Molecular and biopharmaceutical investigation of alginate–inulin synbiotic coencapsulation of probiotic to target the colon - Archive ouverte HAL
Article Dans Une Revue Journal of Microencapsulation Année : 2017

Molecular and biopharmaceutical investigation of alginate–inulin synbiotic coencapsulation of probiotic to target the colon

Résumé

Colon targeting, as a site-specific delivery for oral formulation, remains a major challenge, especially for sensitive bioactive components such as therapeutic forms of phages, live attenuated virus and prebiotics-probiotics association. Synbiotics could be used to protect encapsulated probiotics during the gastrointestinal tract and control their release in the colon. To achieve these goals, effective prebiotics, such as inulin, could be combined with alginate - the most exploited polymer used for probiotic encapsulation - in the form of beads. This work aimed to study the biopharmaceutical behaviour of alginate beads (A) and inulin-alginate beads of different inulin concentrations (5 or 20%) in 2% alginate (AI5, AI20). Beads were loaded with three probiotic strains (Pediococcus acidilactici Ul5, Lactobacillus reuteri and Lactobacillus salivarius). Dissolution of beads was studied by USP4 under conditions simulating the gastrointestinal condition. The survival rates of the bacterial strains were measured by a specific qPCR bacterial count. Mucoadhesiveness of beads was studied by an ex vivo method using intestinal mucosa. To understand the behaviour of each formulation, the ultrastructure of the polymeric network was studied using scanning electron microscopy (SEM). Molecular interactions between alginate and inulin were studied by Fourier transform infra-red spectroscopy (FTIR). Dissolution results suggested that the presence of inulin in beads provided more protection for the tested bacterial strains against the acidic pH. AI5 was the most effective formulation to deliver probiotics to the colon simulation conditions. FTIR and SEM investigations explained the differences in behaviour of each formula. The developed symbiotic form provided a promising matrix for the development of colonic controlled release systems.
Fichier non déposé

Dates et versions

hal-01658396 , version 1 (07-12-2017)

Identifiants

Citer

Abdelbasset Atia, Ahmed I Gomma, Ismail Fliss, Eric Beyssac, Ghislain Garrait, et al.. Molecular and biopharmaceutical investigation of alginate–inulin synbiotic coencapsulation of probiotic to target the colon. Journal of Microencapsulation, 2017, 34 (2), pp.171 - 184. ⟨10.1080/02652048.2017.1313330⟩. ⟨hal-01658396⟩
39 Consultations
0 Téléchargements

Altmetric

Partager

More