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Abstract. Symplectic structure is powerful especially when it is applied
to Hamiltonian systems. We show here how this symplectic structure may
define and evaluate an integer index that measures the defect for the sys-
tem to be Hamiltonian. This defect is called the Geometric Degree of Non
Conservativeness of the system. Darboux theorem on differential forms
is the key result. Linear and non linear frameworks are investigated.
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1 Position of the Problem

Beyond the hamiltonian framework where external actions (like gravity) and
internal actions (like in elasticity) may be described by a potential function,
we are concerned here by mechanical systems whose actions are positional but
without potential. For external actions, this is the case for example of the so-
called follower forces ([1] for example). For internal actions, this is the case of
the so-called hypoelasticity ([8] for example). One main characteristic of these
questions is the loss of symmetry of the stiffness matrix K(p) in the investigated
equilibrium configuration and for the load parameter p.

For such systems, the stability issue presents some interesting paradoxi-
cal properties. For example, a divergence stable equilibrium configuration can
become unstable as the system is subjected to appropriate additional kinematic
constraints (see [4,7] for example). This problem and the associate Kinematic
Structural Stability concept have been deeply investigated for some years mainly
in the linear framework ([3,4] for example). In the present work, we are concerned
by the dual question: for such a non conservative system Σ, what is the minimal
number of additional kinematic constraints that transform the non conservative
system into a conservative one? This minimal number d is called the geometric
degree of nonconservativeness (GDNC). The second issue consists in finding the
set of appropriate constraints. This issue will be tackled in the framework of
discrete mechanics. More precisely, the set of configurations is a n-dimensional
manifold M and the non hamiltonian actions are described by a section ω of
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the cotangent bundle T ∗
M. This one form ω is supposed to be a non closed

one form: dω �= 0 where d is the usual exterior derivative of differential forms.
With the differential geometry concepts, the geometric meaning of the GDNC
issue is: What is the highest dimension n − d of embedded submanifolds N of M
such that the “restriction” (in a well defined meaning) ωN to N is closed. We do
not tackled in this work the very difficult global issues on N and, by Poincaré’s
theorem, the closed form ωN will be locally exact.

2 Solution

2.1 Linear Framework

In this subsection, we are concerned by the linearized version of the general
problem. A configuration me ∈ M (we can think to me as an equilibrium
position) is fixed and a coordinate system q = (q1, . . . , qn) is given. We are
looking for solution of the linear GDNC issue at me. There is here a real geo-
metric issue to build the linearized counterpart of ω at me because it should
be obtained by derivative of ω. But there is no connection on M to make the
derivative of ω. We will come back to this problem in the last part. However, as
usual, in a coordinate system q, the linearized counterpart of ω is the so-called
stiffness matrix K = K(qe) of the system at me whose coordinate system is qe.

In this framework, the issue is pulled back on the tangent space Tme
M which

will be identified with R
n thanks to the natural basis of Tme

M associated with
the coordinate system q on M. We indifferently note E = R

n and E∗ its dual
space, the vector space of the linear forms on E. Thus, let φ the exterior 2-form
defined on E = R

n by:
φ(u, v) = uTKav (1)

where Ka is the skew-symmetric part of K. Usual linear algebra says that there is
a basis B = (e1, . . . , en) of Rn and a number r = 2s ≤ n such that φ(e2i−1, e2i) =
−φ(e2i, e2i−1) = 1 for i ≤ s and φ(ei, ej) = 0 for the other values of i and j. In
the dual basis (e∗

1, . . . , e
∗
n) of (e1, . . . , en), the form φ then reads:

φ = e∗
1 ∧ e∗

2 + . . . + e∗
2s−1 ∧ e∗

2s (2)

The solution of the linear GDNC issue at me is then given by the following:

Proposition 1. d = s is the GDNC of the mechanical system Σ and a possible
set C = {C1, . . . , Cs} of linear kinematic constraints making the constrained
system ΣC conservative is such that Ci is any in <e∗

2i−1, e
∗
2i> for i = 1, . . . , s.

In this framework, it is possible to find the set of all such possible constraints.
Let then F be the kernel of φ. Then (Rn/F, φ̃) is a 2s-dimensional symplectic
vector space where φ̃ is canonically defined by φ̃(ū, v̄) = φ(x, y) with x (resp, y)
any vector of the class ū (resp. v̄).

Proposition 2. The set of solutions of the GDNC is (isomorphic with) the set
of Lagrangian subspaces of (Rn/F, φ̃).

One can find in [6] a concrete construction of this set and in [5] the proof of
these results.
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2.2 Non Linear Framework

The key of the solution in the nonlinear framework is related to Darboux theorem
about the class of 1-form and 2-forms ([2] for example). We suppose now that
the 2-form dω is regular on M meaning that its class r is constant on M. Then
here, since the form dω is itself a closed form (d2 = 0), its class is also equal to
its rank and is even: r = 2s. s is the unique number such that (dω)s �= 0 and
(dω)s+1 = 0. We then deduce that 2s ≤ n.

Darboux’s theorem gives the local modeling of dω on an open set U of M
and reads:

dω =
s∑

k=1

dyk ∧ dyk+s (3)

where y1, . . . , y2s are 2s independent functions on U . We then deduce the
following

Proposition 3. Suppose that the class of dω is constant at m ∈ M (namely
maximal). The (non linear) GDNC of Σ (in a neighborhood of m ∈ M is then
the half s of the class 2s of dω. The local definition of a submanifold N solution
of the problem is given by the family f1 = 0, . . . , fs = 0 of equations on M where
f i is any linear combination (in the vector space on R and not in the modulus
on the ring on the functions on R) of the above yi and yi+s for all i = 1, . . . , s.

3 Open Issues

Two open issues are related to this GDNC issue. The first one concerns the
derivative of sections in T ∗

M. The dual issue is the KISS issue that involves, in a
linearized version at me, the symmetric part Ks(qe) of the stiffness matrix K(qe).
It is worth noting that the skew-symmetric aspect Ka(qe) may be extended to
the nonlinear framework through the exterior derivative dω whereas no similar
extension is possible for the symmetric part without specify a connection on
M. This issue is today partially solved and will be the subject of a forthcoming
paper.

The second one concerns the extension to continuum mechanics and infinite
dimension spaces. Regarding the dual KISS issue, it is has been performed and
will be soon published in an already accepted paper. Regarding the GDNC
issue, it remains an interesting challenge because the tools, involved for the
finite dimensional solution, are not naturally extendable to the case of infinite
dimensional (Hilbert) vector spaces.
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