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Abstract—The presented research is carried out within the
framework of a global industrial project ”Electro-Mechanical
Actuator Health Management” with french company CERTIA.
The objective is the realization of an auto-diagnosis embedded
module for health monitoring and reconfiguration of Electro-
Mechanical Actuator (EMA) including two operating modes: Test
checking before taking off (evaluation and health management,
i.e evaluation of the rate of degradation) and online supervision
including (i)fault detection and isolation (to avoid the irreversible
jamming default for instance) and (ii) fault tolerant control
and/or reconfiguration in faulty situation (how to continue to
control the system en degraded mode ?). The present paper
concerns the first part of the project. The innovative interest con-
cerns use of bond graph model as unified and multidisciplinary
tool not only for modeling but also for structural diagnosability
analysis (which faults which may affect component including
sensors can be detected an isolated ?) and sensor placement
proposition to make the system diagnosable Without any need
of numerical calculation. An application to an induction motor
as main component in an EMA is used for illustration.

I. INTRODUCTION AND GENERAL ISSUES

The complexity and safety critical needs of systems such
as automotive systems or aircraft systems have motivated
the need for automated monitoring and diagnosis as part of
the intelligent control loop to insure the dependability and
availability of components in faulty and healthy situation. The
need for safety and efficient control under a variety of oper-
ating conditions requires online Fault Detection and Isolation
(FDI) procedures that can inform intelligent Fault Tolerant and
Fault Adaptive Control (FTC and FAC) schemes. The FDI
methodology is based on the comparison between the actual
system behavior (given by a sensors) with the normal operation
behavior (provided by a model). When the observed behavior
differs from the nominal behavior, the diagnosis method uses
this difference, expressed as a non-zero residual vector (named
alarm) as the basis for the isolation step to identify which
component is faulty using a logic procedure. Depending on
the kind of used models, two types of methods have been
developed : model-based approaches (using analytical models)
[1] and knowledge-based (using signal or pattern recognition)
[2], named non-model-based approaches. In contrary to the
model-based approaches where a prior, knowledge about the

model of the system is assumed, in non-model-based methods
only the availability of large amount of historical process data
is assumed. However, the isolation performances of no model
based methods need historical data in normal and in abnormal
situations, thus every fault mode has to be represented (which
is not always possible in the real systems). This is why FDI
model based approaches is an interesting alternative.

A key factor determining the performance of analytical
FDI techniques (observers, parity space...) is the model ac-
curacy but need numerical values of model parameters for
final evaluation. However, graphical methods present a big
interest because their models capture only system structure by
representing the system variables and set of behavior equations
just as nodes and arc. Furthermore, the graph structure is
independent of the numerical values of the system parameters.
This is why graphical methods are well suited for model based
structural diagnosis. In this context among qualitative models
(digraph, bipartite graph, and signed digraph) bond graph as a
powerful and multidisciplinary tool for modeling is well suited
because of its causal, behavioral and structural properties. A
comparison of this tool with others graphical models for FDI
is given in [3].

The presented research is carried out within the framework
of a global industrial project ”Electro-Mechanical Actuator
Health Management (EMAHM)” with french company CER-
TIA specialized in avionic test bench. The objective is the real-
ization of an auto-diagnosis embedded module for health mon-
itoring and reconfiguration of Electro-Mechanical Actuator
(EMA) including two operating modes: Test checking before
taking off (evaluation and health management, i.e evaluation
of the rate of degradation) of the EMA and online supervision
including fault detection and isolation (to avoid the irreversible
jamming default for instance) and fault tolerant control and/or
reconfiguration in faulty situation (how to continue to control
the system en degraded mode ?).

Fig.1 illustrates a different stages for the realization of
this project. This scheme is essentially composed of two
parts. The first part realized offline, concerns diagnosability
analysis (i.e., the ability to determine which component can
be monitored without any need of numerical calculations, and



before implementation).

Fig. 1. Offline (a) and online (b) design steps of EMA supervision

Comparing with analytical approaches, the modular and
functional aspect of bond graphs, allows for direct mappings
between generated fault indicators (ARR) and specific sen-
sor, actuator and component faults in the system [4]. While
the detectability and isolability performances based on Fault
Signature Matrix, performed offline and directly from the
graphical model because of its causal properties. At the end,
sensor placement can be proposed graphically in the model
to make the system diagnosable according to the fixed tech-
nical specifications. Finally the generated set of formal ARRs
are evaluated (if parameter values are available) to produce
numerical residuals for online supervision including FDI and
recovery decisions.

The present paper concerns the first part of the project,
and deals with use of bond graph model as unified and
multidisciplinary tool not only for modeling but also for struc-
tural diagnosability analysis (which faults which may affect
component including sensors can be detected an isolated ?) and
sensor placement proposition to make the system diagnosable.
An application to an induction motor as main component in an
EMA is used for illustration. The paper is organized as follows.
The second section deals with Bond Graph (BG) theory and
structural analysis basis. In the third part, the diagnosability
performances based on BG is developed. The methodology is
applied to an induction motor as main device for driving an
EMA. The fourth section present conclusion and future work.

II. BOND GRAPH STRUCTURAL ANALYSIS BASIS

A. Bond Graph theory

Definition 1: The key of bond graph modeling invented by
Paynter [5] is the representation (by a bond) of exchanged
power as the product of two generic power variables (named
efforts e and flows f ) with elements acting between these vari-
ables and junction structures to reproduce the global system
as interconnected subsystems.

Comparing with other graphical models (SDG [6], digraphs,
bipartite graphs, [7]) where vertices are variables and the edges

represent mutual influence between those variables, BG is also
a graph G(V,E), but the vertices V are BG elements corre-
sponding to physical components, subsystems and connection
elements, and where E (Edges) is a set of oriented bonds
used to represent power exchanges between vertices. In BG
representation, nodes are elementary elements represented by
the set V = {R∪C∪I∪TF ∪GY ∪Se∪Sf ∪De∪Df ∪J}.
The R − element represents a passive energy dissipation
phenomena (electrical resistor, mechanical friction) , while
C, and I elements model the passive energy storage under
potential (electrical capacity, tank, spring) and kinetic (induc-
tance, mechanical inertia) respectively. TF , and GY represent
transformers and gyrators respectively used to model energy
transformation from one form into another. The system inputs
are modeled using simple effort source (Se) and flow source
(Sf ) or controlled (modulated) sources (MSe) and MSf )
elements. Effort sources can be current generator or applied
velocity and flow sources are for example generator of voltage,
gravity force, pressure pump. Junction 1 (resp, 0) is used to
regroup BG elements which share the same flow (resp, the
same effort). Sensors are modeled by detectors of effort (De)
and flow (Df ) they are connected to the junction 0 (resp, 1)
by an arrow to show that they exchange information (not a
power).

The exchanged power between two systems V1 and V2 (Fig.
2(a)) is the product of two conjugated power variables: a po-
tential variable (e.g.pressure, electrical potential, temperature,
chemical potential, force, etc.) called effort (e) placed above
the bond and a derivative of extensive variable (e.g. volume
flow, current, entropy flow, velocity, molar flow, etc.) referred
to as flow (f), placed below the bond. The direction of the
positive power is indicated by the half arrow. Independently
of this power direction the algorithmic level of modeling is
represented by the causality concept shown by the causal
stroke place.

• Causality concept

The physics is naturally acausal. But, if we need to simulate
the physical phenomena (the model); we have to decide in
which order the variables (effort and flow) will be computed.
Consequently we need to make a series of cause and effect
decisions: this is a concept of causality. The causality is
denoted by a cross-stroke. By convention, this causal cross is
placed near (respectively far) the element for which the effort
(respectively flow) is known. This leads to a bloc diagram
simulation (Fig. 2b1). As illustrated by the electrical resistance
R supplied by a battery S (Fig. 2(a1)) where effort e and
flow f power variables represent voltage and current. The
bond graph can be acausal (e − R1.f = 0), or causal (Fig.
2(b1)), with two possible causal equations: f = e

R1
if S is

a voltage source or e = R1.f if S is a current source. This
concept of causal properties constitutes an important structural
and causal characteristics allowing to directly determine from
the graphical representation observability, controllability and
monitorability structural properties. Notion of a causal path
is given while it will be used in the procedure for manual



derivation of equations from bond graphs or unknown vari-
ables elimination in diagnosis bond graph model based. Note
that causally completed bond graphs may be converted into a
block diagram if needed. Indeed, the determination of causes
and effects (by a covering causal path) in the system is directly
deduced from the graphical representation.

Definition 2: (Causal path). A sequence of bonds from one
power port of an element to a power port of another element
is called a causal path if there is no 2-port gyrator in between
and if all bonds have their causal stroke at the same end. If the
bonds of a causal path connect only elements of the junction
structure and if the causal path is closed, then it is called a
causal loop.
In Fig.2a2, b2) are shown the causal paths (represented by
dashed arrows) for the given bond graphs.

Fig. 2. Causal BG model (a) and corresponding bloc diagrams (b) illustrated
by an electrical example (a1) and (b1) and their causal paths (a2, b2)

B. Structural model

The structural behavior model of any physical system can be
defined by a pair (C,Z), where {Z = z1, z2, ..., zn} is a set of
variables and parameters, and {C = c1, c2, ..., cnm} is a set of
constraints. The constraints may be expressed in several forms
like algebraic, difference equations, rules, etc. This structural
model can be represented by an adjacency boolean matrix M
(incidence matrix), whose elements mij are defined as follows:

mij =

{
1 if zi ∈ cj)
0 else

This matrix is used in diagnosis to find the redundancies
based on bipartite graph realized from analytical model. In the
present research, all redundancies are deduced directly from
the bond graph model without any need of analytical calcu-
lation. The variables which can be quantitative, qualitative,
fuzzy,. . . consist of two subsets :

Z = {X} ∪ {K} (1)

where {X} are unknown variables and {K} are known
variables which consists of control variables U and subset of
measured variables Y . The set of constraints, C, from a bond
graph theory include information about the structure Cs, the
behavior Cb, the measurement Cm and the control system Cc:

C = {Cs} ∪ {Cb} ∪ {Cm} ∪ {Cc} (2)

Structural equations {Cs} represent a set of conservation laws
and are deduced from the junction equations, transformers and
gyrators. The set {Cb} is associated with the behavior model
(expressing how the energy is transformed). In a BG model,
they describe the physical phenomena which are represented
by BG elements (R, I and C). Measurement model {Cm}
expresses the way in which the sensors transform some state
variables of the process into output signals which can be used
for FDI and control purposes. In BG models, the sensors are
represented as detectors of flow (Df) and detectors of effort
(De). The unknown variables {X} are the pair of power
variables that label the bonds: X = {ei, fi} , i = 1...n, where
n is the number of passive BG elements (R, I and C).

The input variables are represented by the flow (Sf ) and
the effort (Se) sources and modulated flow (MSf ) and effort
(MSe if they are controlled. Finally the set of known variables
{K} are:

K = {De} ∪ {De} ∪ {Sf} {Se} {MSf} {MSe} (3)

C. Canonical decomposition

Recall first that any subgraph G(Cx,X,A) where Cx, X
and A are subset of constraints matched by unknown variables,
unknown variables and edges, is a matching on G(Cx,X,Ax)
if and only if : (i) A ⊂ Ax, (ii) ∀a1, a2 ∈ Aa1 6= a2, (iv)
Cx(a1) 6= Cx(a2) and X(a1) 6= X(a2) where X(a) and
Cx(a) are respectively starting and ending nodes. In fact, a
matching is a set of pairs constraint, variables (ci, xi) so that
the variable xi can be computed by solving the constraint ci,
under the hypothesis that all other variables are known.

In [7], it is shown that any system to be monitored can be
decomposed into three main parts: (i) The structurally over-
constrained subsystem M+, where the matching is complete
with respect to unknown variables X but incomplete with
respect to the constraints C. Otherwise, a set C of equations
is structurally over determined if C has more equations than
unknowns variable X . (ii) The structurally just-constrained
subsystem M0, where the matching is complete with respect
to variables X and to the constraints C, this means that the
number of equations in the system is equal to the number of
variables. (iii) The structurally under-constrained M−, where
the matching is complete on the constraints C but not on
the variables X: the number of variables is greater than the
number of equations. The under-constrained subsystem is not
observable, and not monitorable. Recall that observability is a
necessary but not sufficient of diagnosability condition :

• Under derivative causality, the system is structurally ob-
servable if and only if : (i) All the unknown variables are



reachable from the known ones (measure), (ii) the over
constrained and just-constrained subsystems are causal
(no differential loop, all variables can be matched using
causal matching), (iii) the under-constrained subsystems
is empty (all variables can be matched.

D. Structural diagnosability

The conditions for a fault ϕ to be monitorable are :
(i) The subsystem is observable. (ii) The fault ϕ belongs
to the structurally observable over constrained part of the
subsystem to be monitored. A method based graph theory loses
sometimes certain information when writing the structure of
a graph representing system structure. This is due to the fact
that construction is generally from state equation, which does
not explain all relations constitutive of the system studied.
Furthermore, Dulmage-Mendelsohn decomposition based on
structural model needs determination of the whole of analytical
equations (constraints) and corresponding variables: this task
is not trivial for complex systems. In the next subsection, it
will be shown how the BG representation can be used in order
to deduce different subsystems directly from BG model.

E. Fault indicators generation from bond graph

In [8], the BG model has been used for ARR generation
for determinist FDI. Classically, an ARR is a constraint de-
rived from an over-constrained subsystem and expressed in
terms of known variables of the process. In a BG sense, an
ARR = f(SSe, SSf, Se, Sf,MSe,MSf, θ), where θ is the
parameters vector, SSe (SSf ) are signal sources of effort (flow)
that are obtained from the sensors of effort De (flow Df ). Se,
and MSe (Sf, and MSf ) symbolize the system inputs of effort
(flow). The causal properties of a BG model can be exploited
for generation of ARRs directly from the model in derivative
causality. For this task, dualizing an effort (or flow) detectors
transforms it into a signal source (SSe, SSf ). This imposed
signal is the starting point for the elimination of unknown
variables using covering causal paths from unknown variables
to known ones (sensors and input sources) contained in the
structural constraints of junctions ”0” and ”1”. The algorithm
of ARRs generation can be found in [8]. The procedure is
implemented in a software developed by one of the authors
as a toolbox [9]. On a bipartite graph and incidence matrices,
the starting point for the elimination of unknown variables is
difficult to find because there is many possibilities of matching.
The determination of an over-constrained matching for ARRs
generation using bond graph is done by the elimination of
unknown variables containing in the structural constraints
issued from ”0” and ”1” junctions.

F. Diagnosability performances

• Structural detectability from bond graph model
Proposition 1: A fault F which may affect a component

COMPi belonging to a subsystem modeled by a bond graph
model in derivative causality is detectable if and only if there
is at least one sensor (detector of effort or flow : |Cm| ≥ 1.

Proof 1 Consider now the global bond graph model of the
system to be monitored which consists of ` junctions. The
cardinal of the unknown variables |X| and the cardinal of
constraints can be given through the following relations:

card(C) = |C| =
∑̀
j=1

∣∣Cj∣∣ = `+
∑̀
i=1

(∣∣∣Cjb ∣∣∣+
∣∣Cjm∣∣)

card(X) = |X| =
∑̀
j=1

∣∣Xj
∣∣ = `+

∑̀
i=1

(∣∣∣Cjb ∣∣∣)
Then, if is added set of sensors of cardinal card(Cm), then

the cardinality of constraints will be
card(C) = |C| = |X|+ |C| = card(X) + card(Cm).

While the condition of over determination is card(Cm) 6= 0,
this means that there is at least one sensor.

• Structural isolability
The equations of power balance on the junctions constitute

the candidate ARRs [9]. Consider m candidates ARRs. During
the covering causal paths for ARR generation (which leads
to an oriented graph where nodes are constraints represented
by bond graph elements), a set of components {Eij} (noted
COMP (ARR)) will be covered during this sequence:

COMP (ARR1) =
{
E11 ... E1j ... E1n1

}
...

COMP (ARRm) =
{
Em1 ... Emj ... Emnnm

}
Its important to note that generated ARR from BG should

be considered with their component support because of it’s
graphical aspect:

COMP (ARR) ⊂ {C, R, I, TF, GY, De, Df, Se, Sf}
= ∪

i
COMP (ARRi)

Two component faults Fj and Fi are said strongly isolable
(or discriminable) if and only if for given two over determined
subsystems M+

i and M+
j , such that : Fj ∈ M+

j , Fi ∈ M
+
i

and COMP (ARRj) ∩ COMP (ARRi) = ∅,
Card(Is) can be used to evaluate the degree of isolability

(strong, weak).
Let r the evaluation of ARRs: r = Eval(ARR), if r is near to
zero, then the ARR is satisfied. If any fault on E component
occurs, the ARR is violated then r generates an alarm (this
is the detection step for which the condition of structural
detectability is given above). The problem is how to isolate
fault (to identify which component is faulty). In FDI model
based is used the fault Boolean signature matrix (FSM). The
Boolean value sij equals 1 if the ith residual is affected by the
jth fault. The signature vector of each component fault Ej is
given by the row vector VEj j=1,...,m = [sj1, sj2, ... sjn].
A pair of component faults (Ej , Ei) are isolable if their sig-
nature vector are different : ∀`(`=1,...,m), VEj 6= VE` (j 6= `)

From the BG model as developed above, the FSM can be
formed. Any element of the FSM matrix Eij represent BG
elements covered by the causal paths during the unknown
variable elimination procedure.



III. APPLICATION

A. Test Bench Description

The test bench is used to test aircraft components to verify
their functioning, their strength and endurance before integrat-
ing them in an airplane. Three configurations can be used, but
in this study, we focus only on the two motors configuration
given by Fig. 3. This configuration consists of positioning an
industrial motor in front of an aeronautical motor. The actuator
is a three-phase synchronous motor, couplings are used to
make up the misalignment between the motor outlet and the
inlet of the second motor. The first motor is controlled in
torque while the second is controlled in angular velocity. The
objective is to impose any torque trajectory (as disturbance)
to the main motor. The connecting shaft (Fig.3) ensures the
connection between the first and the second motor.

Fig. 3. Test bench overview and coupling shaft scheme

1) Word bond graph: The word bond graph (Fig.4) repre-
sents the technological level of the model. The global system
is decomposed into different subsystems. In contrast to a
conventional block diagram, the inputs and outputs in a word
bond graph are not a signals but power variables. Two pairs
of power variables are used: (torque-angular velocity (τ, ω)
for rotational mechanical energy and voltage-current (V, i) for
electrical energy.

Fig. 4. Word Bond Graph of the global electromechanical test bench

B. Bond Graph model of the induction motor

The following assumptions are made for the development of
a BG model for a synchronous machine: the stator windings
are sinusoidally distributed along the air-gap; the stator slots
cause no appreciable variation of the rotor inductance with

rotor position; magnetic hysteresis is negligible; magnetic
saturation effects are negligible.

In many cases, analysis of induction motors with space
vector model is complicated due to the fact that we have to
deal with variables of complex numbers. The most popular
transform is between stationary a-b-c frame quantities to
synchronously rotating d-q quantities using well known Park’s
transformation (represented by the BG model of Fig. 5).

Fig. 5. BG model of Park’s transformation

The global BG model of the induction motor is given Fig.
6. In a BG theory, the coupling between stator and rotor flux
is modeled by multiport inertia I BG element. The constitutive
equation is :[

dΦds

dt
dΦrd

dt

]
=

[
Ls Lm
Lm Lr

] [ dids
dt
dird
dt

]
The modulated gyrator MGY represents the electromechani-

cal power exchange. The system can be given under nonlinear
state space equation ẋ(t) = F (x(t), u) where x is a state
variable vector and u the vector input represented by effort
and flow sources in BG. From a BG model, the dimension
of the state vector is equal to the number of dynamic BG
element (I and C) in integral causality. The state variables are
energy variables i.e. displacement for C elements and impulse
for I element. For I element there are magnetic flux Φ = Li
and angular momentum M = Jω. The state vector does not
appear on the Bond graph, but only its derivative. Thus, there
are in the BG model J dωdt and L didt . The state equations can be
easily deduced from the BG or using specific softwares such
as 20sim [10] or Symbols Shakti. [11]. The state equation is
given below, where In is unit triangular matrix and s Laplace
derivative operator.



Ld
dids
dt = −idsRs + iqsωsLs + irqωsLm − Lmsird

Lq
diqs
dt = −iqsRs − idsωsLs − irdωsLm − Lmsirq

Lr
dirq
dt = −irqRr + PidsLmωr − irdLmωs

−idsLmωs − Lmsiqs
Lr

dird
dt = −irdRr − PiqsLmωr + irqLmωs − Lmsids

Jr
dωr

dt = −ωrfr = PLm (irdiqs − irqids)− ωrfr
+ [In]

[
Vd Vq Vrq Vrd τcs

]T
C. Diagnosability analysis

In our test bench, the used motor for driving the EMA is
a permanent magnet synchronous motor with flux φf . The



Fig. 6. Bond Graph model of the IM

global model in derivative causality suited for diagnosis is
given Fig. 7. The BG model include electrical and mechanical
dynamics of the two motors coupled by the coupling shaft
angular modeled by angular momentum inertia and viscous
friction represented by I : Jcs and R : Rcs BG elements
respectively. Coupling elasticities are represented by the two
capacities C : Kc1 and C : Kc2 elements representing
mechanical stiffness. SSf and SSe represent dualized flow
(angular velocity, and current) and effort (torque) sensors. For
simplicity all bonds are numbered, each number is associated
with a pair of power variable (effort-flow).

Fig. 7. Diagnosis BG of permanent synchronous motor

D. ARR generation

For simplicity and because of limited place, consider only
the diagnosability of the motor 1 with the coupling shaft. The
objective is to provide list of faults that can be detected and

isolated using only given instrumentation architecture without
any need of numerical calculation. For this task the structure
of each ARR can be deduced from the bond graph model
as developed in the paper. The model is given in derivative
causality because in real systems initial conditions are not
known. The ARR candidate are the constitutive equation
of junctions associated with at least one sensor. Thus, are
expected to deduce 4 ARRs. For pedagogical reason, consider
in details the ARR generated from the junction ”1” in the
stator circuit motor 1:

J1 ⇒ ARR1 = e19 − e18 + e20 − e17 + e16 = 0
e19, e18, e20, e17 and e16 are unknown variables, they will

be eliminated using covering causal (model inversion) from
unknown to known ones (measured and sources). Measured
variables are given by dualizing detectors (De and Df) into
Signal Sources (SS) (SSf and SSe). The causal paths lead to
oriented graphs showing how the unknown variables have been
calculated (eliminated) as presented for this ARR by Fig. 8.

Fig. 8. Oriented graph leading to ARR generation

The analytical expression of the ARR is :

ARR1 = [Rθ]
−1

(ωmr1, Va1, Vb1, Vc1)−Rs1.idm1

+Ls1.ωs.iqm1 − Ls1. idm1

dt +−d(Φf1)
dt

where [Rθ]
−1 is the inverse of Park’s transformation. The

components covered by the unknown variables elimination
noted COMP (ARR1 are :

COMPS(ARR1) ⊂ {Rs1, idm1, ωmr1, Va1, Vb1, Vc1, iqm1, Ls1,Φf1}
It means that the faults which may affect this set of

components can be detected by the fault indicator ARR1.
From the two junctions ”1” in electrical and mechanical part,
the following structural ARRs can be generated :

COMPS(ARR2) ⊂ {Rs1, idm1, ωmr1, Va1, Vb1, Vc1, iqm1, Ls1,Φf1}
COMPS(ARR3) ⊂ {Φf1, iqm1, Jr1, ωmr1, fr1, Jcs, τm2, ωmr2, kc2}
• Diagnosability Analysis
For diagnosability analysis a Fault Signature Matrix is built

(Fig.9. Mal1 is a misalignment fault which may affect the
rotor of motor 1. Only ARR1 is sensitive to this fault while the
candidate ARR is generated from the junction ”1” representing
conservative law dynamic equation of the rotor. Mb and Ib



represent monitorability and Isolability indexes. All faults
are detectable but no one is isolable (there is not a unique
signature).

Fig. 9. Fault Signature Matrix for Diagnosability analysis

• Sensor placement and causal loop

As noted in II-C the system is not observable if the over
constrained and just-constrained subsystems is not causal i.e.
there is a differential loop. Another ARR should have been
generated from ”0” junction linked to the torque sensor SSe :
τm2, but one of the covering causal paths to eliminate unknown
variables presents a differential causal loop. Precisely, it is
the causal path to eliminate f2 as shown by dashed line and
corresponding path in Fig. 10. This causal could be ”broken”
adding new sensors, for instance an angular velocity sensor
for the coupling shaft.

Fig. 10. No diagnosable subsystem because of differential causal loop

Finally the diagnosability performances are low, specially
concerning the motor jamming represented in the model by
the friction coefficient fr1. This fault is weakly isolable while
the signature vector of this parameter [001] has seven identical
signatures.To improve isolability performances a sensor place-
ment should be proposed or to design an observers (software
sensor) to estimate some variables.

ids, iqs Stator currents for transformed induction motor model [A]
Lm Stator and rotor mutual inductance [H]

Ld, Lq Rotor self inductance in d-q refernce [H]
Ls, Lr Rotor and stator self inductance [H]

Rs Stator winding resistance [Ω]

Te Electromechanical torque [Nm]
ωr Rotating speed of shaft [rad/s]
ωs Synchronous speed [rad/s]

Φds,Φqs Stator flux linkages for transformed induction motor model [Wb-t]
Φf Rotor flux linkages [Wb-t]
P Number of pole pairs

TABLE I
NOMENCLATURE

IV. CONCLUSION

The paper concerns the first part of the project, and deals
with use of bond graph model as unified and multidisciplinary
tool not only for modeling but also for structural diagnosability
analysis (which faults which may affect component including
sensors can be detected an isolated ?) and sensor placement
proposition to make the system diagnosable. An application
to the induction motor as main component in an EMA is
used for illustration. The main fault to be monitored according
the industrial is the Jamming of the motor. Based on existing
instrumentation architecture, the signature vector of this fault
is similar to six others signatures. Future work consists in
sensor placement proposition to satisfy specifications and real
time validation of the diagnosis algorithms.
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