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I Introduction.

This paper explains and develops the approach recently described by one of the authors in refs. [1,2,[START_REF] Rafael | Mellin-Barnes Approach to HVP and g µ -2[END_REF] to evaluate the hadronic vacuum polarization (HVP)contribution to the the anomalous magnetic moment of the muon a HVP µ . Our motivation is threefold:

1. The persistent discrepancy at the ∼ 4σ level between the experimental determination of the anomalous magnetic moment of the muon [START_REF] Bennett | The g-2 Collab.)[END_REF] a µ (E821 -BNL) = 116 592 089(54) stat [START_REF] Hardy | Twelve Lectures on subjects suggested by his life and work[END_REF] syst × 10 -11 [0.54ppm] ,

and the standard model prediction [START_REF] Th | The Muon (g -2) Theory Value: Present and Future[END_REF] a µ (SM) = 116 591 805 (42) × 10 -11 .

(1.2)

2. The fact that the standard model contribution which at present has the largest error, is the one coming from the lowest order hadronic vacuum polarization (HVP) contribution to a µ (SM), evaluated from a combination of experimental results on e + e -data [START_REF] Davier | [END_REF]7,8,9]:

a HVP µ = (6.931 ± 0.034) × 10 -8 [8] and a HVP µ = (6.933 ± 0.025) × 10 -8 [9] .

(1.3)

3. The possibility of an alternative evaluation of a HVP µ , either based on QCD first principles with the help of lattice QCD (LQCD) simulations (see e.g. refs. [10] to [19]), or on new dedicated experiments as proposed in ref. [20].

The standard representation of a HVP µ used in the experimental determinations is the one in terms of a weighted integral of the hadronic spectral function 1 π ImΠ(t):

a HVP µ = α π ∞ 4m 2 π dt t 1 0 dx x 2 (1 -x) x 2 + t m 2 µ (1 -x) 1 π
ImΠ(t) .

(1.4)

Thanks to the optical theorem, the hadronic spectral function is obtained from the total e + e -crosssection into hadrons via one photon annihilation (m e → 0) σ(t) [e + e -→(γ)→Hadrons] = 4π 2 α t 1 π ImΠ(t) .

(1.5)

We observe that the integrand in Eq. (1.4) can be rearranged in a way:

a HVP µ = α π 1 0 dx (1 -x) ∞ 4m 2 π dt t x 2 1-x m 2 µ t + x 2 1-x m 2 µ 1 π ImΠ(t) , (1.6) 
which explicitly displays the dispersion relation between the hadronic spectral function and the renormalized hadronic photon self-energy in the euclidean:

-Π(Q 2 ) = ∞ 4m 2 π dt t Q 2 t + Q 2 1 π ImΠ(t) , with Q 2 ≡ x 2 1 -x m 2 µ ≥ 0 , (1.7) 
and therefore [21,22] a HVP µ = -α π

1 0 dx (1 -x) Π x 2 1 -x m 2 µ .
(1.8)

Trading the Feynman parameter x-integration by a Q 2 -integration results in a slightly more complicated expression

a HVP µ = α π ∞ 0 dQ 2 Q 2 Q 2 4m 2 µ + Q 2   4m 2 µ + Q 2 -Q 2 4m 2 µ + Q 2 + Q 2   2 [-Π(Q 2 )] , (1.9) 
which is the one proposed for LQCD evaluations [23]. Because of the weight function in the integrand of Eq. (1.9), the integral is dominated by the low-Q 2 behaviour of the hadronic self-energy function Π(Q 2 ). The natural question which then arises is: What is the best way to help LQCD evaluations (see e.g. refs. [10] to [19]), or dedicated experiments [20], to evaluate this integral when only limited information about Π(Q 2 ) at low Q 2 values is available? The answer that we propose follows the way initiated in ref. [2]. It is based on Mellin-Barnes techniques which we shall describe below and which we shall illustrate with several examples. As we shall see, this is a very powerful method compared to other approaches discussed in the literature (see e.g. refs. [24,25,26] and references therein).

The paper has been organized as follows. The next section is an introduction to the QCD properties of the Mellin transform of the HVP spectral function. Section III is dedicated to a few ingredients, which are required to understand and justify the method that we propose. The subsection III.3 is particularly technical since it justifies mathematically the underlying approach and the restriction to the subclass of Marichev-like Mellin approximants given in Eq. (3.30). For those who are just interested in the applications, it can be escaped in a first reading. Section IV illustrates the application of Mellin-Barnes approximants (MBa) to vacuum polarization in QED at the two loop level. Section V tests the advocated technique of MBa with experimental HVP moments. It shows how the successive MBa approach the experimental determination of a HVP µ . The conclusions with an outlook on future work are given in Section VI. A few technical details have been included in an Appendix.

II The Mellin Transform of the Hadronic Spectral Function.

In QCD the hadronic spectral function is positive and goes asymptotically to a constant (q i denotes the charge, in electric charge units, of an active quark with flavour i ) :

1 π ImΠ(t) ∼ t→∞ α π i q 2 i 1 3 N c [1 + O(α s )] , (2.1) 
with perturbative QCD (pQCD) α s -corrections known up to four loops. The moment integrals

∞ t0 dt t t 0 t 1+n 1 π ImΠ(t) , t 0 = 4m 2 π ± , n = 0, 1, 2 • • • , (2.2) 
are therefore well defined and the dispersion relation in Eq. (1.7) relates them to successive derivatives of the hadronic self-energy function Π(Q 2 ) at the origin:

∞ t0 dt t t 0 t 1+n 1 π ImΠ(t) = (-1) n+1 (n + 1)! (t 0 ) n+1 ∂ n+1 (∂Q 2 ) n+1 Π(Q 2 ) Q 2 =0
, n = 0, 1, 2, • • • .

(2.3)

In fact, as pointed out a long time ago [27], the first moment for n = 0 provides a rigorous upper bound to the muon anomaly because, going back to Eq. (1.6):

a HVP µ = α π ∞ 4m 2 π dt t 1 0 dx x 2 (1 -x) x 2 + t m 2 µ (1 -x) < x 2 t m 2 µ 1 π ImΠ(t) = α π 1 3 m 2 µ t 0 ∞ 4m 2 π dt t t 0 t 1 π ImΠ(t) = α π 1 3 m 2 µ t 0 -t 0 ∂ ∂Q 2 Π(Q 2 ) Q 2 =0
.

(2.4)

In the case of the anomalous magnetic moment of the electron, because of the small electron mass as compared to hadronic scales, this upper bound gives practically the value of the full contribution

a HVP e α π 1 3 ∞ 4m 2 π dt t m 2 e t 1 π ImΠ(t) . (2.5)
The relation

∞ 4m 2 π dt t 1 t 1 π ImΠ(t) = - ∂ ∂Q 2 Π(Q 2 ) Q 2 =0 , (2.6) 
where the l.h.s. is accessible to an experimental determination and the r.h.s. to a LQCD evaluation, provides therefore an excellent comparative test of the two approaches. Quite generally, the moments in Eq. (2.2) obey constraints which follow from the positivity of the spectral function and may provide useful tests to LQCD determinations. We discuss these constraints in the Appendix. The moment integrals in Eq. (2.2) can be generalized to a function, which is precisely the Mellin transform of the hadronic spectral function 1π ImΠ(t) defined as follows [1]:

M 1 π ImΠ(t) (s) ≡ M(s) = ∞ t0 dt t t t 0 s-1 1 π ImΠ(t) , t 0 = 4m 2 π ± , -∞ ≤ Re(s) < 1 , (2.7)
where, for practical purposes, we normalize the spectral function t-variable to the two-pion threshold value 1 . With this normalization M(s) is dimensionless and a monotonously increasing function for real s in ] -∞, 1], a fact which follows from the positivity of its derivative in that range:

M (s) ≡ d ds M(s) = ∞ t0 dt t t t 0 s-1 log t t 0 1 π ImΠ(t) , -∞ ≤ Re(s) < 1 . (2.8) 
This implies that M(s) can have neither poles nor zeros in the negative Re(s) axis.

In QCD, the Mellin transform M(s) is singular at s = 1 with a residue which is fixed by the pQCD asymptotic behaviour of the spectral function in Eq. (2.1). The contribution from the u, d, s, c, b and t quarks gives

M(s) ∼ s→ 1 α π 4 9 + 1 9 + 1 9 + 4 9 + 1 9 + 4 9 N c 1 3 1 1 -s + O(α s ) .
(2.9)

The function M(s) is then defined by the integral in Eq. (2.7) for Re(s) < 1 and extended to the whole complex s-plane by analytic continuation. The spectral function moments are, therefore, the particular values of M(s) at s = 0 , -1 , -2 , -N with integer N . As discussed in refs. [1,2] there exists a representation of Π(Q2 ), and hence of the anomaly a HVP µ , in terms of the Mellin transform M(s). This follows from inserting the Mellin-Barnes identity 2

1 1 + Q 2 t = 1 2πi cs+i∞ cs-i∞ ds Q 2 t -s Γ(s)Γ(1 -s) (2.10)
in the dispersion relation in Eq. (1.7), which results in the representation .11) The corresponding integral representation for the Adler function is then .11) and inserting it in the r.h.s. of Eq. (1.8) we have

Π(Q 2 ) = - Q 2 t 0 1 2πi cs+i∞ cs-i∞ ds Q 2 t 0 -s Γ(s)Γ(1 -s) M(s) , c s ≡ Re(s) ∈]0, 1[ . ( 2 
A(Q 2 ) ≡ -Q 2 ∂Π(Q 2 ) ∂Q 2 = 1 2πi cs+i∞ cs-i∞ ds Q 2 t 0 1-s Γ(s)Γ(2 -s) M(s) , c s ≡ Re(s) ∈]0, 1[ . (2.12) Setting Q 2 = x 2 1-x m 2 µ in the representation of Π(Q 2 ) in Eq. ( 2 
a HVP µ = - α π 1 0 dx (1 -x) Π x 2 1 -x m 2 µ (2.13) = α π 1 0 dx (1 -x) 1 2πi cs+i∞ cs-i∞ ds x 2 1-x m 2 µ t 0 1-s Γ(s)Γ(1 -s) M(s) . (2.14)
The integral over the x-parameter can now be made analytically, leading to the expression [1] a

HVP µ = α π m 2 µ t 0 1 2πi cs+i∞ cs-i∞ ds m 2 µ t 0 -s F(s) M(s) , c s ≡ Re(s) ∈]0, 1[ , (2.15) 
where F(s) is the explicitly known function

F(s) = -Γ(3 -2s) Γ(-3 + s) Γ(1 + s) , (2.16) 
and the hadronic dynamics is entirely factorized in the Mellin transform M(s).

As discussed in ref. [1] the Mellin-Barnes representation in Eq. 

F(s)

1 3 1 s - 1 (s + 1) 2 + 25 12 1 s + 1 - 6 (s + 2) 2 + 97 10 1 s + 2 - 28 (s + 3) 2 + 208 5 1 s + 3 + • • • , (2.17) 
and using the converse mapping theorem of ref. [28] which relates in a precise way the singularities in the complex s-plane of the integrand in Eq. (2.15) to the successive terms of the (N ) result. The numerical integration in Eq. (2.15) being made, for a fixed c s value within the fundamental strip, along the corresponding imaginary axis. 

-2 -1 0 1 2 0 0.2 0.4 0.6 0.8 τ Re F 1 2 -iτ , Im F 1 2 -iτ
s → 1 2 -iτ , (2.19) 
the integral in Eq. (2.15) becomes then a Fourier transform:

a HVP µ = α π m 2 µ t 0 1 2π +∞ -∞ dτ e iτ log m 2 µ t 0 F 1 2 -iτ M 1 2 -iτ . (2.20)
Because of the shape of the F 1 2iτ function and the growth restrictions on M 1 2iτ for large τ , which are fixed by the fact that Π(Q 2 ) obeys a dispersion relation in QCD, the Fourier transform above is fully dominated by the behaviour of the integrand in a very restricted τ -interval, -T ≤ τ ≤ +T with T of order one.

III Some Technical Ingredients.

We shall next recall a few technical ingredients which in the literature go under the name of: Ramanujan Master Theorem, Marichev class of Mellin transforms, Generalized Hypergeometric Functions and Meijer's G-Functions. They are necessary to implement and justify the MBa framework that we propose.

III.1

The so called Ramanujan's Master Theorem.

Consider a function F (x) which admits a power series expansion

F (x) ∼ x→0 λ(0) -λ(-1)x + λ(-2)x 2 -λ(-3)x 3 + • • • . (3.1)
Ramanujan's theorem refers then to the formal identity [START_REF] Berndt | Ramanujan's Notebooks, Part I[END_REF] ∞

0 dx x s-1 λ(0) -λ(-1)x + λ(-2)x 2 -λ(-3)x 3 + • • • = Γ(s)Γ(1 -s)λ(s) , (3.2) 
and implies that the Mellin transform of F (x) is given by

∞ 0 dxx s-1 F (x) = Γ(s)Γ(1 -s)λ(s) . (3.3) 
The function λ(s), extended over the full complex s-plane, can be simply obtained from the discrete n-functional dependence of the λ(-n) coefficients of the Taylor expansion of F (x) by the formal replacement n → -s. The proof of this beautiful theorem was provided by Hardy [START_REF] Hardy | Twelve Lectures on subjects suggested by his life and work[END_REF] and it is based on Cauchy's residue theorem as well as on the Mellin-Barnes representation. The basic assumption in Hardy's proof is a growth restriction on |λ(s)| which assures that the series λ(0)λ(-1)x + λ(-2)x 2λ(-3)x 3 + • • • has some radius of convergence. In our case F (x) will be the hadronic photon selfenergy function Π(Q 2 ), with x ≡ Q 2 t0 , and Hardy's growth restriction is equivalent to the one required to write a dispersion relation for Π(Q 2 ).

At small Q 2 values, the hadronic photon self-energy function Π(Q 2 ) in QCD has indeed a power series expansion:

- t 0 Q 2 Π(Q 2 ) ∼ Q 2 →0 M(0) - Q 2 t 0 M(-1) + Q 2 t 0 2 M(-2) - Q 2 t 0 3 M(-3) + • • • , (3.4) 
and the coefficients M(0), M(-n), n = 1, 2, 3, . . . are precisely the moments of the spectral function defined in Eq. (2.3). Ramanujan's theorem implies then that

∞ 0 d Q 2 t 0 Q 2 t 0 s-1 M(0) - Q 2 t 0 M(-1) + Q 2 t 0 2 M(-2) + • • • = Γ(s)Γ(1 -s) M(s) , (3.5) 
and it allows, in principle, to reconstruct the Mellin transform M(s) in the full complex s-plane from just the knowledge of the discrete moments M(-n), n = 0, 1, 2, 3, • • • . Another interesting property of the Mellin transform in Eq. (2.7), based on the so called Basic Abelian Theorem [START_REF] Ph | [END_REF], is the fact that the behaviour of the leading term in the expansion of M(-n) for n → ∞, is correlated to the leading term in the threshold expansion of the spectral function 1 π ImΠ(t) 5 . In what follows we shall not implement this as a constraint but it can be used as a check of how well the successive parameterizations satisfy this threshold property. III.1.1 A simple example: QED at the one loop level.

Let us illustrate Ramanujan's theorem with a simple example: the lowest order vacuum polarization in QED induced by a fermion of mass m. The Taylor expansion in this case is given by coefficients which are easily calculable:

- 4m 2 Q 2 Π QED (Q 2 ) ∼ Q 2 →0 n=0 ,1 ,2 ,... (-1) n Q 2 4m 2 n α π 1 n + 1 √ π 4 Γ(3 + n) Γ( 7 2 + n) , (3.6) 
and the moments of the lowest order QED spectral function are then

M QED (-n) = α π 1 n + 1 √ π 4 Γ(3 + n) Γ( 7 2 + n) , n = 0 , 1 , 2 , 3 , • • • . (3.7)
Ramanujan tells us that, without doing the analytical calculation of the full Mellin transform of the spectral function, one can get the result from the simple replacement n → -s in these moments and that gives the function M QED (s) extended to the full s-plane i.e., the simple replacement:

α π 1 n + 1 √ π 4 Γ(3 + n) Γ( 7 2 + n) ⇒ (n→-s) α π √ π 4 1 1 -s Γ(3 -s) Γ( 7 2 -s) ≡ M QED (s) , (3.8) 
gives the analytic result of the Mellin transform

M QED (s) = ∞ 4m 2 dt t t 4m 2 s-1 1 π ImΠ QED (t) , (3.9) 
where

1 π ImΠ QED (t) = α π 1 3 1 + 2m 2 t 1 - 4m 2 t θ(t -4m 2 ) . (3.10) 
We shall soon come back to a discussion of further aspects of this simple QED example.

III.2 Marichev's Class of Mellin Transforms.

The class in question is the one defined by standard products of gamma functions of the type

M(s) = C i,j,k,l Γ(a i -s)Γ(c j + s) Γ(b k -s)Γ(d l + s) , (3.11) 
with constants C, a i , b k , c j and d l and where the Mellin variable s only appears with a ± coefficient.

The interesting thing about this class of functions is that all the Generalized Hypergeometric Functions have Mellin transforms of this type [START_REF] Marichev | Handbuch of Integral Transforms of Higher Transcendental Functions: Theory and Algorithmic Tables[END_REF]. As a result, many functions have a representation in terms of Mellin-Barnes integrals involving linear combinations of standard products of the Marichev type in Eq. (3.11). 6The Mellin transform of the lowest order QED Spectral Function in Eq. (3.9) is certainly of this type, (notice that 1 1

-s = Γ(1-s) Γ(2-s) ) M QED (s) = α π √ π 4 Γ(1 -s) Γ(2 -s) Γ(3 -s) Γ( 7 2 -s) . (3.12)
Furthermore, we observe that in this case, without explicitly knowing the QED Spectral Function π ImΠ QED (t), it is possible to reconstruct its full Mellin transform M QED (s) from the knowledge of just three moments which, for example, we can choose to be:

• The asymptotic behaviour of 1 π ImΠ QED (t) when t → ∞ which requires that

M QED (s) ∼ s→1 α π 1 3 1 1 -s , (3.13) 
• And the values of the first and second moments:

M QED (0) = α π 4 15 and M QED (-1) = α π 4 35 . (3.14)
Indeed, setting M QED (s) to be of the particular Marichev form:

M QED (s) . = α π 1 3 Γ(1 -s) Γ(2 -s) Γ(c -1) Γ(c -s) Γ(d -s) Γ(d -1) , (3.15) 
which already incorporates the constraint in Eq. (3.13), and solving the matching conditions to the two moments in Eq. (3.14) results in two simple equations for the c and d parameters:

d -1 c -1 = 4 5
, and

d c = 6 7 (3.16)
with solutions c = 7 2 and d = 3 and, therefore, the result in Eq. (3.12) follows. This is quite impressive. It means that the full shape of the Mellin transform M QED (s) as a function of s, which is partly shown in Fig. (2), can be fully reconstructed from its knowledge at just three points, which in our case we have chosen to be the three dots in the figure corresponding to s = 1, s = 0 and s = -1.

In this particular QED example, the behaviour of the leading term in the expansion of

M QED (-n) for n → ∞ is M QED (-n) ∼ n→∞ α π √ π 4 1 n n 3-7 2 = α π √ π 4 n γ , with γ = -3/2 , (3.17) 
which, according to the Basic Abelian Theorem [START_REF] Ph | [END_REF], and in terms of the threshold variable

δ = 1 - t 0 t , (3.18) 
implies that

ImΠ(t) ∼ δ→0 - α π √ π 4 1 δ 2 Γ(γ + 1) δ -2γ , (3.19) 
and reproduces the exact behaviour of the spectral function in Eq. (3.10) at threshold:

1 π ImΠ QED (t) ∼ t→t0 α π 1 2 δ . (3.20) 
III.3 Convergence Criteria of Mellin-Barnes Integrals.

It may not have escaped the attention of the alert reader that in the discussion of the previous QED example, the choice of Eq. (3.15) was a particular choice of a Marichev-like function. Why this choice and not one e.g. with all the Gamma functions in the numerator or in the denominator, and why not choices with +s instead of -s ? The reason for the particular choice we made is that, as already mentioned regarding the Mellin transform of the spectral function in QCD, the QED Mellin transform M QED (s) is also a monotonously increasing function from Re(s) = -∞ to Re(s) = 1. This implies that M QED (s) cannot have either poles or zeros in the negative Re(s) axis. Furthermore, the function Π QED (Q 2 ) is known to be analytic except for a cut from t = 4m 2 to t = ∞. These are very general properties, also shared by the QCD vacuum polarization function, which imply precise restrictions on the subclass of Marichev functions that one must use when trying to implement successive approximations and which we shall next discuss.

In that respect we have been particularly helped by some relatively recent mathematical literature [START_REF] Paris | Asymptotics and Mellin-Barnes integrals[END_REF][START_REF] Passare | A multidimensional Jordan residue lemma with an application to Mellin-Barnes integrals[END_REF][START_REF] Passare | Multiple Mellin-Barnes integrals as periods of Calabi-Yau manifolds with several moduli[END_REF]. The authors of these references have studied the general conditions for the convergence of a very general class of Mellin-Barnes integrals, which include those of the Marichev class, and their results can be summarized as follows.
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Shape of the QED Mellin transform M QED (s) (in blue) as a function of s. M QED (s) is fully reconstructed from its knowledge at just the three red points.

Consider the rather general type of Mellin-Barnes integral

I(z) = 1 2πi c+i∞ c-i∞ ds z -s m j=1 Γ(A j s + B j ) n k=1 Γ(C k s + D k ) . (3.21) 
In our case this will apply to the Mellin-Barnes integral in Eq. (2.11) where

z ≡ Q 2 t 0 and I(z) ≡ - t 0 Q 2 Π(Q 2 ) , (3.22) 
as well as to the Mellin-Barnes integral in Eq. (2.15) where

z ≡ m 2 µ t 0 and I(z) ≡ a HVP µ (z) . (3.23)
Quite generally, the authors of refs. [START_REF] Paris | Asymptotics and Mellin-Barnes integrals[END_REF][START_REF] Passare | A multidimensional Jordan residue lemma with an application to Mellin-Barnes integrals[END_REF] have studied the properties of the mapping which integrals like those in Eq. (3.21) establish between the Mellin s-plane and the z-plane. This is illustrated in Fig. [START_REF] Rafael | Mellin-Barnes Approach to HVP and g µ -2[END_REF] where the crosses denote the positions of the poles in the integrand of Eq. (3.21): in blue the poles at the left of the fundamental strip (represented by the green strip in the figure) and in red at the r.h.s. of the fundamental strip. In the z-plane we show the disc |z| ≤ R in blue, with R the radius of convergence, and the cut starting at Re(z) ≥ R7 . The converse mapping theorem of ref. [28] relates in a precise way the singularities in the complex s-plane of the integrand in Eq. 3)). Following refs. [START_REF] Paris | Asymptotics and Mellin-Barnes integrals[END_REF][START_REF] Passare | A multidimensional Jordan residue lemma with an application to Mellin-Barnes integrals[END_REF][START_REF] Passare | Multiple Mellin-Barnes integrals as periods of Calabi-Yau manifolds with several moduli[END_REF] we are instructed to consider the two quantities:

∆ . = m j=1 A j - n k=1 C k and α . = m j=1 |A j | - n k=1 |C k | . (3.24)
Then, the region where the integral I(z) converges is | arg z| < π 2 α (see e.g. [START_REF] Paris | Asymptotics and Mellin-Barnes integrals[END_REF]), and there are three cases to be considered [START_REF] Passare | A multidimensional Jordan residue lemma with an application to Mellin-Barnes integrals[END_REF][START_REF] Passare | Multiple Mellin-Barnes integrals as periods of Calabi-Yau manifolds with several moduli[END_REF]:

s z Figure 3:
Mapping of the Mellin s-Plane to the z-plane.

• If ∆ > 0, closing the integration contour to the left leads to a series representation of the integral I(z) which converges for any value of z, but closing the contour to the right gives a divergent asymptotic expansion.

• If ∆ < 0, closing the contour to the right leads to a series representation of I(z) which converges for any value of z, but closing the contour to the left gives a divergent asymptotic expansion.

• If ∆ = 0, closing the contour to the left and to the right gives two convergent series, the first series obtained by closing to the left converges within a disk |z| < R whereas the other one converges outside this disk. Moreover, if α > 0, the two series are the analytic continuation of each other.

These three cases are illustrated in Fig. [START_REF] Bennett | The g-2 Collab.)[END_REF].

∆ > 0 div. conv. ∆ < 0 conv. div. ∆ = 0 conv. conv.

Figure 4:

Behaviour of the series expansions of I(z) depending on the sign of ∆ for |z| < R (the blue region) and |z| > R. The label div. denotes the regions where the asymptotic expansion is divergent or does not exist. The cut is represented by the green zigzag line.

We are now in the position of fixing the class of successive Mellin approximants M N (s) that we should use to ensure that they converge in the same way as the full QCD Mellin transform M(s) does. Associated to each M N (s) approximant there will be a corresponding Π N (Q 2 ) approximant to Π(Q 2 ) (via Eq. (2.11)) and, therefore, a corresponding a HVP µ (N ) approximant to a HVP µ (via Eq. (2.20)). The input will be that we know the values of the first few moments

M(0) , M(-1) , M(-2) , • • • , M(-N + 1) , (3.25) 
including their errors and their correlation matrix, either from a LQCD determination or from a dedicated experiment. Given this input, we shall then restrict the successive Marichev-like Mellin approximants in Eq. (3.11) to those satisfying the following criteria:

1. The fundamental strip of each Mellin approximant M N (s) must be the same as the one of the full Mellin transform M(s), so that the insertion of M N (s) in the r.h.s. of Eq. (2.15) does not change the convergence region c s ≡ Re(s) ∈]0, 1[ of the exact Mellin transform.

In practice, due to the fact that the sequence of poles from Γ(a is) is at s = a i + n and the one from Γ(c j + s) at s = -c jn with n ∈ N implies the restrictions:

Re a i ≥ 1 and Re c j ≥ 0 .

(3.26)

2. The Mellin approximant M N (s) should not generate poles nor zeros in the region -∞ < Re(s) < 1, where M(s) is known to be monotonously increasing. Since Re c j ≥ 0, no poles for Re(s) < 1 implies the absence of factors Γ(c j + s) or j max = 0. No zeros for

M N (s) in the region -∞ < Re(s) < 1 implies Re b k ≥ 1. (3.27)
3. We also want the corresponding Π N (Q 2 )-function (see Eq. (3.33) below) to the Mellin approximant M N (s) to converge for z ≡ Q 2 t0 both for |z| < 1 and |z| > 1 which, according to the convergence conditions discussed above, requires that

∆ = (1 -1 -i max ) -(-k max + l max ) = k max -i max -l max = 0 .
(3.28)

4. Finally, we want the two series generated by the Π N (Q 2 ) approximant for |z| < 1 and |z| > 1 to be the analytic continuation of each other which implies

α = (2 + i max ) -(k max + l max ) > 0 . (3.29) 
This, combined with Eq. (3.28), implies l max < 1 and hence the absence of Γ(d l + s) factors in the denominator of Eq. (3.11).

We therefore conclude that, in our case, the only Mellin approximants of the Marichev class that one must consider are those restricted to the subclass:

M N (s) = C N N k=1 Γ(a k -s) Γ(b k -s) , (3.30) 
with Re a k ≥ 1 and Re b k ≥ 1 .

(3.31)

From here onwards we shall simply call them Mellin-Barnes approximants (MBa).

Besides the matching to the input moments in Eq. (3.25), all the MBa that we shall use will be constrained to satisfy the leading pQCD short-distance behaviour8 

M QCD (s) ∼ s→1 α π i q 2 i 1 3 N c 1 1 -s . (3.32) Given a MBa M N (s), the corresponding Π N (Q 2 ) approximant to Π(Q 2 ) is then Π N (Q 2 ) = - Q 2 t 0 1 2πi cs+i∞ cs-i∞ ds Q 2 t 0 -s Γ(s)Γ(1 -s) M N (s) , c s ≡ Re(s) ∈]0, 1[ , (3.33) 
and the a HVP µ (N ) approximant to a HVP µ will be given by the integral in Eq. (2.20) when inserting the corresponding M N 1 2iτ in the r.h.s. integrand. Notice that the factor F(s) does not modify the convergence criteria discussed above for a HVP µ (N ), because F(s) has ∆ = 0 and α = 4.

III.4

The Π N (Q 2 ) are Generalized Hypergeometric Functions,

The ImΠ N (t) are Meijer's G-Functions.

The Generalized Hypergeometric Function [START_REF] Bateman | Higher Transcendental Functions[END_REF] P

F Q [a 1 , a 2 , . . . a P ; b 1 , b 2 , . . . b Q ; z] ≡ P F Q a 1 a 2 . . . a P b 1 b 2 . . . b Q z , (3.34) 
is defined, for |z| < 1, by the series

1 + a 1 a 2 . . . a P b 1 b 2 . . . b Q z 1! + a 1 (a 1 + 1)a 2 (a 2 + 1) . . . a P (a P + 1) b 1 (b 1 + 1)b 2 (b 2 + 1) . . . b Q (b Q + 1) z 2 2! + • • • ≡ ∞ n=0 (a 1 ) n (a 2 ) n . . . (a P ) n (b 1 ) n (b 2 ) n . . . (b Q ) n z n n! , (3.35) 
where in the second line we use the Pochhammer symbol

(a) n ≡ Γ(a + n) Γ(a) = a(a + 1)(a + 2) • • • (a + n -1) , (3.36) 
with in particular, (a) 0 = 1 , and (1) n = n! .

(3.37)

This series has P numerator parameters, Q denominator parameters and one variable z. Any of these parameters are real or complex, but the b parameters must not be negative integers. The case where P = 2 and Q = 1 corresponds to the so called Gauss Hypergeometric Function. The sum of this type of series, when it exists, defines a Generalized Hypergeometric Function (GH-Function).

The reason why we are interested in GH-Functions is that, inserting the general expression in Eq. (3.30) for the M N (s) approximant in the integrand of the r.h.s. in Eq. (3.33), and then doing the Mellin-Barnes integral over the s-variable, results in a specific GH-Function of the type:

Π N (Q 2 ) = - Q 2 t 0 C N N k=1 Γ(a k ) Γ(b k ) 1+N F N 1 a 1 . . . a N b 1 . . . b N - Q 2 t 0 , (3.38) 
which is given by the series in Eq. (3.35) for | Q 2 t0 | < 1, with its analytic continuation defined by the underlying Mellin-Barnes integral, Eq. (3.33) in this case. The corresponding Adler function is also a GH-Function:

A N (Q 2 ) ≡ -Q 2 ∂Π N (Q 2 ) ∂(Q 2 ) = Q 2 t 0 C N N k=1 Γ(a k ) Γ(b k ) 1+N F N 2 a 1 . . . a N b 1 . . . b N - Q 2 t 0 . (3.39) 
The reason why we are interested in Meijer's G-Functions is that the inverse Mellin transform of M N (s) corresponding to Eq. (2.7), i.e. the Mellin Barnes integrals

t 0 t 1 π ImΠ N (t) = 1 2πi c+i∞ c-i∞ ds t t 0 -s M N (s) , c s ≡ Re(s) ∈] -∞, 1[ , (3.40) 
for arbitrary N and t ≥ t 0 are a particular class of Meijer's G-Functions. Indeed, in full generality, Meijer's G-Functions are defined by a complex L-path integral (see e.g. The Meijer G-Function G m,n p,q z a b , in sect. 8.2 of ref. [START_REF] Prudnikov | Brychkov Integrals and Series[END_REF], pp. 617-626):

G m,n p,q z 1 -a 1 , . . . , 1 -a n ; a n+1 , . . . , a p b 1 , . . . , b m ; 1 -b m+1 , . . . , 1 -b q = 1 2πi L ds z -s Γ(b 1 + s) • • • Γ(b m + s) • Γ(a 1 -s) • • • Γ(a n -s) Γ(a n+1 + s) • • • Γ(a p + s) • Γ(b m+1 -s) • • • Γ(b q -s) , (3.41) 
and have the property that

G 0,n p,q z a b = 0 for |z| < 1 . (3.42)
For the class of Marichev-like M N (s) functions in Eq. (3.30) this results in a set of equivalent spectral functions:

1 π ImΠ N (t) = t t 0 C N G 0,N 0,N t t 0 1 -a 1 , . . . , 1 -a N ; -- --; 1 -b 1 , • • • , 1 -b N . (3.43) 
These successive equivalent spectral functions, alike the physical spectral function, are only defined for t ≥ t 0 but they are not expected to reproduce point by point the detailed physical structure in the t-variable, until the level of approximation reaches the exact solution. They reproduce, however, the smooth behaviour of the self-energy functions Π N (Q 2 ) and of the Adler A N (Q 2 ) functions when inserted in a dispersion relation and it is in this sense that we call them equivalent.

The explicit form of these general expressions for the first N = 1 and N = 2 cases are as follows:

• N=1 This corresponds to the case where we only know the first moment M(0). Then

M 1 (s) = C 1 Γ(a 1 -s) Γ(b 1 -s) , with C 1 = α π 5 3 N c 3 Γ(b 1 -1) and a 1 = 1 (3.44)
to ensure the pQCD pole behaviour at s = 1. With b 1 fixed by the matching condition M 1 (0) = M(0) one finds

Π 1 (Q 2 ) = - Q 2 t 0 C 1 1 Γ(b 1 ) 2 F 1 1 a 1 b 1 - Q 2 t 0 , (3.45) 
and the corresponding Adler function [see Eq. (2.12)] is

A 1 (Q 2 ) = -Q 2 ∂Π 1 (Q 2 ) ∂(Q 2 ) = Q 2 t 0 C 1 1 Γ(b 1 ) 2 F 1 2 a 1 b 1 - Q 2 t 0 , (3.46) 
with an equivalent spectral function:

1 π ImΠ 1 (t) = t t 0 C 1 G 0,1 0,1 t t 0 1 -a 1 ; -- --; 1 -b 1 . (3.47)
• N=2 This corresponds to the case where we know the first two moments M(0) and M(-1). Then

M 2 (s) = C 2 Γ(1 -s) Γ(2 -s) Γ(a 2 -s) Γ(b 2 -s) with C 2 = α π 5 3 N c 3 Γ(b 2 -1) Γ(a 2 -1) , (3.48) 
and the parameters a 2 and b 2 fixed by the two matching conditions

M 2 (0) = M(0) and M 2 (-1) = M(-1) . (3.49) Then Π 2 (Q 2 ) = - Q 2 t 0 C 2 Γ(a 2 ) Γ(b 2 ) 3 F 2 1 1 a 2 2 b 2 - Q 2 t 0 ; (3.50)
the corresponding Adler function is

A 2 (Q 2 ) = -Q 2 ∂Π 2 (Q 2 ) ∂(Q 2 ) = Q 2 t 0 C 2 Γ(a 2 ) Γ(b 2 ) 3 F 2 2 1 a 2 2 b 2 - Q 2 t 0 , (3.51) 
and the equivalent N = 2 spectral function is9 :

1 π ImΠ 2 (t) = t t 0 C 2 G 0,2 0,2 t t 0 0, 1 -a 2 ; -- --; -1, 1 -b 2 . (3.52)
In the particular case of the lowest order vacuum polarization in QED discussed above, we have (c s ≡ Re(s) ∈]0, 1[):

Π QED (Q 2 ) = - α π 1 3 Γ(5/2) Q 2 4m 2 1 2πi cs+i∞ cs-i∞ ds Q 2 4m 2 -s Γ(s)Γ(1 -s) Γ(1 -s) Γ(2 -s) Γ(3 -s) Γ( 7 2 -s) , (3.53) 
which is a typical N = 2 case, with a 2 = 3 and b 2 = 7 2 . Then, setting z ≡ Q 2 4m 2 , one finds

Π QED (Q 2 ) = - α π 1 3 Γ 5 2 Γ(3) Γ(7/2) z 3 F 2 1 1 3 2 7/2 -z (3.54) = α π (-3 + 5z) √ z + 3(1 -2z) √ 1 + z ArcSinh( √ z) 9z 3/2 . (3.55)
In this case the GH-function has an explicit analytic form, which we give in the second line, and it coincides with the well known QED result. Notice that for z = -t 4m 2 with t ≥ 4m 2 , this expression develops an imaginary part which coincides with the Meijer's G-Function representation

1 π ImΠ QED (t) = t t 0 α π 1 3 Γ 5 2 G 0,2 0,2 t t 0 0, -2 ; -- --; -1, - 5 2 , (3.56) 
and reproduces the exact spectral function in Eq. (3.10).

Obviously, QED at lowest order is a very particular example where it just happens that one can reconstruct the exact function already at the level of the N = 2 MBa. In the next section we discuss a much more complicated example.

IV Mellin-Barnes-approximants (MBa) in QED at two loops.

We wish to test the techniques developed in the previous section with a more complicated example than the lowest order QED vacuum polarization. We suggest to examine the case of the QED vacuum polarization at two loops. The proper fourth order QED spectral function was first calculated by Källen and Sabry in 1955 [START_REF] Källen | [END_REF] and later on in ref. [44]. It is given by the following expression: With

δ = 1 - 4m 2 t , (4.1) 
1 π ImΠ QED 4th (t) = α π 2 δ 5 8 - 3 8 δ 2 - 1 2 - 1 6 δ 2 log 64 δ 4 (1 -δ 2 ) 3 + 11 16 + 11 24 δ 2 - 7 48 δ 4 + 1 2 + 1 3 δ 2 - 1 6 δ 4 log (1 + δ) 3 8δ 2 log 1 + δ 1 -δ + 2 1 2 + 1 3 δ 2 - 1 6 δ 4 2 Li 2 1 -δ 1 + δ + Li 2 - 1 -δ 1 + δ θ(t -4m 2 ) . (4.2)
The asymptotic behaviours of this spectral function are Notice that the behaviour at threshold t ∼ 4m 2 is rather different to the lowest order one and the shape of the spectral function, which is shown in Fig. [START_REF] Th | The Muon (g -2) Theory Value: Present and Future[END_REF], is also very different.

1 π ImΠ QED 4th (t) ∼ t→4m 2 α π 2 π 2 4 -2 t 4m 2 -1 + π 2 6 t 4m 2 -1 + O t 4m 2 -1 3/2 , (4.3) 1 π ImΠ QED 4th (t) ∼ t→∞ α π 2 1 4 + 3 4 4m 2 t + O 4m 2 t 2 log t 4m 2 . ( 4 
The shape of the Mellin transform of the 4th order spectral function in Eq. (4.2) is shown in Fig. [START_REF] Davier | [END_REF]. Like the Mellin transform of QCD it is also singular at s = 1 but with a different residue

M QED 4th (s) ∼ s→1 α π 2 1 4 1 1 -s , (4.5) 
and shares with QCD the property of being a monotonously increasing function from s = -∞ to s < 1.

The real part of the fourth order vacuum polarization in QED is also known analytically [START_REF] Källen | [END_REF]. It is a rather complicated expression and, therefore, it is a good test to see how well it is approximated by the successive GH-Functions in Eq. (3.38). The shape of the Π QED 4th (Q 2 ) function in the Euclidean is shown in Fig. (7).

We shall discuss this 4th order QED example in a way as close as possible to the QCD case which we shall later be confronted with. Therefore, the input will be the successive values of the moments of the spectral function, i.e. of the derivatives of The first few Mellin moments

Π QED 4th (Q 2 ) at Q 2 = 0. 0 2 4 6 8 10 0 0.5 1 1.5 z = Q 2 t0 -Π QED 4th (z)
M QED 4th (s) ≡ ∞ t0 dt t t t 0 s-1 1 π ImΠ QED 4th (t) , (4.6) 
for s = 0, -1, -2, -3, -4, -5, in units of α π 2 are tabulated below in Table (1). We can now proceed to the construction of a successive set of MBa's to M QED 4th (s) of the type shown in Eq. (3.30) and to the evaluation of the corresponding GH-function approximation to Π QED 4th (Q 2 ) of the type shown in Eq. (3.38). At each approximation step we shall then evaluate the corresponding contribution to the anomalous magnetic moment of a fermion of mass m induced by the 4th order vacuum polarization generated by the same fermion (see the corresponding Feynman diagrams in Fig. (8)), and compare it with the exact result which is known analytically [45]: The result in Eq. (4.7) is a rather complicated expression involving higher transcendental numbers with important numerical cancellations among the different terms and, therefore, it should provide a good test. We want to investigate how well we reproduce this exact result using the Mellin-Barnes integral representation in Eq. (2.20) which, when adapted to this case, reads as follows:

a VP µ = α
a VP (N ) = α π 1 2 1 2π +∞ -∞ dτ e iτ log 1 4 F 1 2 -iτ M N 1 2 -iτ , (4.8) 
with M N (s) the successive Mellin approximants.

IV.1.1 The N = 1 MBa.

This corresponds to the case where we only know M QED 4th (0). Following Eq. (3.30) we are instructed to consider as a first Mellin approximant:

M QED 4th (s) ⇒ M 1 (s) = C 1 Γ(a -s) Γ(b -s) , (4.9) 
which must be singular at s = 1. This fixes the a parameter to a = 1 and the overall normalization to

C 1 = α π 2 1 4 Γ(b -1) , (4.10) 
so as to reproduce the leading singularity when s → 1. Matching M 1 (s) at s = 0 with the numerical value of M QED 4th (0) in Table (1 This corresponds to the case where we know the slope and curvature of Π QED 4th (Q 2 ) at Q 2 = 0, i.e. M QED 4th (0) and M QED 4th (-1). This information is similar to that already available from LQCD 10 . We shall therefore discuss it in detail.

The Mellin approximant in this case has two parameters a and b:

M QED 4th (s) ⇒ M 2 (s) = C 2 Γ(1 -s) Γ(2 -s) Γ(a -s) Γ(b -s) , (4.13) 
and the leading short-distance constraint fixes the overall normalization to

C 2 = α π 2 1 4 Γ(b -1) Γ(a -1) , (4.14) 
with the parameters a and b fixed by the two matching equations:

1 4 a -1 b -1 = M QED 4th (0) and 1 8 a b a -1 b -1 = M QED 4th (-1) , (4.15) 
or equivalently

1 4 a -1 b -1 = M QED 4th (0) (4.16) 1 2 a b = M QED 4th (-1) M QED 4th (0) 
. (4.17) With these parameter values inserted in M 2 (s) in Eq. (4.13), and performing the corresponding integral in Eq. (4.8), i.e. the integral

-1.5 -1 -0.5 0 0.5 1 1.5 0 0.5 1 τ Re R(τ ) , Re R 2 (τ )
a VP µ (N = 2) = α π 1 2 1 2π +∞ -∞ dτ e iτ log(4) F 1 2 -iτ M 2 1 2 -iτ R2(τ ) , (4.19) 
gives the result

a VP (N = 2) = α π 3 × 0.0531447 , (4.20) 
which reproduces the Mignaco-Remiddi result in Eq. (4.7) to an accuracy of 0.5%, a significant improvement with respect to the N = 1 approximant. Figure (9) shows the behaviour of the real part of the integrand R 2 (τ ) in Eq. (4.19) as a function of τ , where the red curve is the one when one inserts the exact Mellin transform M QED 4th 1 2iτ in the integrand and the dashed blue curve the one associated to the N = 2 approximation. Already at this level of approximation the agreement between both integrands is quite impressive.

At this stage it is also interesting to compare the exact Mellin transform shown in Fig ( 6) with the one corresponding to the N = 2 approximation. This is shown in Fig. (10) where the blue dotted curve is the N = 2 approximation. The agreement of the two curves down to s -3 is quite remarkable. In order to see the difference between these two curves we show in Fig. (11) the plot of their ratio. The M 2 (s)/M(s) ratio turns out to be greater than one everywhere, except in the interval -1 ≤ s ≤ 0. This is why the N = 2 result approaches the exact value of the anomaly from above. The quality of the interpolation between s = 0 and s = -1 provided by the N = 2 approximation is shown at the right in Fig. (11). Notice the scale in the figure, e.g. the value at the minimum of the ratio shown in this figure is 0.9937 compared to one.

According to Eq. (3.38), the N = 2 GH-function approximant to Π QED 4th (Q 2 ) is given by the expression (z ≡ Q 2 t0 ): 

Π QED 4th (Q 2 ) ⇒ Π QED (N =2) (Q 2 ) = α π 2 (-z) 1 4 a -1 b -1 3 F 2 1 1 a 2 b -z , ( 4 
z = Q 2 t0 -Π QED 4th (z) , -Π QED N =2 (z)
Figure 12:

The red curve is the exact 4th order QED VP-function.

The dotted blue curve is the N = 2 approximant. Both curves are shown in α π 2 units.

where 3 F 2 1 1 a 2 b
is the GH-Function defined by the series:

3 F 2 1 1 a 2 b -z = ∞ n=0 (1) n (1) n (a) n (2) n (b) n (-z) n n! , (4.22) 
and a and b have the values given in Eq. (2.20). Figure (12) shows how well the MBa Π QED (N =2) (Q 2 ) (blue curve) does when compared to the exact function (red curve). From this comparison, one can qualitatively understand why the N = 2 approximation already reproduces the exact value of a VP in Eq. (4.7) at the 0.5% level. The equivalent spectral function corresponding to the N = 2 approximation is given by the Meijer's G-Function:

1 π ImΠ 2 (t) = t t 0 α π 2 1 4 G 0,2 0,2 t t 0 0, 1 -a ; -- --; -1, 1 -b , (4.23) 
and its shape, compared to the exact spectral function, is shown in Fig. (13). 

t 4m 2 1 π Im Π QED 4th (t) , 1 π Im Π QED N =2 (t)
Figure 13:

The red curve is the exact 4th order QED spectral function.

The dotted blue curve is the N = 2 approximant. Both curves are shown in α π 2 units.

IV.1.3 The N = 3 MBa.

This corresponds to the Mellin approximant

M QED 4th (s) ⇒ M 3 (s) = C 3 Γ(1 -s)Γ(a 1 -s) Γ(b 1 -s)Γ(b 2 -s) , (4.24) 
with

C 3 = α π 2 1 4 Γ(b 1 -1)Γ(b 2 -1) Γ(a 1 -1) , (4.25) 
and the three parameters a 1 , a 2 and b 1 fixed by matching M 3 (s) to the values of the three moments M QED 4th (0), M QED 4th (-1), and M QED 4th (-2). The matching equations in this case are: Plots of the ratio M3(s) M(s) versus s. Notice the vertical scales of these plots.

α π 2 1 4 1 b 1 -1 (a 1 -1) 1 b 2 -1 = M QED 4th (0) , (4.26) 1 b 1 a 1 1 b 2 = M QED 4th (-1) M QED 4th (0) , (4.27) 2 1 b 1 + 1 (a 1 + 1) 1 b 2 + 1 = M QED 4th (-2) M QED 4th (-1) , ( 4 
As an illustration of the quality of the approximation, we show in Fig. (14) the Mellin transform of the N = 3 approximation (the blue dashed curve) compared to the exact Mellin transform (the red curve). At the scale of the figure it is practicably impossible to see the difference. In order to see that, we show plots of the ratio M 3 (s)/M(s) in Fig. (15). Notice the scale in the left plot of Fig. (15) as compared to the one in Fig. (11) and the improvement in the figure at the right which is plotted at the same scale as Fig. (11).

An accuracy of 0.004% is already much beyond what is required of the HVP contribution to the muon anomaly in QCD, but for the sake of testing the approximation procedure that we are advocating, let us try further possible improvements.

IV. 1.4 The N = 4 MBa.

The N = 4 approximant is

M QED 4th (s) ⇒ M 4 (s) = C 4 Γ(1 -s)Γ(a 1 -s)Γ(a 2 -s) Γ(2 -s)Γ(b 1 -s)Γ(b 2 -s) , (4.31) 
with

C 4 = α π 2 1 4 Γ(b 1 -1)Γ(b 2 -1) Γ(a 1 -1)Γ(a 2 -1) , (4.32) 
and the four parameters a 1 , a 2 , b 1 and b 2 solutions of the matching equations:

1 4 a 1 -1 b 1 -1 a 2 -1 b 2 -1 = M QED 4th (0) , (4.33 
)

1 2 a 1 b 1 a 2 b 2 = M QED 4th (-1) M QED 4th (0) , (4.34) 2 3 
(

a 1 + 1) (b 1 + 1) (a 2 + 1) (b 2 + 1) = M QED 4th (-2) M QED 4th ( -1) , (4.35) 3 4 
(a

1 + 2) (b 1 + 2) (a 2 + 2) (b 2 + 2) = M QED 4th (-3) M QED 4th (-2) , (4.36) 
which give the values:

a 1 = 2.829673582 , b 1 = 3.528046148 , a 2 = 1.902891314 , b 2 = 1.161374634 , (4.37) 
or the equivalent solution with a 1 a 2 and b 1 b 2 . The corresponding prediction for the muon anomaly is

a VP µ (N = 4) = α π 3 0.0528711 , (4.38) 
which reproduces the exact value at the level of 0.00075%, practically the exact result. It seems fair to conclude from these examples that the successive use of MBa of the Marichev class in Eq. (3.30) is an excellent method to approach, rather quickly in this case, the exact result with an excellent accuracy. The question which, however, arises is: how far can one go?. The exact Mellin transform of the QED fourth order spectral function, contrary to the second order one which we discussed earlier, is expected to be a much more complicated expression than just a simple standard product of the Marichev class in Eq. (3.30). Therefore, one normally expects that these approximations should break at some N -level. Let us then proceed to examine what happens when one tries higher N -MBa's of this type.

IV.1.5 The N = 5 MBa.

The N = 5 Mellin approximant is

M QED 4th (s) ⇒ M 5 (s) = C 5 Γ(1 -s)Γ(a 1 -s)Γ(a 2 -s) Γ(b 1 -s)Γ(b 2 -s)Γ(b 3 -s) , (4.39) 
with

C 5 = α π 2 1 4 Γ(b 1 -1)Γ(b 2 -1)Γ(b 3 -1) Γ(a 1 -1)Γ(a 2 -1) , (4.40) 
and the parameters a 1 , a 2 , b 1 , b 2 , b 3 solutions of the matching equations:

1 4 a 1 -1 b 1 -1 a 2 -1 b 2 -1 1 b 3 -1 = M QED 4th (0) , (4.41) 
a 1 b 1 a 2 b 2 1 b 3 = M QED 4th (-1) M QED 4th (0) , (4.42) 
2 a 1 + 1 b 1 + 1 a 2 + 1 b 2 + 1 1 b 3 + 1 = M QED 4th (-2) M QED 4th (-1) , (4.43) 
3 a 1 + 2 b 1 + 2 a 2 + 2 b 2 + 2 1 b 3 + 2 = M QED 4th (-3) M QED 4th (-2) , (4.44) 
4 a 1 + 3 b 1 + 3 a 2 + 3 b 2 + 3 1 b 3 + 3 = M QED 4th (-4) M QED 4th (-3) , (4.45) 
with solution values: The corresponding prediction for the muon anomaly is now

a VP µ (N = 5) = α π 3 0.0528706 , (4.47) 
which reproduces the exact value at the level of 0.00018%, still an improvement with respect to the N = 4 Approximation! This is, however, the best one can do in the two loop QED case with Mellin approximants of the type shown in Eq. (3.30). Indeed, if one tries to improve with a N = 6 MBa of this type, one finds that all the solutions for the parameters a 1 , a 2 , a 3 , b 1 , b 2 , b 3 from the matching equations bring in complex numbers with real parts which are inside of the fundamental strip, in contradiction with the initial requirements for an acceptable solution that we imposed. This is the signal that the method of simple Marichev-like approximants that we are using breaks down at that level. It breaks down because, beyond a certain level of accuracy, the function Π QED 4th (Q 2 ) cannot be approximated by just one GH-Function. It is possible, however, as we shall next discuss in the QCD case, to improve on the class of Marichev-like approximants introducing superpositions of standard products of gamma functions.

From the previous analysis we conclude that, in the case of the QED fourth order vacuum polarization, the best prediction we can make with simple Marichev-like MBa's is an average of the N = 4 and N = 5 approximants with an error estimated from the deviation of this average to the N = 4 and N = 5 results i.e.,

a VP µ (QED 4th order) = α π 3 (0.0528709 ± 0.0000003) . (4.48) 
This is already an excellent prediction when compared to the exact result in Eq. (4.7).

V Test of MBa with experimental HVP Moments.

The KNT collaboration [9] has kindly provided us with preliminary values of the first few moments of the hadronic spectral function with errors, as well as their covariance matrix. These results provide a good test of how well the MBa method that we propose works when applied to a set of moments with realistic errors.

The first five moments with their errors are given in Table (2) and their correlation matrix is given in Table (3) in the next section. We observe that the relative errors of the first two moments M(0) and M(-1) in Table (2) are smaller than the relative error in the determination of the lowest order HVP contribution to a HVP µ in Eq. (1.3) [9]. The higher moments M(-n) for n = 2, 3, ... have higher relative errors but they of course contribute less and less to the total a HVP µ determination. We shall next proceed, like in the previous section, to the construction of successive MBa's of the type shown in Eq. (3.30) and to the evaluation of the corresponding GH-Functions Π QCD N (Q 2 ) and 1 π ImΠ N (t). At each approximation we shall then evaluate the corresponding a HVP µ (N ) contribution to the muon anomlay. Here we shall only consider as input the center values of the moments in Table (2) and postpone the error analysis for later discussion in the next subsection.

V.1 Successive MBa's to M QCD (s), Π QCD (Q 2 ), 1 π ImΠ QCD (t) and a HVP µ .

V.1.1 The N = 1 MBa.

This corresponds to the MBa which one can construct when only the first moment M(0) is known.

In this case

M 1 (s) = α π 5 3 Γ(1 -s) Γ(b 1 -1) Γ(b 1 -s) , (5.1) 
where the singularity at s = 1 is the one associated to the asymptotic leading behaviour of the QCD spectral function with u, d, s, c, b and t quarks in Eq. (2.1). Matching the value of M 1 (s) at s = 0 with the one from the experimental determination in Table (2) fixes the b 1 -parameter to the value: b 1 = 6.395 .

(5.2)

Figure (16) shows the shape of the predicted Mellin transform. The blue points in the figure correspond to the experimental values of the moments in Table (2) with their errors, which are too small to be seen at the scale in the figure. The agreement, at the precision of the scale of the figure, is excellent.

Inserting the expression of the first Mellin approximant M 1 (s) in the integrand at the r.h.s. of Eq. (2.15) gives the result of the first MBa to the muon anomaly: The red curve shows the shape of the N = 1 MBa in Eq. (5.1).

a HVP µ (N = 1) = α π m 2 µ t 0 1 2π +∞ -∞ dτ e iτ log m 2 µ t 0 F 1 2 -iτ M N =1 1 2 -iτ (5.3) = 6.991 × 10 -8 , (5.4) 
The blue circles are the experimental values in Table (2).

- 

Plot of the ratio of the experimental moments in Table (2) with their errors to those predicted by the N = 1 Mellin-Barnes-Approximation.

which reproduces the central value result in Eq. (1.3) [9] surprisingly well: to 0.8%.

In order to understand why the N = 1 MBa is already so good, let us explore more in detail the plot of M 1 (s) in Fig (16). To better observe the deviations between the experimental moments and the predicted moments we plot in Fig. (17) their ratio as a function of s = -n, n = 0, 1, 2, . . . . The deviation of this ratio from one shows the discrepancy. Notice that, here, only the value of the M(0) moment has been used as an input. The predicted values of M(-1), M(-2) and even M(-3) turn out to be rather close to the experimental values, although already the predicted M(-3) and certainly the predicted higher moments are not compatible with the experimental statistical errors. Higher moments, however, contribute less ans less to the total value of the anomaly and this is why a HVP µ (N = 1) turns out to be such a good approximation. Why does the N = 1 MBa do a better job in the case of QCD than in the two loop QED case we discussed before? The reason for this is that in the QCD case, contrary to the QED case, there are resonances in the low energy region of the spectral function with mass scales which, relative to the muon mass, enhance the contribution of the low moments, in particular M(0). If instead of the muon anomaly we were considering the electron anomaly, the N = 1 MBa would already be giving a result with an accuracy comparable to the full determination.

Although, given the result in Eq. ( 5.3) and the present accuracy from experiment, there seems to be little room for improvement, let us examine what happens when one tries the N = 2 MBa.

V. 1.2 The N = 2 MBa.

Here the Mellin approximant has the analytic form

M 2 (s) = α π 5 3 Γ(1 -s) Γ(2 -s) Γ(a 1 -s) Γ(a 1 -1) Γ(b 1 -1) Γ(b 1 -s) , (5.5) 
and the parameters a 1 and b 1 are fixed by the matching equations:

M 2 (0) = M(0) and M 2 (-1) = M(-1) , (5.6) 
with M(0) and M(-1) given in Table (2). This results in the values: a 1 = 1.900 and b 1 = 5.855 .

(5.7)

The shape of the M 2 (s) Mellin transform turns out to be rather similar to the M 1 (s) one in Fig. (17).

In order to appreciate the differences between the N = 1 and N = 2 MBa's, we compare in Fig. (18) the ratios of the experimental moments to those of the M 2 (s) prediction (the red dots) and to those of the M 1 (s) prediction (the blue dots). The overall shape of the red dots is clearly better because they are nearer to one.

- 

Plot of the ratio of the experimental moments in Table (2) with their errors to those predicted by the N = 2 MBa in red and the N = 1 MBa in blue.

With the expression of the second Mellin approximant M 2 (s) inserted in the integrand at the r.h.s. of Eq. (2.15) we get as a result of the N = 2 MBa to the muon anomaly:

a HVP µ (N = 2) = α π m 2 µ t 0 1 2π +∞ -∞ dτ e iτ log m 2 µ t 0 F 1 2 -iτ M N =2 1 2 -iτ R(τ ) (5.8) = 6.970 × 10 -8 , (5.9) 
which reproduces the central value result in Eq. (1.3) [9] at the 0.5% level, i.e. an improvement by a factor of 1.6 with respect to the N = 1 case. Figure (19) shows the shape of the integrand R(τ ) in Eq. (5.8) which, as expected, has a rapid decrease as |τ | 1.

-
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Figure 19:

Plot of the integrand in Eq. (5.8) as a function of τ .

As discussed in the previous section, the MBa technique allows to reconstruct as well Π N (Q 2 ) approximants of the HVP self energy in terms of GH-functions. The corresponding Plots of the spectral function associated to the N = 2 are also shown in Figs. (21). Although, asymptotically, the N = 2 MBa spectral function approaches the pQCD value it can only be considered a smooth interpolation of the physical spectral function which, as we know, has a lot of local structure. This interpolation, however, when inserted in the r.h.s. of Eq. (1.4) reproduces the determination of the anomaly using the experimental spectral function at the 0.5% level already mentioned. It is in this sense that it is a good interpolation.

N = 2 approximant is (z = Q 2 t0 ): Π QCD N =2 (Q 2 ) = α π (-z) 5 3 a 1 -1 b 1 -1 3 F 2 1 1 a 1 2 b 1 -z , (5.10) 
We shall next explore what happens when one tries to improve the N = 2 MBa with higher approximants and further input from the experimental values of higher moments.

V. 1.3 The N = 3 MBa.

The corresponding Mellin approximant which generalizes the one in Eq. (5.1) has the analytic form

M 3 (s) = α π 5 3 Γ(1 -s) Γ(b 1 -1) Γ(b 1 -s) Γ(a 1 -s) Γ(a 1 -1) Γ(b 2 -1) Γ(b 2 -s) , (5.11) 
with the parameters a 1 , b 1 and b 2 solutions of the matching equations

M 3 (0) = M(0) , M 3 (-1) = M(-1) and M 3 (-2) = M(-2) . (5.12) 
In this case one finds a "possible solution" where

a 1 = -0.362 , b 1 = 6.462 , b 2 = -0.346 , (5.13) 
and the equivalent one with b 1 b 2 . These "solutions", however, are not acceptable because they generate a pole at s = a 1 which is inside of the fundamental strip in contradiction with first principles, as discussed in Section III.3. Nevertheless, the negative numerical values of a 1 and b 2 are in fact rather close to each other. Had they been exactly the same, there would have been a cancellation between Γ(a 1s) and Γ(b 2s) in Eq. (5.11) indicating that it is not possible to improve beyond N = 2 with a single Marichev-like function. The situation here is rather similar to the one encountered earlier when considering the N = 6 MBa in the QED example.

The fact that in QCD the simple Marichev-like approximants fail to find physical solutions already at the N = 3 level is perhaps not so surprising. One does not expect, beyond a certain level of accuracy,

Π QCD N =2+1 (Q 2 ) = α π (-z) 5 3 1 2 a 1 -1 b 1 -1 3 F 2 1 1 a 1 2 b 1 -z + 1 b 2 -1 2 F 1 1 1 b 2 -z , (5.18) 
and the corresponding approximation to the Adler function is

A QCD N =2+1 (Q 2 ) = α π z 5 3 1 2 a 1 -1 b 1 -1 3 F 2 2 1 a 1 2 b 1 -z + 1 b 2 -1 2 F 1 2 1 b 2 -z . ( 5.19) 
The shape of this Adler function is shown in Fig. (22).

V.1.5 The N = (2) + ( 1) + (1) MBa.

With the first four moments as an input, there is a new superposition of MBa's which gives acceptable solution to the matching equations. It is the following linear combination of a N = 2 MBa and two N = 1 MBa's: The red curve is the shape of M 2+1+1 in Eq. (5.20) for -5 ≤ s ≤ 0.

M 2+1+1 (s) = α π 5 3 1 1 -s Γ(a 1 -s) Γ(a 1 -1) Γ(b 1 -1) Γ(b 1 -s) + Γ(2 -s) Γ(b 2 -1) Γ(b 2 -s) + Γ(2 -s) Γ(b 3 -1) Γ(b 3 -s) . (5.20) 
The dots are the experimental values of the moments.

The matching equations: tabulated in Table (2) and their correlation matrix is given in Table [START_REF] Rafael | Mellin-Barnes Approach to HVP and g µ -2[END_REF]. One can see that the values of these moments are highly correlated, reflecting the fact that they all have been extracted from different integrals of the same input data on the spectral function.

M 2+1+1 (0) = M(0) , M 2+1+1 (-1) = M(-1) , M 2+1+1 (-2) = M(- 2 
The statistical part of the analysis is standard. We first construct the covariance matrix C ij of the first N moments obtained from experiment M(1i) , i = 1, . . . , N :

C ij = ρ ij σ i σ j , with ρ ii = 1 , -1 < ρ i,j < +1 and i, j = 1, . . . , N , (5.26) where ρ ij is the correlation coefficient between the moment #i and the moment #j, each with Gaussian uncertainty σ i and σ j . Then we define a χ 2 function associated to a given Mellin-Barnes approximant M N (s), which depends on a set of parameters (a k , b k ): .27) and minimize this χ 2 with respect to the set of parameters (a k , b k ). The errors are sufficiently small to ensure that a point-like estimate is an excellent approximation, and we obtain the covariance matrix in the (a k , b k ) parameter space from the Hessian matrix of the χ 2 function computed at its minimum.

χ 2 = N i,j=1 [M N (1 -i) -M(1 -i)] C -1 ij [M N (1 -j) -M(1 -j)] . ( 5 
Using linear error propagation we can then calculate the statistical uncertainty on a HVP µ , as reported in the third column of Table [START_REF] Bennett | The g-2 Collab.)[END_REF]. The fact that all the approximants have a similar uncertainty that coincides with the one of the complete evaluation of a HVP µ [9] is a sign that the statistical information is saturated by all our MBa's.

Table 4: Numerical results on the determination of a HVP µ (10 -8 units), for each considered MBa.

MBa Ansatz

Central Value Stat. Uncertainty Eq. (5.1) (N = 1)

6.991 0.023 Eq. (5.5) (N = 2)

6.970 0.024 Eq. (5.14) (N = (2) + (1))

6.957 0.025 Eq. (5.20) (N = (2) + ( 1) + (1))

6.932 0.025

Our results would not be complete without a study of the systematic shift associated to the successive MBa's which interpolate the values of the experimental moments and reconstruct the full Mellin functions. With this aim, in addition to the MBa's discussed in detail in the previous section, we have also tested alternative parameterizations for N = 2, 3, 4 which are obtained by changing the location of the poles in the superposition terms ( e.g. Γ(2s) instead of Γ(1s) in Eq. (5.14)). These alternative MBa's have also valid solutions for the corresponding (a k , b k ) parameters and, therefore, can also be considered as good alternative choices. The results of all the evaluations of a HVP µ which we have made are plotted in Fig. (27), as a function of the number of input moments N . We observe that the successive results converge towards the experimental value in Eq. (1.3).

VI Conclusions and Outlook

Equation (2.3) shows that moments of the hadronic spectral function are equivalent to derivatives of the hadronic self-energy function Π(Q 2 ) at Q 2 = 0. The latter are accessible to LQCD simulations as well as to eventual dedicated experiments. We have shown how, from an accurate determination of the first few moments, one could reach an evaluation of the HVP contribution to the muon anomaly with a competitive precision, or even higher, than the present experimental determinations.

The method that we propose uses a new technique of Mellin-Barnes approximants which has been explained and justified in detail in the text. Essentially it is based on generic QCD properties which fix the class of Mellin transforms M(s) of the spectral function that one can use as successive approximants. The muon anomaly a HVP µ , in terms of these M(s)-functions, is given by the Fourier transform in Eq. (2.20). The corresponding approximations to the hadronic self-energy function Π(Q 2 ) are well defined Generalized Hypergeometric Functions which we have given explicitly and the approximations to the spectral function are also given in terms of Meijer's G-Functions. This offers the possibility of applying the same techniques developped here to the case where the information from LQCD, or from experiment, is given in terms of determinations of the self-energy function Π(Q 2 ) at fixed Euclidean Q 2 -values, as e.g. in ref. [16]. We plan to discuss this in the near future. The pink band is the full experimental result of ref. [9].

We have illustrated the practical application of the method with the example of the QED contribution to the muon anomaly from the vacuum polarization Feynman diagrams in Fig. (8). We have also discussed the case where one uses as an input the experimental values of the first moments provided to us by the collaboration of ref. [9]. We find that, in this case, our approach reproduces very well their complete phenomenological analysis.

( 2 . 15 ) offers the possibility of computing a HVP µ as a series expansion in powers of m 2 µ

 2152 t0 . This follows from inserting in Eq. (2.15) the singular expansion of F(s) at the l.h.s. of the fundamental strip c s ≡ Re(s) ∈]0, 1[ i.e.
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 1 Figure 1: Shape of the function F 1 2iτ in Eq. (2.15) versus τ . The red curve is the real part of the function, the blue dashed curve its imaginary part.
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  (3.21) to the asymptotic expansions of I(z) for z large (the red mapping in Fig.(3)) and for z small (the blue mapping in Fig.(
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 56 Figure 5: Shape of the Spectral Function in Eq. (4.2) in α π 2 units.
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 7 Figure 7: Shape of the 4th order QED vacuum polarization function in the Euclidean α π 2 units.
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 8 Figure 8: Feynman diagrams contributing to the muon anomaly in Eq. (4.7).
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 3 ) fixes the b parameter to b = 1.24695122 . (4.11) We can then perform the corresponding integral in Eq. (4.8) which gives as a result for the first N = 1 approximant: a VP (N = 1) = α π 0.0500007 . (4.12) It already reproduces the Mignaco-Remiddi exact result in Eq. (4.7) to an accuracy of 5%. IV.1.2 The N = 2 MBa.
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 91110 Figure 9: Plot of real part of the integrand R 2 (τ ) in Eq. (4.19): the red curve corresponds to inserting the exact M QED 4th 1 2iτ in the integrand the dashed blue curve from inserting the approximation M 2 1 2iτ .
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 11 Figure 11: Plots of the ratio M2(s) M(s) versus s. Notice the scale of the plots.
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 2812314 Figure 14: The red curve is the Mellin Transform of the exact Spectral Function. The dashed blue curve is the N = 3 Mellin approximant. Both curves are shown in α π 2 units.
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b 1

 1 = 1.16249580 , a 1 = 4.111523616 , b 2 = 4.354959443 , a 2 = 2.360299888 , b 3 = 2.917297589 , (4.46) and other equivalent solutions permutations of a 1 , a 2 and b 1 , b 2 , b 3 .
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with a 1

 1 and b 1 given in Eq. (5.7). The shape of the function Π QCD N =2 (Q 2 ) is shown in Fig. (20).
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 2021 Figure 20: Shape of the function Π QCD N =2 (Q 2 ) in Eq. (5.10) as a function of = Q 2 t0 .
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 325 Figure 25: Plot of the Adler function in Eq. (5.25).
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 26 Figure 26: Plots of the N = 2 + 1 + 1 Spectral Function.
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Table 1 :

 1 M(s) Moments in units of α

	π	2 .

  π

			3	673 108	-	41 81	π 2 -	4 9	π 2 log(2) -	4 9	π 2 log 2 (2) +	4 9	log 4 (2) -	7 270	π 4
	+	13 18	ζ(3) +	32 3	PolyLog 4 ,	1 2	=	α π	3	0.0528707 .	(4.7)

Table 2 :

 2 M(s) Moments and Errors in 10 -3 units .

	Moment Experimental Value Relative Error
	M(0) M(-1) M(-2) M(-3) M(-4) M(-5)	0.7176 ± 0.0026 0.11644 ± 0.00063 0.03041 ± 0.00029 0.01195 ± 0.00017 0.00625 ± 0.00011 0.003859 ± 0.000078	0.36% 0.54% 0.95% 1.4% 1.8% 2.0%

Table 3 :

 3 Correlation Matrix of the Moments M(0), . . . , M(-5) in Table(2) 

	       	1 0.83 0.62 0.50 0.42 0.37 1 0.93 0.84 0.77 0.70 1 0.98 0.93 0.88 1 0.987 0.96 1 0.991	       	.
		1		

Notice that in ref.[1] the chosen normalization scale is the muon mass.

For the benefit of the reader who may be unfamiliar with Mellin-Barnes integrals we give a proof of this identity in the Appendix.

An application of this theorem to heavy quark correlators can be found in ref.[37].

For a helpful tutorial see e.g. ref.[START_REF] Fikioris | [END_REF] and references therein.

For the sake of simplicity in drawing the figure, we assume that the disc of convergence is centered at z = 0 and that the cut starts at Re(z) ≥ R.

It is possible to incorporate αs corrections as well. They don't change, however, the residue of the pole at s = 1.

By contrast, the equivalent spectral function of the Padé approximant constructed with M(0) and M(-1) is just a delta function.

See refs.[11,12,13] and references therein.
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APPENDIX

In this appendix we discuss various technical details which appear in the main text

to be able to approximate Π QCD (Q 2 ) at all Q 2 values with just one GH-function. One may, however, ask: is it possible to find generalizations of the simple Marichev-like MBa's which, when using more than the first two moments in Table (2) as an input, provide acceptable solutions to compare with a HVP µ in Eq. (1.3) [9]? There is a positive answer to that, as we shall next discuss. It consists in using superpositions of Mellin approximants of the Marichev type. This, in turn, implies specific superpositions of GH-Functions which approximate the self-energy Π QCD (Q 2 ) in the Euclidean, and hence a HVP µ .

V. 1.4 The N = (2) + (1) MBa.

The simplest superposition which gives acceptable solutions to the matching equations, when one knows three moments, is the one which consists of the sum of one N = 2 MBa and one N = 1 MBa, with the correct pQCD behaviour at s = 1 (hence the overall factor 1/2), i.e.

and the parameters a 1 , b 1 and b 2 solutions of the matching equations:

There is only one acceptable solution to these equations with the values: 

The corresponding sum of HG-Functions to the M 2+1 (s) MBa in Eq. (5.15) which results as an approximation to the HVP self-energy is now give an acceptable solution with values: Figure 24: Plot of the ratio of the experimental moments in Table (2) to those of the N = 2 + 1 + 1 MBa.

The Adler function associated to M 2+1+1 (s) in Eq. (5.20) is the sum of three GH-Functions:

and its shape is shown in Fig. (25). Plots of the spectral function corresponding to the N = 2 + 1 + 1 MBa are also shown in Fig. (26). The plots already exhibit underlying features of the hadronic structure.

V.2 Uncertainties of the Successive MBa's to a HVP µ .

We shall finally examine the sensitivity of the results obtained for the a HVP µ (N ) to small variations in the input parameters a k and b k of the successive M N (s), as well as to the choice of the Napproximant itself. The errors in the experimental determination of the moments M(-n) have been

A The Basic Mellin-Barnes Identity

The identity in Eq. (2.10) is a particular case of the identity (N = 1, 2, 3, . . . ):

We shall first show how performing the integral in the r.h.s. for N = 1 reproduces the l.h.s. For that we make a choice of s with Re(s) ∈]0, 1[, e.g. s = 1 2 + iτ . Then

Taking N -derivatives with respect to A in this identity reproduces Eq. (A.1). We shall next evaluate the Mellin transform of

We do that by applying Ramanujan's Master Theorem to the Taylor expansion:

from which Ramanujan allows us to conclude that

B Positivity Properties of the Mellin Moments

Because of the positivity property of the spectral function 1 π ImΠ(t) the Mellin Moments M(-N ) which, here, for convenience, we write as follows

must satisfy certain constraints which we next discuss. Notice that with this definition:

It is useful to change variables slightly: set

and, therefore,

The positivity constraints follow from the fact that

where ξ N and ξ N are the components of arbitrary positive real vectors. This implies that the matrix LQCD determinations of Mellin Moments should be consistent with these constraints.