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Abstract: Free water elimination (FWE) in brain diffusion MRI has been shown to improve tissue spe-
cificity in human white matter characterization both in health and in disease. Relative to the classical
diffusion tensor imaging (DTI) model, FWE is also expected to increase sensitivity to microstructural
changes in longitudinal studies. However, it is not clear if these two models differ in their test–retest
reproducibility. This study compares a bi-tensor model for FWE with DTI by extending a previous
longitudinal-reproducibility 3T multisite study (10 sites, 7 different scanner models) of 50 healthy
elderly participants (55–80 years old) scanned in two sessions at least 1 week apart. We computed the
reproducibility of commonly used DTI metrics (FA: fractional anisotropy, MD: mean diffusivity, RD:
radial diffusivity, and AXD: axial diffusivity), derived either using a DTI model or a FWE model. The
DTI metrics were evaluated over 48 white-matter regions of the JHU-ICBM-DTI-81 white-matter labels
atlas, and reproducibility errors were assessed. We found that relative to the DTI model, FWE signifi-
cantly reduced reproducibility errors in most areas tested. In particular, for the FA and MD metrics,
there was an average reduction of approximately 1% in the reproducibility error. The reproducibility
scores did not significantly differ across sites. This study shows that FWE improves sensitivity and is
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thus promising for clinical applications, with the potential to identify more subtle changes. The
increased reproducibility allows for smaller sample size or shorter trials in studies evaluating bio-
markers of disease progression or treatment effects. Hum Brain Mapp 38:12–26, 2017. VC 2016 Wiley Peri-

odicals, Inc.

Key words: multisite diffusion MRI; free-water imaging; test–retest reproducibility; brain diffusion ten-
sor imaging; longitudinal; healthy elderly
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INTRODUCTION

Diffusion MRI is a noninvasive tool able to provide
unique in vivo microstructural information (Basser et al.,
1994; Basser and Pierpaoli, 1996), especially useful for the
study of white-matter structure and organization (Assaf
and Pasternak, 2008). The commonly used diffusion tensor
imaging (DTI) model, allows the characterization of water
diffusion in white matter through metrics like fractional
anisotropy (FA), mean diffusivity (MD), axial diffusivity
(AXD), and radial diffusivity (RD). These metrics were
able to identify the microstructure and subtle pathologies
of white matter in numerous basic neuroscience and clini-
cal applications (Alexander et al., 2007; Assaf and Paster-
nak, 2008; Basser and Jones, 2002; Le Bihan et al., 2001).

The single-tensor DTI model, however, has the limita-
tion that it assumes a single tissue compartment per voxel,
thus generating biased DTI metrics in voxels consisting of
a mixture of white matter and freely moving extracellular
water molecules (Alexander et al., 2001; Jones and Cer-
cignani, 2010; O’Donnell and Pasternak, 2015). To address
this limitation, free water elimination (FWE) methods that
include an explicit compartment modeling free water have
been proposed (Baron and Beaulieu, 2014; Hoy et al., 2014;
Metzler-Baddeley et al.,2012; Pasternak et al., 2012a; Pas-
ternak et al., 2009; Zhang et al., 2012). Free water contribu-
tions are not only limited to CSF partial volume effects at
the border of the ventricles and brain parenchyma, but
also found within deep white matter structures, potentially
providing additional structural information (Pasternak
et al., 2009). Of the abovementioned FWE methods, the bi-
tensor method by Pasternak et al., 2009 is a data process-
ing approach fully compatible with clinical DTI acquisition
protocols. By eliminating free water, the FWE methods
improve the specificity to white matter of the DTI metrics
and have been successfully applied to a variety of neuro-
logical disorders (e.g. schizophrenia, Alzheimer’s disease,
Parkinson’s disease, Huntington’s disease, traumatic head
injuries, and major depressive disorder) showing stronger
cross-sectional effects relative to the single-tensor model
(Bergamino et al., 2015; Maier-Hein et al., 2014; Mandl
et al., 2015; Metzler-Baddeley et al., 2012; Ofori et al.,
2015a,b; Pasternak et al., 2012b; Steventon et al., 2016).

The abovementioned work suggests that the FWE model
offers improved specificity by separating free water from
white matter tissue, resulting with a more accurate

characterization of white matter diffusion properties. In
addition, the model provides a separate characterization of
the fractional volume of tissue and free water. In this
study, we evaluate the test–retest reproducibility of the
diffusion metrics derived from the FWE model. Quantita-
tive characterization of test–retest reproducibility is a mea-
sure of robustness, and is important, for example, to
estimate the number of subjects required for a longitudinal
study (Diggle et al., 2002). Reducing the reproducibility
errors of the single-tensor model has direct cost implica-
tions, as it allows reaching the same statistical power with
a smaller sample size, which is particularly important
when planning large multisite studies (Horn and Toga,
2009).

When characterizing longitudinal changes in white-
matter microstructure, FWE may help reduce reproducibil-
ity errors for several reasons. Variability in brain slice
positioning across MRI sessions can lead to different CSF-
contamination-based partial volume effects (Metzler-Bad-
deley et al., 2012, Vos et al., 2011). In addition, the extra-
cellular volume is likely more affected by transient
changes, such as dehydration, temperature, and stress,
which may change between scans, but do not necessarily
mean that the brain tissue itself has changed. The aim of
this study is to compare the longitudinal test–retest repro-
ducibility errors of DTI metrics commonly used in clinical
studies (FA, MD, AXD, and RD) when derived from the
single-tensor DTI model versus the bi-tensor FWE diffu-
sion model. The underlying hypothesis is that the
improved specificity to white-matter diffusion properties
offered by FWE should also reduce test–retest variability,
thereby improving reproducibility.

MATERIALS AND METHODS

The data used in this study was acquired as part of the
PharmaCog project, a large European project aimed at pro-
filing biomarkers sensitive to prodromal Alzheimer’s dis-
ease in elderly subjects with amnestic mild cognitive
impairment in the age range of 50–80 (Galluzzi et al.,
2016). The raw MRI data of the healthy subjects is public,
its demographics, study design, and data preparation steps
have been described in a preliminary calibration study
showing that test–retest reproducibility errors of diffusion
metrics derived from the standard single-tensor model
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were consistent across sites and consistent with previous
reports of single site studies (Jovicich et al., 2014).

Ten clinical European 3T MRI sites using Philips, GE,
and Siemens scanners participated in this study, each site
had a single MRI scanner. To evaluate test–retest repro-
ducibility of the scanners participating in the PharmaCog
project, each site recruited 5 volunteers in the age range of
50–80 years with no history of major psychiatric, neurolog-
ical, or cognitive impairment. A total of 50 subjects partici-
pated; two subjects were excluded because of missing data
(one from site 3 and one from site 10). Participants were
scanned in two sessions (“test” and “retest”) between 7
days and a maximum of 60 days apart.

The diffusion MRI acquisition protocol was calibrated
across sites: b value 5 700 s/mm2, 5 b0 volumes, 30 gradi-
ent directions, voxel size 2 3 2 3 2 mm3, 64 axial slices,
zero slice gap. Siemens and GE scanners allowed saving
the 5 b0 volumes separately, whereas the Philips scanners
saved only one volume corresponding to the average of
the 5 b0 acquisitions. More details about site-specific dif-
ferences are described in our previous study (Jovicich
et al., 2014).

This study introduces the following new analyses: (i) the
fitting of a bi-tensor model for FWE (Pasternak et al.,
2009); (ii) comparison of test–retest reproducibility of DTI
metrics, with and without FWE; and (iii) evaluation of
reproducibility on 48 white matter regions of the JHU-
ICBM-DTI-81 white-matter labels atlas (instead of 9 ROIs
that were previously evaluated). The overall goal was to
test whether or not FWE improves test–retest reproducibil-
ity of DTI metrics relative to the single-tensor method, on
wider brain coverage of white-matter areas.

Free Water Elimination

Data preprocessing was performed with DTIPrep and it
included automatic quality assurance, omitting image vol-
umes containing severe artifacts, head motion correction,
and eddy-current correction (Liu et al., 2010) (http://
www.nitrc.org/projects/dtiprep). The brain was masked
using brain extraction tool (BET, FMRIB software library;
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki) (Smith, 2002). These
preprocessing steps were identical to those taken in Jovi-
cich et al. (2014), where additional preprocessing details
can be found.

The preprocessed data were then fitted to the DTI model
and to the bi-tensor FWE model. DTI analysis was per-
formed by the least squares method, estimating a tensor
for each image voxel (Basser and Jones, 2002), using the
“Diffusion Tensor Estimation” module in 3D Slicer
(https://www.slicer.org). Details about the FWE used here
have been previously described elsewhere (Pasternak et al.
2009, 2014). Briefly, the model considers two co-existing
compartments per voxel: one compartment is a free-water
compartment, which models isotropic diffusion with a dif-
fusion coefficient of water at body temperature fixed to 3

3 1023 mm2/s. Due to the fast diffusivity and short diffu-
sion time, free-water molecules are expected only at large
enough extracellular spaces. The second compartment is
the tissue compartment, which accounts for all other mole-
cules, i.e., all intra and extracellular molecules that are hin-
dered or restricted by tissue membranes (Pasternak et al.,
2009). The tissue compartment is modeled by a diffusion
tensor. The FWE method estimates this tensor, as well as
the fractional volume of the free-water compartment. To
do so, the algorithm, implemented in Matlab (The Math-
Works Inc., Natick, MA, USA), applies tensor regulariza-
tion, which stabilizes the model fit (Pasternak et al. 2009).
DTI indices (FA, RD, MD, and AXD) were extracted using
the “Diffusion Tensor Scalar Measurements” module in 3D
Slicer, either from the conventional diffusion tensors or
from those fitted by the FWE model, yielding free-water-
corrected DTI indices. This approach enabled the direct
comparison of the corrected and uncorrected DTI indices.

TBSS and Atlas-Based ROI Analysis

For each site, a white matter skeleton was created from
the mean uncorrected FA images of all subjects using the
standard Tract-Based Spatial Statistics (TBSS) analysis
(Smith et al., 2006). All the other individual subjects’ diffu-
sivity measures (with and without FWE), as well as the
fractional volume of free-water maps, were then projected
onto the white-matter skeleton.

To estimate the reproducibility in specific white-matter
areas, the different measures were averaged over the JHU-
ICBM-DTI-81 WM labels atlas (Mori et al., 2005) ROIs,
overlapped with the corresponding site’s skeleton (Jovicich
et al., 2014). The projection of the scalar maps from both
analyses methods (with and without FWE), in each site,
onto the same skeleton, ensured that the reproducibility
was evaluated on the same projections.

No white-matter lesions were found in this dataset (Jovi-
cich et al., 2014), therefore, DTI metrics over the right- and
left-brain hemispheres were averaged for each subject. The
JHU-ICBM-DTI-81 WM labels atlas contains 48 WM labels,
6 of which are bilateral (middle cerebral peduncle, pontine
crossing tract, body, splenium, genu of the corpus cal-
losum, and fornix). As a result, averaging across hemi-
spheres gives a total of 27 WM labels (Table I).

Previous studies have evaluated how FWE changes dif-
fusion metrics relative to those estimated by the standard
DTI model (Bergamino et al., 2015; Maier-Hein et al., 2014;
Metzler-Baddeley et al., 2012; Ofori et al., 2015a; Pasternak
et al., 2014; Steventon et al., 2016). For comparison pur-
poses, we also evaluated such changes (for example, the
percent change in FA was computed as (FAFWE 2 FADTI)/
FADTI, averaging across ROIs and subjects. Test–retest
reproducibility score (E) of the DTI metrics was evaluated
calculating the percent absolute change relative to the
mean (Jovicich et al., 2014) for each diffusion metric (DM)
as follows:

r Free-Water Elimination improves DTI reproducibility r
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for each ROI, with and without FWE, where lower scores
indicate better reproducibility. These reproducibility scores
were then averaged across subjects for each site to test for
site effects, and then across sites after confirming that
there were no sites effects.

A complementary approach for characterizing variability
between scans is by estimating the intraclass correlation
coefficient (ICC). Unlike the test–retest reproducibility
score E, which focuses on within-subject variability, the
ICC combines both within and across subject variability. A
one-way random effect ICC(1) was used to evaluate the
degree of absolute agreement across sessions following
rank-order data transformation to make the test nonpara-
metric (McGraw and Wong, 1996, Shrout and Fleiss, 1979).
Considering subjects as “targets” and test–retest sessions
as “raters,” the ICC measures the proportion of variance
between repeated sessions out of the total variance across
subjects and sessions. The ICC value was calculated sepa-
rately for each diffusion scalar metric and for each ROI,
with and without FWE as follows:

ICC 1ð Þ5 r2
as

r2
as1 r2

ws

where r2
as is the expected mean square difference across

subjects and r2
ws is the expected mean square difference

within subjects (“raters”).

Statistical Analysis

Data were analyzed using Matlab (The MathWorks Inc.,
Natick, MA, USA) version 2015b. To test for MRI site
effects of test–retest reproducibility, we used a one-way
Kruskall–Wallis test. To test for differences in reproduc-
ibility with and without FWE, for each DTI metric and
ROI, we used a two-tailed Wilcoxon signed rank test. To
correct for multiple comparisons across ROIs, we used
False Discovery Rate (FDR) (Benjamini and Hochberg,
1995; Benjamini and Yekutieli, 2001).

Both age (higher difficulty to stay still during the scan)
and the interval between the two scans (higher influences
of scanner instabilities and subject physiological changes)
can potentially affect reproducibility (Bonekamp et al.,
2007; Charlton et al., 2006; Sullivan et al., 2010). Therefore,
we evaluate the correlation between reproducibility and
these variables using the Spearman correlation test, cor-
rected for multiple comparisons. For all tests, the threshold
for significance was P< 0.05.

To test for differences in reproducibility (test–retest
reproducibility score and ICC) with and without FWE, for
each DTI metric and ROI, we used a two-tailed Wilcoxon
signed rank test.

Sample Size Comparison

Reproducibility errors affect sample size calculations in
longitudinal studies. Sample size is of interest due to its
various practical implications, in particular study costs.
We used the formulation of longitudinal sample size cal-
culation to compare the sample size ratio between the two
diffusion models in terms of the percent of subjects that
would be needed when using the FWE model as opposed
to the single-tensor model (Diggle et al., 2002; Reuter
et al., 2012; Jovicich et al., 2013). For each diffusion metric
and ROI, we calculated the sample size ratio, which is
independent from effect size assumptions, as follows:

SSfrac5100 3
r2

FWE 12 qFWEð Þ
r2

DTI 12 qDTIð Þ

where r2 is the group variance and q is the correlation of
the across-session test–retest estimates for the uncorrected
(DTI) and the FWE-corrected data. The standard error of
the SSfrac was estimated using bootstrapping (1000
resamples).

RESULTS

The complete DTI dataset consisted of 48 subjects
scanned twice, 10 MRI sites, 4 subjects per site for site 3
and site 10, and 5 subjects for all the other sites. Quality
assurance results, signal-to-noise ratio, and head motion
analysis were previously reported in Jovicich et al. (2014).

Free Water Elimination: Effects on Diffusion

Metrics and Free Water Maps

Averaging over all ROIs and subjects, we found that rel-
ative to the standard DTI analysis, FWE had a mean FA
increase of (23 6 6) %, with mean increase in the FA value
of 0.11 6 0.01, a mean MD decrease of (27 6 3) %, with a
mean decrease in the value of 0.22 6 0.02, a mean RD
decrease of (39 6 4) %, with a mean decrease in the value
of 0.22 6 0.02, and a mean AXD decrease of (18 6 2) %,
with a mean decrease in the value of 0.22 6 0.01. The aver-
age FWE volume fraction was 0.17 6 0.09.

Free Water Elimination: Effects on

Across-Session Test–Retest Reproducibility

There were no significant differences in reproducibility
across MR sites for all metrics and ROIs (Kruskall–Wallis,
P> 0.05), except for RD in the superior Corona Radiata (P
value 5 0.047). In the proceeding analyses, we therefore
grouped the reproducibility scores from all 48 subjects
regardless of MRI site.

Table I lists the ROIs ordered by increasing volume size,
and their corresponding reproducibility scores, with and
without FWE. In this table, cells with blue background

r Free-Water Elimination improves DTI reproducibility r
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denote significant improvement of reproducibility in FWE
scores relative to uncorrected scores, with gray back-
ground denote significant worsening of reproducibility

with FWE, and with white background denote no signifi-
cant differences between the two models. Test–retest
reproducibility was significantly improved by FWE in

Figure 1.

Reproducibility errors of diffusion metrics: effects of ROI size

and free water elimination. Red symbols are for uncorrected

maps, blue symbols are for FWE maps, dark red symbols are for

free water maps. The statistical significance between the repro-

ducibility of uncorrected and FWE-corrected data corresponds

to the results from Table I and is shown here by using different

symbols: full circles represent ROIs where FWE significantly

reduces reproducibility errors, empty circles where there are no

significant differences, and crosses where FWE significantly

increases errors. [Color figure can be viewed at wileyonlineli-

brary.com.]
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most white matter ROIs (Wilcoxon test, P< 0.05 with
FDR). From the 27 ROIs, reproducibility was improved in
15 ROIs for AXD (55%), 16 ROIs for RD (59%), 20 ROIs for
MD (74%), and 22 ROIs for FA (81%). In six instances
(within three ROIs), FWE resulted with worse reproduc-
ibility (see cells with gray background in Table I). Using
the single-tensor DTI model, the indices with the best
reproducibility were AXD (3.2%62.1%), followed by FA
(3.3%62.1%), MD (3.4%62.5%), and RD (4.8%63.4%).
When applying the FWE model, the index with best repro-
ducibility was MD (2.2%61.7%), followed by FA
(2.4%61.7%), AXD (2.8%61.9%), and RD (4.0%62.9%).
The test–retest reproducibility was also calculated for the
free water maps for each ROI (Table I), showing in general
worse scores than the DTI metrics (9.8 6 3.8%).

To highlight the effect of ROI size on test–retest repro-
ducibility, Figure 1 presents the separate plots for each
DTI metric. The plots show the mean reproducibility score
(Table I) over the volume in cubic millimeters of each ROI,
for the two analyzed models (DTI in red; FWE in blue). In
this figure, full circles represent significant improvement

in reproducibility by FWE, crosses represent significant
worsening in reproducibility by FWE, and empty circles
represent no significant effects between the DTI and FWE
models. From this figure, we see that reproducibility is
improved as the size of the ROI grows, and that FWE
improves reproducibility in FA across all ROI sizes, and
has more effect on MD, RD, and AXD in smaller ROIs
(<1800 mm3). Figure 2 shows the histograms of reproduc-
ibility scores for the two models. The overall distribution
of reproducibility scores is skewed to the left for FWE
(blue) comparing with DTI (red).

There were no significant correlations between reproducibil-
ity scores and age or between reproducibility scores and the
interval between scans, in any of the ROIs and metrics studied.

Tables (II–V) show the ICC score and confidence intervals
(CI), with and without FWE, for the various ROIs and DTI
metrics. Both FWE and uncorrected data had moderate-to-
high ICC values, with a tendency of higher ICCs for larger
ROIs (Tables (II–V)). When considering all ROIs, the effects
of FWE on ICC were mixed. For two diffusion metrics,
there were no significant ICC differences (FA: P 5 0.3613,

Figure 2.

Reproducibility errors of diffusion metrics: whole-brain normalized histogram distributions. For

each diffusion metric (FA, MD, AXD, RD), the normalized reproducibility histograms for uncor-

rected (red) and FWE-corrected data (blue) are shown. [Color figure can be viewed at wileyonli-

nelibrary.com.]
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Table II; RD: P 5 0.8854, Table V); for AXD, the ICC
improved with FWE (P5 0.0029, Table IV); and for MD, the
ICC was reduced with FWE (P 5 0.025, Table III). Both anal-
yses methods, single-tensor and FWE, were consistent in
terms of the diffusion metrics with highest ICC. With the
single-tensor DTI model, after averaging across ROIs, FA
showed the highest reproducibility (mean 6 SD) (ICC:
0.87 6 0.05), followed by AXD (ICC: 0.84 6 0.07), RD (ICC:
0.83 6 0.09), and MD (ICC: 0.81 6 0.09). FWE measures were
similar, with FA as the most reproducible metric (ICC:
0.87 6 0.05), followed by AXD (ICC: 0.86 6 0.07), RD (ICC:
0.82 6 0.14), and MD (ICC: 0.77 6 0.12).

Supporting Information Tables III–VI show the within
and across subject variances that were used to compute the
ICC scores in each condition (DTI and FWE) and ROI. The
results show that FWE can give significant reductions in
within and across subject variance, thereby sometimes
maintaining a comparable ICC across DTI and FWE condi-
tions, despite a reduction of variability in FWE. With the
FWE model, within-subject variances were significantly

reduced for FA (P 5 0.0021), MD (P 5 9.9401e-05), AXD
(P 5 8.3937e-04), and RD (P 5 9.9401e-05). Similarly, across-
subject variances were significantly reduced for MD
(P 5 9.9681e-04), AXD (P 5 0.0019), and RD (P 5 9.9681e-04).

Free Water Elimination: Effects

on Sample Size Calculations

The practical effect of improvement in reproducibility
can be described in terms of the sample size required to
identify group effects. As an example we show in Figure 3
this relation in the three regions of the corpus callosum:
genu, body, and splenium (complete sample size calcula-
tion for all the ROIs and scalar maps are in Supporting
Information, Table I). The figure shows the percentage of
subjects needed when applying FWE to have the same sta-
tistical power as DTI maps without FWE. The analysis
shows that the improved reproducibility of FWE dramati-
cally reduces sample size requirements for FA, MD, and
RD maps. To achieve the same statistical power as DTI,

TABLE II. ICC values of fractional anisotropy (FA), with (FWE) and without (DTI) free water elimination

White-matter ROIs

Fractional anisotropy ICC

DTI FWE

Uncinate fasciculus 0.82 [0.69–0.89] 0.86 [0.76–0.92]
Superior fronto-occipital fasciculus 0.83 [0.71–0.90] 0.85 [0.75–0.91]
Tapetum 0.91 [0.84–0.95] 0.70 [0.52–0.82]
Fornix 0.83 [0.72–0.90] 0.88 [0.79–0.93]
Inferior cerebellar peduncle 0.84 [0.74–0.91] 0.79 [0.66–0.88]
Medial lemniscus 0.77 [0.63–0.87] 0.79 [0.66–0.88]
Superior cerebellar peduncle 0.79 [0.66–0.88] 0.73 [0.56–0.84]
Fornix (stria terminalis) 0.85 [0.75–0.91] 0.86 [0.76–0.92]
Cingulum (hippocampus) 0.78 [0.65–0.87] 0.82 [0.70–0.89]
Cingulum (cigulate gyrus) 0.88 [0.80–0.93] 0.91 [0.85–0.95]
Pontine crossing tract 0.84 [0.74–0.91] 0.81 [0.68–0.89]
Corticospinal tract 0.83 [0.71–0.90] 0.78 [0.64–0.87]
Sagittal stratum 0.88 [0.80–0.93] 0.91 [0.84–0.95]
Cerebral peduncle 0.88 [0.80–0.93] 0.86 [0.76–0.92]
Retrolenticular part internal capsule 0.86 [0.76–0.92] 0.87 [0.78–0.92]
Posterior corona radiata 0.94 [0.89–0.96] 0.93 [0.88–0.96]
Posterior thalamic radiation 0.94 [0.89–0.96] 0.99 [0.98–0.99]
Anterior limb internal capsule 0.91 [0.85–0.95] 0.94 [0.90–0.97]
Posterior limb internal capsule 0.82 [0.70–0.90] 0.89 [0.82–0.94]
Anterior corona radiata 0.94 [0.90–0.97] 0.93 [0.88–0.96]
Superior corona radiata 0.92 [0.86–0.95] 0.94 [0.90–0.97]
Superior longitudinal fasciculus 0.95 [0.91–0.97] 0.93 [0.88–0.96]
External capsule 0.92 [0.87–0.96] 0.92 [0.86–0.95]
Genu 0.92 [0.86–0.95] 0.93 [0.87–0.96]
Splenium 0.93 [0.87–0.96] 0.94 [0.89–0.97]
Middle cerebellar peduncle 0.89 [0.81–0.94] 0.90 [0.83–0.94]
Body 0.89 [0.81–0.94] 0.90 [0.83–0.94]
Average ICC across all ROIs (mean6SD) 0.87 6 0.05 0.87 6 0.07

For each of the 27 ROIs of the JHU-ICBM-DTI-81 white-matter labels atlas (ordered by increasing volume size), the ICC values and the
corresponding confidence interval (CI) [lower bound 2 upper bound] were quantified for uncorrected (DTI) and FWE-corrected FA.
The statistics of the last line is done on N 5 27 ROIs comparing the uncorrected and FWE-corrected ICC values using a two-tailed Wil-
coxon signed rank test, P< 0.05. SD: standard deviation.
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the FWE method requires 38%, 46%, and 21% of the sub-
jects, to identify group effects in the genu, body, and sple-
nium of the corpus callosum, respectively. The reduction
is less pronounced for AXD, where the two methods had
similar reproducibility (Fig. 3).

DISCUSSION

In this study, we evaluated and compared the test–retest
reproducibility of diffusion MRI measures from multisite
healthy elderly participants using two different diffusion
models: standard single-tensor DTI and bi-tensor FWE.
Our analysis is the first to provide information about the
reproducibility of the FWE measures. The main finding is
that FWE significantly improves test–retest reproducibility
on all DTI metrics in most ROIs in the brain. The
improved reproducibility suggests that FWE-DTI measures
have higher sensitivity than conventional DTI measures to
detect both within and between-group effects related to
white matter changes. This improvement may explain the

enhanced group difference detection reported in previous
studies that used the FWE model comparing with the DTI
model (Bergamino et al., 2014). At the same time the clini-
cal specificity is improved, as the FWE measures remove
partial volume effects with extracellular free water, thus
revealing changes that occur to the tissue itself, such as
neurodegeneration (Bergamino et al., 2015; Metzler-
Baddeley et al., 2012; Pasternak et al., 2012b,). Moreover,
the present results demonstrate a potential clinical rele-
vance in terms of sample size reduction, proposing FWE
as an effective processing step to decrease the number of
subjects needed, comparing with DTI.

Overall, when applying FWE, we see a significant reduc-
tion in the test–retest reproducibility error of all 4 metrics
studied (AXD, FA, MD, and RD) in most ROIs, and consis-
tently across MRI sites. Of note, the reproducibility errors
derived from single-tensor DTI metrics are consistent with
previous studies (Fox et al., 2011; Jovicich et al., 2014; Voll-
mar et al., 2010). The improved reproducibility following
FWE may reflect the reduced contribution of partial

TABLE III. ICC values of mean diffusivity (MD), with (FWE) and without (DTI) free water elimination

White-matter ROIs

Mean diffusivity ICC

DTI FWE

Uncinate fasciculus 0.71 [0.54–0.83] 0.59 [0.37–0.74]
Superior fronto-occipital fasciculus 0.69 [0.51–0.81] 0.69 [0.51–0.81]
Tapetum 0.89 [0.81–0.94] 0.71 [0.53–0.82]
Fornix 0.89 [0.82–0.94] 0.88 [0.80–0.93]
Inferior cerebellar peduncle 0.71 [0.54–0.83] 0.63 [0.43–0.78]
Medial lemniscus 0.62 [0.41–0.77] 0.50 [0.26–0.68]
Superior cerebellar peduncle 0.77 [0.63–0.87] 0.59 [0.37–0.74]
Fornix (stria terminalis) 0.86 [0.76–0.92] 0.75 [0.60–0.85]
Cingulum (hippocampus) 0.66 [0.47–0.79] 0.72 [0.54–0.83]
Cingulum (cigulate gyrus) 0.68 [0.50–0.81] 0.70 [0.52–0.82]
Pontine crossing tract 0.87 [0.78–0.93] 0.82 [0.70–0.90]
Corticospinal tract 0.78 [0.64–0.87] 0.60 [0.38–0.75]
Sagittal stratum 0.95 [0.91–0.97] 0.86 [0.76–0.92]
Cerebral peduncle 0.75 [0.60–0.85] 0.79 [0.66–0.88]
Retrolenticular part internal capsule 0.88 [0.79–0.93] 0.84 [0.73–0.91]
Posterior corona radiata 0.89 [0.81–0.94] 0.82 [0.70–0.89]
Posterior thalamic radiation 0.93 [0.88–0.96] 1.00 [0.99–1.00]
Anterior limb internal capsule 0.82 [0.70–0.89] 0.82 [0.69–0.89]
Posterior limb internal capsule 0.75 [0.60–0.85] 0.87 [0.78–0.92]
Anterior corona radiata 0.87 [0.79–0.93] 0.88 [0.80–0.93]
Superior corona radiata 0.78 [0.64–0.87] 0.81 [0.69–0.89]
Superior longitudinal fasciculus 0.88 [0.80–0.93] 0.87 [0.78–0.93]
External capsule 0.91 [0.84–0.95] 0.89 [0.82–0.94]
Genu 0.80 [0.68–0.89] 0.86 [0.77–0.92]
Splenium 0.93 [0.88–0.96] 0.88 [0.79–0.93]
Middle cerebellar peduncle 0.83 [0.72–0.90] 0.74 [0.58–0.85]
Body 0.80 [0.67–0.88] 0.74 [0.58–0.84]
Average ICC across all ROIs (mean6SD) 0.81 6 0.09* 0.776 0.12*

For each of the 27 ROIs of the JHU-ICBM-DTI-81 white-matter labels atlas (ordered by increasing volume size), the ICC values and the
corresponding confidence interval (CI) [lower bound 2 upper bound] were quantified for uncorrected (DTI) and FWE-corrected MD.
The statistics of the last line is done on N 5 27 ROIs comparing the uncorrected and FWE-corrected ICC values using a two-tailed Wil-
coxon signed rank test, P< 0.05. *: P< 0.05. SD: standard deviation.
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volume effects, which is affected by variability in both
subject positioning and extracellular components, such as
ventricles size, hydration levels, and inflammation that
could be changing across scanning sessions. Increased sus-
ceptibility to CSF contamination is often associated with
voxels in periventricular regions and around the brain
parenchyma (Concha et al., 2005; Jones and Cercignani,
2010; Metzler-Baddeley et al., 2012). Similarly, atrophy and
enlarged ventricles have been shown to consistently alter
values of adjacent structures, such as the fornix and the
genu of the corpus callosum (Jones and Cercignani, 2010;
Metzler-Baddeley et al., 2012; Sasson et al., 2010; Vos et al.,
2011), confirming that shape and topological properties of
the ROI affect partial volume artifacts (Vos et al., 2011).
However, test–retest reproducibility error does not directly
reflect across subject variability, which is instead included
in the ICC measure.

The ICC analyses showed overall good consistency
across test–retest MRI sessions relative to intra group vari-
ability. Regardless of the diffusion analyses, single tensor

or FWE, the most reliable metric was FA (ICC: 0.87 6 0.05)
and least reliable was MD (ICC: 0.81 6 0.09). The fact that
FWE reduced the reproducibility error but did not change
ICC is not contradictory. In fact, reproducibility error only
reflects within-subject (across session) variability, whereas
ICC is sensitive to both within- and across-subjects vari-
ability of diffusion estimates. For example, for some met-
rics (FA and RD), the ICC was not affected by FWE,
because the reduced test–retest error was compensated by
a reduced within group variability. These results are in
good agreement with previous studies (Bergamino et al.,
2015), which showed that FWE can reduce intra group
variability, an effect that can help the increase of sensitivi-
ty to identify group differences.

The direct relation between the amount of partial vol-
ume effects and reproducibility is still not clear, as for
example, a recent study that manipulated voxel-sizes did
not find reproducibility effects when considering standard
DTI metrics (Papinutto et al., 2013). This, in part, may be
explained by the complex relation between CSF-

TABLE IV. ICC values of axial diffusivity (AXD), with (FWE) and without (DTI) free water elimination

White-matter ROIs

Axial Diffusivity ICC

DTI FWE

Uncinate fasciculus 0.85 [0.75–0.91] 0.85 [0.75–0.91]
Superior fronto-occipital fasciculus 0.87 [0.78–0.93] 0.86 [0.76–0.92]
Tapetum 0.84 [0.74–0.91] 0.88 [0.80–0.93]
Fornix 0.75 [0.60–0.85] 0.77 [0.63–0.87]
Inferior cerebellar peduncle 0.91 [0.84–0.95] 0.89 [0.81–0.94]
Medial lemniscus 0.86 [0.77–0.92] 0.85 [0.75–0.91]
Superior cerebellar peduncle 0.76 [0.61–0.86] 0.76 [0.61–0.86]
Fornix (stria terminalis) 0.69 [0.51–0.81] 0.73 [0.57–0.84]
Cingulum (hippocampus) 0.74 [0.59–0.85] 0.80 [0.67–0.88]
Cingulum (cigulate gyrus) 0.76 [0.61–0.86] 0.73 [0.56–0.84]
Pontine crossing tract 0.84 [0.73–0.91] 0.86 [0.77–0.92]
Corticospinal tract 0.88 [0.79–0.93] 0.91 [0.85–0.95]
Sagittal stratum 0.88 [0.80–0.93] 0.93 [0.88–0.96]
Cerebral peduncle 0.89 [0.82–0.94] 0.89 [0.81–0.94]
Retrolenticular part internal capsule 0.88 [0.80–0.93] 0.93 [0.87–0.96]
Posterior corona radiata 0.87 [0.78–0.92] 0.93 [0.88–0.96]
Posterior thalamic radiation 0.91 [0.84–0.95] 0.94 [0.89–0.96]
Anterior limb internal capsule 0.94 [0.89–0.96] 0.98 [0.97–0.99]
Posterior limb internal capsule 0.94 [0.89–0.96] 0.92 [0.86–0.95]
Anterior corona radiata 0.91 [0.85–0.95] 0.91 [0.85–0.95]
Superior corona radiata 0.79 [0.65–0.88] 0.87 [0.78–0.92]
Superior longitudinal fasciculus 0.72 [0.55–0.83] 0.80 [0.67–0.88]
External capsule 0.84 [0.72–0.90] 0.91 [0.85–0.95]
Genu 0.76 [0.62–0.86] 0.85 [0.75–0.91]
Splenium 0.77 [0.62–0.86] 0.83 [0.72–0.90]
Middle cerebellar peduncle 0.87 [0.79–0.93] 0.84 [0.74–0.91]
Body 0.83 [0.71–0.90] 0.81 [0.68–0.89]
Average ICC across all ROIs (mean6SD) 0.84 6 0.07** 0.86 6 0.07**

For each of the 27 ROIs of the JHU-ICBM-DTI-81 white-matter labels atlas (ordered by increasing volume size), the ICC values and the
corresponding confidence interval (CI) [lower bound 2 upper bound] were quantified for uncorrected (DTI) and FWE-corrected AXD.
The statistics of the last line is done on N 5 27 ROIs comparing the uncorrected and FWE-corrected ICC values using a two-tailed Wil-
coxon signed rank test, P< 0.05. **: P< 0.001. SD: standard deviation.
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contamination and diffusion indices, which depends on
multiple sources (Metzler-Baddeley et al., 2012). For
instance, selection of b value affects CSF contamination
(Metzler-Baddeley et al., 2012), where more contamination
effects are expected with lower b values (in this study
b 5 700 s/mm2). Alternatively, the extracellular component
could be increasingly sensitive to biological noise (e.g.,
aging, neurodegeneration) and acquisition noises (e.g.,
motion, signal drops), both accounting to isotropic effects
altering data variability. Based on our findings here, future
studies utilizing phantoms in varying sizes may address
the distinction between methodological and biological con-
tributions to the variability and reproducibility of the dif-
fusivity measures.

On three ROIs (tapetum, fornix, superior cerebellar
peduncle), we found that FWE resulted with worse repro-
ducibility (Table I). This may be related to the fact that the
fornix has the highest levels of CSF contamination (De
Santis et al. 2014), where the uncorrected diffusion mea-
sures reflect more of the diffusivities of the ventricles,

rather than those of the fornix itself. Consistent with the
results of De Santis et al., 2014, we found the fornix had
unusually high MD values (uncorrected MD: 2.0 6 0.3;
FWE-corrected MD: 1.5 6 0.4), AXD values (uncorrected
AXD: 2.7 6 0.3; FWE-corrected AXD: 2.5 6 0.3), and RD
values (uncorrected RD: 1.6 6 0.3; FWE-corrected RD:
1.1 6 0.4) (Supporting Information, Table II). The tapetum
and superior cerebellar peduncle are also adjacent to the
ventricles; however, their diffusivities are not as affected
as the fornix. We note, that the tapetum and superior cere-
bellar peduncle are two of the smallest structures mea-
sured (172 6 29 mm3, 111 6 33 mm3, 203 6 26 mm3,
respectively), which may be related to increased suscepti-
bility to partial volume effects (Duan et al., 2015; Metzler-
Baddeley et al., 2012; Vos et al., 2011).

Consistent with previous studies we found that test–ret-
est reproducibility worsens with smaller ROI volume (Jovi-
cich et al., 2014; Vollmar et al., 2010). This effect may be
due to imperfections in the image registration process,
mostly affecting smaller regions that are harder to register.

TABLE V. ICC values of radial diffusivity (RD), with (FWE) and without (DTI) free water elimination

White-matter ROIs

Radial Diffusivity ICC

DTI FWE

Uncinate fasciculus 0.72 [0.55–0.83] 0.75 [0.59–0.85]
Superior fronto-occipital fasciculus 0.74 [0.58–0.85] 0.83 [0.72–0.90]
Tapetum 0.90 [0.83–0.94] 0.55 [0.32–0.72]
Fornix 0.90 [0.83–0.94] 0.89 [0.81–0.94]
Inferior cerebellar peduncle 0.80 [0.66–0.88] 0.78 [0.64–0.87]
Medial lemniscus 0.65 [0.45–0.79] 0.69 [0.51–0.81]
Superior cerebellar peduncle 0.79 [0.65–0.88] 0.35 [0.07–0.57]
Fornix (stria terminalis) 0.88 [0.80–0.93] 0.82 [0.70–0.90]
Cingulum (hippocampus) 0.70 [0.52–0.82] 0.80 [0.67–0.88]
Cingulum (cigulate gyrus) 0.74 [0.58–0.85] 0.90 [0.83–0.94]
Pontine crossing tract 0.86 [0.77–0.92] 0.78 [0.65–0.87]
Corticospinal tract 0.81 [0.69–0.89] 0.64 [0.44–0.78]
Sagittal stratum 0.92 [0.87–0.96] 0.87 [0.79–0.93]
Cerebral peduncle 0.72 [0.55–0.83] 0.70 [0.52–0.82]
Retrolenticular part internal capsule 0.85 [0.75–0.91] 0.85 [0.74–0.91]
Posterior corona radiata 0.90 [0.83–0.94] 0.94 [0.90–0.97]
Posterior thalamic radiation 0.94 [0.89–0.96] 1.00 [0.99–1.00]
Anterior limb internal capsule 0.84 [0.73–0.91] 0.91 [0.85–0.95]
Posterior limb internal capsule 0.70 [0.52–0.82] 0.85 [0.74–0.91]
Anterior corona radiata 0.90 [0.83–0.94] 0.93 [0.88–0.96]
Superior corona radiata 0.81 [0.68–0.89] 0.94 [0.90–0.97]
Superior longitudinal fasciculus 0.94 [0.89–0.96] 0.95 [0.92–0.97]
External capsule 0.91 [0.85–0.95] 0.92 [0.87–0.96]
Genu 0.88 [0.79–0.93] 0.89 [0.81–0.94]
Splenium 0.94 [0.90–0.97] 0.89 [0.81–0.93]
Middle cerebellar peduncle 0.85 [0.75–0.91] 0.71 [0.53–0.82]
Body 0.89 [0.81–0.94] 0.88 [0.79–0.93]
Average across all ROIs (mean6SD) 0.83 6 0.09 0.82 6 0.14

For each of the 27 ROIs of the JHU-ICBM-DTI-81 white-matter labels atlas (ordered by increasing volume size), the ICC values and the
corresponding confidence interval (CI) [lower bound 2 upper bound] were quantified for uncorrected (DTI) and FWE-corrected RD. The
statistics of the last line is done on N 5 27 ROIs comparing the uncorrected and FWE-corrected ICC values using a two-tailed Wilcoxon
signed rank test, P< 0.05. SD: standard deviation.
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This is in line with previous findings, where larger influ-
ence of partial volume effect on the accuracy of DTI indi-
ces were attributed to larger voxel sizes (Alexander et al.,
2001). Nevertheless, most of the significant improvements
in reproducibility following FWE were on smaller ROIs,
reducing the bias between larger and smaller sized ROIs.

It is important to note that the FWE algorithm includes
data regularization, which may reduce variability, and
thus also explain the improvement in reproducibility. The
current data used a single b value shell, where regulariza-
tion is necessary for the model fit. To reduce the effect of
regularization, the FWE algorithm continues the model fit
without the regularization term following the identification
of a regularized solution (Pasternak et al., 2009); however,
the initial regularization may still bias the results to be
less noisy, i.e., less variable. Other acquisitions that
include a number of b value shells may require less spatial
regularization of the data (Hoy et al., 2014; Pasternak
et al., 2012a), and future studies should quantify reproduc-
ibility of multi-shell FWE models. Such MRI acquisition

protocols, however, require longer acquisition times and
may not be easily available for multi-site clinical studies.
Additional limitations of the design were discussed in pre-
vious publications from the same consortium (Jovicich
et al., 2013, 2014), the main of which is the relatively small
sample size per site (5, scanned twice), which may not be
sufficient to reliably detect site effects. Finally, as the pop-
ulation of the present study included healthy elderly sub-
jects only, these results cannot be generalized to other
populations.

A further limitation in our study is the choice of regis-
tration strategy in the TBSS analyses. In this study, we
used the standard FSL TBSS procedure, which includes
the option to automatically choose “the most representa-
tive subject” (MRS) as study-specific target for image reg-
istration. The same registration options where kept for DTI
and FWE, thus allowing us to assess the specific reproduc-
ibility effects of FWE. However, other registration
approaches have been proposed aimed at optimizing and
improving anatomical alignment, in some cases addressed

Figure 3.

Sample size ratio needed to have the same analysis power using FWE instead of uncorrected

data. Effects on diffusion metric (FA, MD, AXD, RD) from three corpus callosum ROIs (body,

genu, splenium). Bars represent the percentage of subjects needed after FWE, with error bars

showing standard deviations.
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to longitudinal studies (Bach et al., 2014, Bender et al.,
2016, Engvig et al., 2012, Keihaninejad et al., 2012, 2013,
Leming et al., 2016, Madhyastha et al., 2014, Schwarz
et al., 2014). A comparison of these registration methods
might help to study ways to further improve reproducibil-
ity. To promote the development and evaluation of such
brain diffusion analysis tools, the multisite anonymous
raw diffusion imaging data used in this test–retest study
(48 healthy elderly subjects, each one with two repetitions)
are publicly available (https://neugrid4you.eu/datasets).

CONCLUSIONS

Longitudinal diffusion MRI studies of the brain are of
interest to characterize white-matter changes related to dis-
ease progression, therapeutic treatment or the natural evo-
lution of certain populations. One factor that limits the
sensitivity of longitudinal studies is the reproducibility of
measures between scans. In this multisite study of healthy
elderly people, we show that the reproducibility of DTI
metrics is improved when applying FWE. FWE is therefore
recommended for multisite longitudinal studies, possibly
increasing the power to detect white matter abnormalities.
Diseases or treatments that do not affect white-matter prop-
erties but rather the free water fractional volume may still
be studied with FWE by evaluating the free water maps.
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