s equations to describe the optical propagation in a
heterogeneous material. Optical plane wave solutions are
then proscribed, and a differential system, with space de-
pending coefficients, must be considered. A spatiotemporal
Fourier transform in x2 and t was applied in the previous
section. This mathematical operation is considered as a de-
composition of the acoustic field into a continuous sum of
monochromatic plane waves propagating in the direction de-
fined by the wave vector ke= �k1

e ,k2�. The interaction of the
normal incidence probe beam with this sum of acoustic plane
waves is now formalized in the dual space �k2 ,��.

Harmonic solutions at angular frequency � for the electric
and magnetic fields E and H are sought, applying a time
Fourier transform. In the remainder, this operation will not
be indicated explicitly, and the grapheme tilde will only de-
note the double Fourier transform in �x2 , t�. In the same way,
the dependency on � will not be pointed out explicitly, since
it is not a differential variable. The propagation of the elec-

tric field inside a heterogeneous material is then described by
Maxwell’s equations:22

� ∧ H�x1,x2� = − jk0
�2��̄�x1,x2�E�x1,x2� ,

� ∧ E�x1,x2� = jk0�H�x1,x2� , �4�

where k0 is the wave vector in vacuum. In view of amagnetic
materials, the magnetic permittivity � is a scalar constant.
Considering separately the fields E and H leads to a first-
order differential system. When the spatial Fourier transform
is applied in the direction x2, a convolution in the spectral
domain arises from the product �2��̄E. It defines the sum of
the interactions of any component of the optical spectrum
with each component of the elastic spectrum. In order to
analytically solve the differential system in the Fourier do-
main, the convolution term must be suppressed. To do so, the
homogeneous and scattered electromagnetic fields are sepa-
rated, similarly to the dielectric matrix counterparts in
Eq. �2�:

E�x1,x2� = Eh�x1� + Es�x1,x2� ,

H�x1,x2� = Hh�x1� + Hs�x1,x2� , �5�

with �Eh�x1� ,Hh�x1�� denoting the electromagnetic fields
propagating in the homogeneous material along the direction
x1, and �Es�x1 ,x2� ,Hs�x1 ,x2�� standing for the scattered
fields.

In the frame of linear acoustics, the amplitude of the elas-
tic strain remains small ��i�1�, and the formalism of the
problem can be simplified by applying the perturbation
theory.29 The perturbed optical fields �Es ,Hs� and the pertur-
bation ��s� of the dielectric tensor, given by Eq. �2�, are of
the same order of magnitude as the acoustic field. A Taylor
series expansion is performed to the first order to linearize
Eqs. �4�:

� ∧ Eh�x1� − jk0�Hh�x1� = 0,

� ∧ Hh�x1� + jk0�hEh�x1� = 0,

� ∧ Es�x1,x2� − jk0�Hs�x1,x2� = 0,

� ∧ Hs�x1,x2� + jk0�hEs�x1,x2� = − jk0��s�x1,x2��Eh�x1� .

�6�

The left-hand side of this system describes the spatial distri-
bution of the propagative solution, whereas the right-hand
side determines its amplitude. As only the source term de-
pends on ��s� under the first-order assumption, the norm of
the optical wave vectors is not affected by the variation of
optical properties; only the amplitude and the direction of
propagation of the optical field are. Thus the optical field is
scattered in space, but its frequency remains the same.

Linearizing the two-dimensional elasto-optic interaction
has suppressed the product of two x2 dependent functions
�2��̄sE by neglecting the second-order terms in Eq. �4�. The
spatial Fourier transform can now be applied merely to
Eqs. �6�, and no convolution term appears anymore. This
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assumption means that the optical wave diffracted in a direc-
tion with a k2 component by each acoustic plane wave does
not interact with the other acoustic plane waves. Hence, each
acoustic plane wave can be studied separately. In a manner
similar to the formalism described by Miklós and Lörincz,21

the following first-order differential system is found in the
Fourier domain �k2 ,�� from Eqs. �6�:

�f̃ h�x1�
�x1

− �Ah�f̃ h�x1� = 0,

�f̃ s�x1,k2�
�x1

− �Ãs�k2��f̃ s�x1,k2� = �ã�x1,k2��f̃ h�x1� ,

�7�

with

f̃ h�x1� =	
Ẽ3

h

H̃2
h

Ẽ2
h

H̃3
h

, f̃ s�x1,k2� =	

Ẽ3
s

H̃2
s

Ẽ2
s

H̃3
s

 , �8�

�Ah� = jk0�
0 � 0 0

�h 0 0 0

0 0 0 − �

0 0 − �h 0
� = ��A3

h� 0

0 �A2
h�
� ,

�9�

�Ãs� = jk0�
0 � 0 0

�h − k2
2/k0

2� 0 0 0

0 0 0 k2
2/k0

2�h − �

0 0 − �h 0
�

= ��Ã3
s� 0

0 �Ã2
s�
� , �10�

�ã� = jk0�
0 0 0 0

�̃ 3
s 0 0 0

0 0 − k2�̃ 6
s /k0�h 0

0 0 − �̃ 2
s 0

�
= jk0�

0 0 0 0

ã21 0 0 0

0 0 ã33 0

0 0 ã43 0
� = ��ã3� 0

0 �ã2�
� ,

�11�

where �ã� contains the change of optical properties.

The upper-left 2�2 matrices �A3
h�, �Ã3

s�, and �ã3� repre-
sent the propagation of the optical mode polarized along the

axis x3, whereas the lower-right 2�2 matrices �A2
h�, �Ã2

s�,
and �ã2� stand for the polarization in the plane �x1 ,x2�. As

the other submatrices are null, there is no coupling between
these two modes, and no rotation of the scattered polariza-
tion with respect to the incident one is to be expected. The
upper-left matrix system will be denoted with the index
p=3, and the lower-right system with p=2. Thus, the solu-
tion of the problem is split to study separately the influence
of each polarization p. The system �7� is then rewritten to
manipulate smaller 2�2 matrices:

�f̃ p
h�x1�
�x1

− �Ap
h�f̃ p

h�x1� = 0,

�f̃ p
s �x1,k2�
�x1

− �Ãp
s �k2��f̃ p

s �x1,k2� = �ãp�x1,k2��f̃ p
h�x1� ,

�12�

with

f̃ p
q = Ẽp

q

H̃5−p
q � , �13�

where the index q=h and s stands for the homogeneous and
scattered solutions, respectively.

IV. SOLUTION USING THE MATRICANT

The determination of the matrix named matricant, which
defines the solution at any position x1 as a function of the
boundary conditions expressed in x0, allows analytically
solving first-order ordinary differential systems, the coeffi-
cients of which may be a function of the chosen variable
x1.24 This technique is suitable for the study of the propaga-
tion in media with properties varying in one direction.
Hence, the diffraction on inhomogeneities represented by a
continuous or discrete function can be analyzed.25 Multilay-
ered structures could also be examined by defining the suc-
cession of layers as a discrete function of the concerned
properties, without having to specify explicitly the boundary
conditions at each interface.

The differential system �12� is now solved using the ma-
tricant to determine the homogeneous and scattered fields f p

q

for each polarization p. As the dimension of the system �12�
equals 2, it possesses two independent solutions if p

q�x1 ,k2�,
i=1,2. From these, one may construct the integral matrix of
the system Xp

q�x1 ,k2�= �1f p
q�x1 ,k2� , 2f p

q�x1 ,k2��. Introducing a
boundary condition located in x1=x0, Xp

q�x1 ,k2� becomes the

matricant �M̃p
q�x1 ,x0 ,k2��, written for each p ,q matrix sys-

tem as follows:

��M̃p
q�x1,x0,k2��

�x1
= �Ãp

q�k2���M̃p
q�x1,x0,k2�� ,

�M̃p
q�x0,x0,k2�� = �I� . �14�

Using this formalism, as �Ap
q� do not depend on x1, the

matricants �M̃p
q� are expressed as exponentials of �Ap

q�. They
are calculated by diagonalizing �Ap

q� to obtain exponentials of
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its eigenvalues, which are actually the optical wave numbers.
This step is equivalent to finding the optical dispersion equa-
tion, and fixing the origin of the axis x1 at x0=0, the matrices
�Mp

q� are expressed as follows:

�M̃p
q�x1,x0,k2��

= � �ejk1
qx1 + e−jk1

qx1�/2 �ejk1
qx1 − e−jk1

qx1�/2�p
q

�p
q�ejk1

qx1 − e−jk1
qx1�/2 �ejk1

qx1 + e−jk1
qx1�/2

� ,

�15�

with k1
h=k0n, k1

s = �k0
2n2−k2

2�1/2, �3
q=k1

q /k0�, �2
q=−k0� /k1

q, and
n being the refractive index of the material. Owing to the
first-order linearization of Eq. �4�, the projection k1

q of the
optical wave vector in the direction x1 corresponds to the
ordinary wave vector since the material is initially isotropic.
Expression �15� shows that the matricant �Mp

q� connects the
field at any position x1 to the boundary condition at x0 for the
p polarization of the q field, and it can be seen as a propa-
gation matrix. The second equation in Eq. �14� normalizes
the matricants to preserve the amplitude of the solutions. The
scattered electromagnetic field, solution of Eq. �12�, can then
be written as follows:

f̃ p
s �x1,k2� = �Mp

s˜ �x1,x0,k2���m̃�x1,k2��f p
h�x0�

+ �Mp
s˜ �x1,x0,k2��f̃ p

s �x0,k2� , �16�

with

�m̃�x1,k2�� = �
x0

x1

�Mp
s˜ �x1�,x0,k2��−1�ãp�x1�,k2��

��Mp
h�x1�,x0��dx1�, �17�

the coefficients of which are given in the Appendix. The first
and second terms of the right-hand side of expression �16�
represent the propagation of the source term of Eq. �12�
and of the boundary condition, respectively. Thus,
expression �16� will be calculated explicitly in the next sec-
tion by applying boundary conditions. The optical field scat-
tered by the sum of acoustic plane waves will then be ob-
tained by applying an inverse spatial Fourier transform.

V. OPTICAL DETECTION OF ACOUSTIC
DIFFRACTION

The incident electric field Eincejk0x1 propagates in vacuum
in the direction x1, with a wave number k0. Part of its energy
is reflected back at the vacuum-solid interface in the direc-
tion −x1, with a reflection coefficient �rh�. The superposition
of these two contributions defines the homogeneous fields in
vacuum vEh and vHh. Their p components are written as
follows, the quantities denoted with the upper-left index v
being expressed in vacuum �n=1�:

vẼp
h�x1,k2� = �ejk0x1 + rp

he−jk0x1�Ep
inc,

vH̃5−p
h �x1,k2�=v�p

h�ejk0x1 − rp
he−jk0x1�Ep

inc, �18�

with v�p
h = �−1�p−1. The Ep

inc are the amplitude components of
the incident field in the direction p.

The transmitted energy then penetrates inside the mate-
rial. It is backscattered by the in-depth strain, with a coeffi-
cient �r s� which depends on space. This diffracted field
crosses the interface in the direction −x1. Thereby, the scat-
tered fields vEs and vHs, propagating in vacuum, are ex-
pressed as

vẼp
s �x1,k2� = r̃ p

s �k2�Ep
ince−jk0x1,

vH̃5−p
s �x1,k2� = −v�p

s r̃ p
s �k2�Ep

ince−jk0x1, �19�

where v�p
s = �−1�p−1�vk1

s /k0�2p−5 and vk1
s = �k0

2−k2
2�1/2. The ex-

pression of �r̃ s�, defining the amplitude and phase of the
scattered field f s, is calculated by applying boundary condi-
tions. The continuity of the electromagnetic fields at x1=x0
=0 yields eight equations:

Ẽp
h�x0� = �1 + rp

h�Ep
inc,

H̃5−p
h �x0� = �v�p

h�1 − rp
h��Ep

inc,

Ẽp
s �x0,k2� = r̃ p

sEp
inc,

H̃5−p
s �x0,k2� = − v�p

s r̃ p
sEp

inc. �20�

As there are ten unknowns, Ẽ p
h�x0�, H̃ 5−p

h �x0�, Ẽp
s �x0 ,k2�,

H̃5−p
s �x0 ,k2�, and r̃ p

s , two more equations are needed. They
are provided by the addition of a virtual interface. It is as-
sumed that, after a certain distance x1

h, the material is homo-
geneous and only outgoing waves are propagating. The
boundary condition �20� is propagated up to x1

h according
to Eq. �16�, and nullifying the amplitude of the terms in
exp�−jk1

sx1
h� leads to

�m̃7−2p,7−2p�x1
h,k2� −

m̃8−2p,7−2p�x1
h,k2�

�p
s �Ep

h�x0�

+ �m̃7−2p,8−2p�x1
h,k2� −

m̃8−2p,8−2p�x1
h,k2�

�p
s �H5−p

h �x0�

= − Ẽp
s �x0,k2� +

1

�p
s H̃5−p

s �x0,k2� . �21�

If the optical penetration depth, which limits the probed area,
would be greater than the film thickness d, the laser beam
would sense the back surface of the film and would be par-
tialy reflected from this interface. Consequently, in the frame
of this model, x1

h must be less than d. The addition of these
two equations �21�, for p=1,2, allows solving the system.
Introducing Eq. �20� into Eq. �21�, it is found that
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r̃ p
s �k2� =

tp
htp

s �k2�
2

�� m̃8−2p,8−2p

�p
s − m̃7−2p,8−2p�v�p

h +
m̃8−2p,7−2p

�p
s

− m̃7−2p,7−2p� , �22�

with tp
h and tp

s �k2� standing for the transmission coefficients
from vacuum to medium at normal incidence and from me-
dium to vacuum at the scattered angle, respectively. Then,
replacing mij by their expressions given in the Appendix, the
following are obtained:

r̃ 3
s�k2,�� = jk0

t3
ht3

s

2�3
s�

0

x1
h

�̃ 3
s�x1�,k2,��ej�k1

h+k1
s �x1�dx1�,

r̃ 2
s�k2,�� = − jk0

t2
ht2

s

2�2
s�

0

x1
h ��̃ 2

s�x1�,k2,��

−
k2

k1
s �̃ 6

s�x1�,k2,���ej�k1
h+k1

s �x1�dx1�. �23�

The meaning of the analytical expressions �23� shall now
be commented on. The incident beam Einc is scattered in the
direction ks= �k1

s ,k2�. The corresponding electric displace-
ment, namely, the optical vibration, becomes �2��̄sEinc. As the
material is isotropic, the direction ks must be perpendicular
to the direction of scattered polarization Ps= �k2 ,−k1

s�. To re-
spect this condition, the part of the vibration which is scat-
tered is the projection of the modification of electric vibra-
tion �2��̄sEinc on the direction of scattered polarization Ps.
Therefore, the variation of the scattered amplitude is propor-
tional to the scalar product Ps · �2��̄sEinc. Thus, as can be seen
in expression �23�, the beam polarized in the direction x3 is
sensitive to �3

s , and the one polarized in the plane �x1 ,x2� is
sensitive to k1

s�2
s −k2�6

s . As a consequence, if the direction of
scattered polarization Ps is perpendicular to the direction of
variation of optical vibration, there is no effect on the reflec-
tion coefficient. The beam is only sensitive to the optical
variation in the direction of its polarization. For this reason,
to be sensitive to shear strain, an oblique acousto-optic inter-
action is necessary.

To understand the meaning of expressions �23�, the di-
electric perturbation can be decomposed into a continuous
sum of elementary contributions. The acoustic plane wave,
while propagating, creates a grating of optical properties, the
spacing of which is equal to the acoustic wavelength. It can
be represented by a superposition of phase planes, each of
them acting as an optical interface localized in x1�. As plotted
in Fig. 1, they backscatter the incident beam of wave vector
kh= �k1

h ,0� in the direction defined by ks= �k1
s ,k2�, for a fixed

k2 imposed by the spatial Fourier transform. The exponential
terms in Eq. �23� describes the phase delay induced by this
optical path inside the material. Taking into account the
acoustic propagation in both directions ± x1, the components
of ��̃s� in Eq. �2� are proportional to the term exp�±jk1

ex1�.
The argument of the exponential is thereby changed to k1

h

+k1
s ±k1

e, thus describing the conservation of momentum for a
fixed k2.30 The acoustic wave propagation favors two scat-

tered optical wave vectors +ks=ks+ke and −ks=ks−ke. The
other terms in Eq. �23�, defining the amplitude of the expo-
nentials, are related to the reflection coefficient of the laser
beam on the acoustic phase plane. Therefore, they are pro-
portional to �3

s and k1
s�2

s −k2�6
s , respectively, as explained

above.
Finally, the lateral extent of pump and probe is accounted

for, multiplying �r̃s� by the spectrum of functions gb and gr,
respectively. The latter define the spatial distributions along
x2 of the pump and probe pulses as Gaussian shapes of full
width at half maximum �FWHM� 	b and 	r, respectively.
This is equivalent to a single multiplication in the Fourier
domain by a Gaussian function of FWHM 	−1= �	r

2+	b
2�−1/2.

Thus, the smaller the laser spots are, the larger the spectrum
in the k2 space is, and the higher the sensibility to acoustic
diffraction is.

An electric field Einc=Einc�cos 
x2+sin 
x3�, polarized in
the plane �x2 ,x3�, is now taken into account. The variable 

stands for the angle between the polarization of the probe
beam and the axis x2. A combination of the previously cal-
culated coefficients is then made to determine the variation
of scattered amplitude:

r̃ s = r̃ 2
s cos2 
 + r̃ 3

s sin2 
 . �24�

As the material is transversally isotropic, changing the ori-
entation of the line source is equivalent to changing the di-
rection of the polarization. Thus, 
 defines the orientation of
the line source for a fixed polarization.

A point source generation is then obtained by applying a
Hankel transform to the spectrum of the response to a line
source r̃s�k2 ,��.19 It is equivalent to the summation of line
sources of the same Gaussian shape defined by the parameter
	, oriented in different directions 
. This operation is per-
formed by multiplying the spectrum by Bessel functions31 of
the first kind J0 and J1:

rs�x2,�� = �
−�

+� r̃ 2
s�k2J0�− k2x2� +

J1�− k2x2�
x2

�
− r̃ 3

s J1�− k2x2�
x2

�ej�tdk2. �25�

Finally, to return to the time domain, a numerical inverse
Fourier transform is performed over �.

x1

kh

ks
acoustic
plane wave

probe
beam

polarization

x1x3

x2

FIG. 1. Interaction of the normal incidence probe beam with a
single plane wave propagating in an oblique direction.
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VI. THEORETICAL AND EXPERIMENTAL RESULTS

Experiments are carried out with a pump-probe technique
in an isotropic aluminum film of thickness d=0.9 �m, de-
posited on a 3.5 �m thick Mylar substrate. Pulses of energy
of 5 nJ and duration of 100 fs are generated by a Ti:sapphire
laser, the repetition rate of which is 82 MHz. The wave-
length is initially �=796 nm, and the pump beam passes
through a doubling crystal to obtain a wavelength of 398 nm,
which allows reducing the minimum size of the spot due to
diffraction limit. By increasing the probe path, the delay line
allows tuning the time difference between the generation and
the detection pulses to measure the variation of reflectivity in
time. The pump is modulated by an acousto-optic modulator
on reference frequency at 300 kHz to detect the signals in the
probe by lock-in amplification.

Both beams are focused by a microscope objective to
spots on the surface of the film. A �100 magnification is
used with a numerical aperture NA=0.8. As explained in the
previous sections, diffracted acoustic waves scatter the re-
flected light in several space directions. The latter are col-
lected within a certain angle, the size of which must be large
in order to collect the scattered light and to be sensitive to
acoustic diffraction. To estimate the diameters of the spots on
the surface, the space cross correlation of the pump and
probe beams is fitted with a Gaussian shape, the FWHM of
which is 	=1.2 �m.

As the focal length of the objective is very small, both
beams must pass through the same objective. Therefore, a
moving lens is used to change slightly the angle of incidence
of the pump on the objective and to allow displacing the
beam on the surface of the sample.32 If pump and probe are
not at the same position, acoustic waves propagating in ob-

lique directions can be detected. Thus, reflectometric mea-
surements are plotted in Fig. 2 for several pump-probe dis-
tances. The signal background, corresponding to the slow
thermal relaxation of the material, is removed by subtraction
of a polynomial: only the acoustic contribution is repre-
sented. The longitudinal echoes which have performed one
and two round trips inside the material, namely, 2L and 4L,
can be identified from their times of arrival. The periodicity
of their apparition matches the ratio 2d /vL�281 ps, with
vL�6.4 nm/ps the longitudinal velocity in polycrystalline
aluminum.33 Between the two latter, superimposed LT and
TL waves are observed. Then, the pump-probe distance is
increased by moving the lens, and the evolution of the mea-
sured signal is discussed below, based on theoretical simula-
tions.

A theoretical calculation is now performed to represent
the three-dimensional features of the experiments. As the
acoustic impedance of the Mylar substrate is small, a free-
standing isotropic aluminum film is modeled, according to
the thermal and elastic values given in literature.33,34 The
strain is calculated, and the reflectometric detection process
is described using the matricant for two different pump-
probe distances, as plotted in Fig. 3. The photoelastic coef-
ficients are adjusted to P11=−10+5j and P12=−10− j to
match the experimental results. Their amplitude is arbitrary;
only their ratio is relevant.35 As the material is isotropic, it is
assumed that P66= �P11− P12� /2.

The longitudinal echoes and the contribution of the trans-
verse echo LT+TL are very well represented, together with
their times of arrival. The three polar echoes 2L tend to be-
come bipolar as the third pole component is diminishing
when increasing pump-probe distance. This change, together
with the evolution of the shear wave echo, is accurately de-

225 300 375 450 525 600

time (ps)

0 µm

1 µm

4LLT+TL
2L

x3.2

FIG. 2. Measured reflectometric signal in an isotropic aluminum
film deposited on Mylar for pump-probe distances of 0 and 1 �m.
Longitudinal waves 2L and 4L, together with the mode converted
TL and LT waves, are observed.

225 300 375 450 525 600

time (ps)

0 µm

0.8 µm

4LTL+LT

2L

x3

FIG. 3. Calculated reflectometric signal in a free isotropic alu-
minum film for different pump-probe distances: 0 and 0.8 �m. Lon-
gitudinal waves 2L and 4L, together with the mode converted TL
and LT waves, can be observed.
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scribed by the calculations. All these features cannot be rep-
resented by a one-dimensional model, and demonstrate the
necessity to take into account acoustic diffraction in the de-
tection process.

VII. CONCLUSION

The 3D photoacoustic interaction, occurring during the
detection process in picosecond ultrasonics, has been de-
scribed semianalytically. A convenient method to calculate
the electromagnetic field scattered by a medium with con-
tinuously varying properties in one direction has been pre-
sented. Within the frame of small perturbation theory, it has
been applied to a tensorial variation of the optical index in-
duced by the propagation of a three-dimensional acoustic
field.

The small lateral size of the laser source allows genera-
tion of an intricate acoustic field, including mode conversion
and shear wave propagation. These effects modify the dielec-
tric properties through the elasto-optic interaction, deforming
and rotating the surface of optical indices. The linearization
of this coupling, in the direction perpendicular to the orien-
tation of the line source on the surface, suppresses the spec-
tral convolution in the source term of Maxwell equations.
Thus, the change of reflectivity can be expressed analytically
in the Fourier domain using the matricant, and the mecha-
nisms of acousto-optic interaction are explained, since they
now appear explicitly in three-dimensional configurations.
The probe beam is only sensitive to the variation of optical
properties in the direction of its polarization. As a conse-
quence, the detection of shear plane wave requires an oblique
interaction between the acoustic plane wave and the optical
beam. In the present case, this condition is fulfilled by the
acoustic diffraction. Finally, a Hankel transform is applied to
calculate the response to a point source.

Good agreement is found between theoretical results and
reflectometric measurements. Shear wave detection, together
with the effect of acoustic diffraction on the shape of the
echoes, is matched. The elasto-optic interaction modeling in-
troduced in this paper could be applied to the characteriza-
tion of multilayered structures in picosecond ultrasonics,
considering the succession of layers as a discrete change in
properties. Besides, the propagation of longitudinal and shear
waves, together with Rayleigh waves, is included in the so-

lution of the equation of motion. Therefore, the acousto-optic
detection of surface waves, using reflectometric measure-
ments, could be studied in the frame of the proposed model.
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APPENDIX: COEFFICIENTS OF THE EXPANSION
MATRIX

m11 =
k0

�3
s�

0

x1

a21s1
sc1

hdx1�,

m12 =
jk0

�3
h�3

s�
0

x1

a21s1
hs1

sdx1�,

m21 = jk0�
0

x1

a21c1
hc1

sdx1�,

m22 = −
k0

�3
h�

0

x1

a21s1
hc1

sdx1�,

m33 = jk0�
0

x1

a33c1
hc1

sdx1� +
k0

�2
s�

0

x1

a43c1
hs1

sdx1�,

m34 =
jk0

�2
h�2

s�
0

x1

a43s1
hs1

sdx1� −
k0

�2
h�

0

x1

a33s1
hc1

sdx1�,

m43 = k0�2
s�

0

x1

a33c1
hs1

sdx1� + jk0�
0

x1

a43c1
hc1

sdx1�,

m44 =
jk0�2

s

�2
h �

0

x1

a33s1
hs1

sdx1� −
k0

�2
h�

0

x1

a43s1
hc1

sdx1�,

with s1
q=sin�k1

qx1�� and c1
q=cos�k1

qx1�.
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