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Quantitative Susceptibility Mapping (QSM) Algorithms:
Mathematical Rationale and Computational Implementations

Youngwook Kee, Zhe Liu, Liangdong Zhou, Alexey Dimov, Junghun Cho, Ludovic de Rochefort,
Jin Keun Seo, and Yi Wang*, Fellow, IEEE

Abstract—Quantitative susceptibility mapping (QSM) solves
the magnetic field-to-magnetization (tissue susceptibility) inverse
problem under conditions of noisy and incomplete field data
acquired using magnetic resonance imaging. Therefore, sophis-
ticated algorithms are necessary to treat the ill-posed nature
of the problem and are reviewed here. The forward problem
is typically presented as an integral form, where the field is
the convolution of the dipole kernel and tissue susceptibility
distribution. This integral form can be equivalently written as
a partial differential equation (PDE). Algorithmic challenges are
to reduce streaking and shadow artifacts characterized by the
fundamental solution of the PDE. Bayesian maximum a posteriori
(MAP) estimation can be employed to solve the inverse problem,
where morphological and relevant biomedical knowledge (specific
to the imaging situation) are used as priors. As the cost functions
in Bayesian QSM framework are typically convex, solutions
can be robustly computed using a gradient-based optimization
algorithm. Moreover, one can not only accelerate Bayesian QSM,
but also increase its effectiveness at reducing shadows using
prior knowledge based precondition. Improving the efficiency
of QSM is under active development, and a rigorous analysis of
preconditioning needs to be carried out for further investigation.

Index Terms—Bayesian image reconstruction, deconvolution,
nonsmooth convex optimization, partial differential equations,
preconditioning, quantitative susceptibility mapping (QSM).

I. INTRODUCTION

QUANTITATIVE susceptibility mapping (QSM) [1, 2]
is a noninvasive magnetic resonance imaging (MRI)

method that enables quantitative investigation of the tissue
magnetic susceptibility. QSM is based on the post-processing
of the magnetic field map derived from the phase data of
gradient echo (GRE) MRI that is readily available on most
MRI scanners [3]. QSM has been applied to a wide range
of biomedical problems [1, 4–9] including: 1) demyelination,
inflammation, and iron overload in multiple sclerosis [10–
17], 2) neurodegeneration and iron overload in Alzheimer’s
disease [18–20], Parkinson’s disease [21–33] and Huntington’s
disease [34], 3) changes in metabolic oxygen consumption
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[35–41], 4) hemorrhage including microhemorrhage and blood
degradation [42–47], 5) bone mineralization [48], and 6)
drug delivery using magnetic nanocarriers [49, 50]. QSM of
dominant scalar susceptibility sources in tissue (including iron
and calcium) has now become reasonably robust and accurate
for routine use in research and practice [1, 7].

Algorithmically, QSM solves a challenging ill-posed inverse
problem. QSM was coined from a breakthrough in 2008
using the Bayesian maximum a posteriori (MAP) estimation
theory [2, 51–54]. Yet, it remains to be fully developed and
there is plenty of room for further optimization. To establish
this milestone and characterize associated challenges, this
review paper defines the forward problem in QSM as a
partial differential equation (PDE). Then, the difficulties of
the field-to-susceptibility inversion problem are systematically
analyzed based on general solutions for the PDE. This analysis
emphasizes the limitations of early attempts [55–58] compared
to Bayesian approaches. Bayesian QSM methods optimally
estimate the underlying tissue susceptibility distribution from
noisy and incomplete magnetic field data (likelihood) using
tissue structural information (a priori). To this end, variational
methods are used to minimize a cost function associated
with the negative posterior, where the optimal solution (MAP
estimate) corresponds to a minimizer of the cost function. In
Bayesian QSM, such a cost function is typically given as a
convex objective so that one can use solvers developed in
modern convex optimization [59] for efficient computation
of a solution. This principled approach avoids the drawbacks
inherent in the non-Bayesian attempts and has laid the founda-
tion for QSM, generating a great deal of interest in studying
signal phase, the often-neglected other half of the complex
MRI signal [60–75]

There are a number of existing review papers on QSM,
which can be categorized as follows: 1) General reviews
[4, 5, 9, 76], 2) phase processing methods [77, 78], 3)
biophysics [1], and 4) clinical applications [7, 8]. Unlike
these, this review focuses on mathematical and computational
aspects of the deconvolution problem in QSM. Specifically,
the source of artifacts in QSM images is identified as dipole-
incompatible fields that deviates from the field generated
by dipoles. Then, the artifacts are characterized as streaking
and shadow by the fundamental solution of a wave-type
operator. This characterization establishes a rationale for the
design principles of a regularization term in the Bayesian
QSM methods, implying that early attempts based on k-space
truncation causes additional dipole-incompatibility in the field.
These Bayesian QSM methods require numerical optimization
whose implementation details and preconditioning techniques
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are provided here. Lastly, the review discusses remaining
challenges in this field. This review will serve as a unique
reference to QSM algorithm developers working on numerical
optimization.

II. FORWARD PROBLEM—BIOPHYSICS MODEL

In an MRI scanner with a main static magnetic field
B0 = (0, 0, B0), tissues gain a magnetization distribution
M(r), where r = (x, y, z) ∈ R3 is a position vector. This
magnetization generates a magnetic field perturbation B(r) su-
perpositioning on B0 according to magnetostatic macroscopic
Maxwell’s equations [79]

∇ ·B(r) = 0 (1)
∇×B(r) = µ0∇×M(r), (2)

where µ0 is the vacuum permittivity. Using the Lorentz sphere
correction model [80, 81], the macroscopic field B(r) can
be related to the microscopic field b`(r) experienced by the
spins of water protons in tissue, the MRI signal generators, as
follows

b`(r) = B(r)− 2

3
µ0M(r). (3)

MRI signal phase can be used for this field estimation,
which includes nonlinear data fitting and field unwrapping
as summarized in recent reviews [1, 76]. Applying the curl
operation to both sides of (2) and using (1) and (3), we obtain

−∆(b` −B0) = µ0

(
∇(∇ ·M)− 1

3
∆M

)
, (4)

where ∆ is the Laplacian operator. The Fourier transform of
(4), denoted as F , leads us to

|k|2F [b` −B0](k)

= µ0

(
k (k · F [M](k))− 1

3
|k|2F [M](k)

)
, (5)

where k = (kx, ky, kz) ∈ R3 is a spatial frequency vector.
Isotropic biological tissue concerned here has weak magnetic
susceptibility, i.e., |χ| � 1, hence its magnetization can be
expressed as M = (0, 0,Mz), where Mz ' (B0/µ0)χ. In
the following, we define the relative difference field (RDF) b,
which is referred to as field, total field1 , or field inhomogene-
ity:

b(r) :=
b`z(r)−B0

B0
,

where b`z denotes the z-component of b`. We can rewrite (5)
in terms of the z-component as follows

|k|2B(k) =

(
k2
x + k2

y − 2k2
z

3

)
X(k), (6)

where B(k) := F [b](k) and X(k) := F [χ](k). For all k 6= 0,
we can rewrite the expression (6) as

B(k) =

(
1

3
− k2

z

|k|2

)
X(k) := D(k)X(k), (7)

1Note that the acronym RDF has been often referred to as tissue (local) field
(:= total field − background field) in the literature. In this paper, however,
RDF means total field by its definition.

where D(k) = 1/3− k2
z/|k|2 is the dipole kernel in k-space.

Equivalently,

b(r) = lim
ε↘0

∫
|r−r′|>ε

d(r− r′)χ(r′) dr′, (8)

where d denotes the dipole kernel in r-space (image space)
defined as

d(r) := F−1[D](r) =
2z2 − x2 − y2

4π|r|5
.

This biophysics model (forward problem) describes that an
RDF is generated by the dipole kernel convolved with the
magnetic susceptibility distribution χ.

III. INVERSE PROBLEM—A WAVE PROPAGATION VIEW

Current acquisition and phase processing methods allow us
to estimate an RDF from GRE phase data with high precision.
The problem is to recover χ from the RDF b by fitting this with
the forward model (7) in k-space or (8) in image space. This
leads to solving a deconvolution problem (inverse problem)
whose nature is ill-posed because of a conic surface defined
by

Γ0 := {k ∈ R3 | k2
x + k2

y − 2k2
z = 0}.

The surface Γ0 is spanned by the magic angle (' 54.7◦) with
respect to the kz-direction as shown in Fig. 1. As can be seen
in (6), the k-space points in Γ0 cause division by zero when
the deconvolution is performed in k-space.

This ill-posed inverse problem can be investigated in image
space. Let us consider (4), the partial differential equation
(PDE) associated with (6), as follows:

P (∂)χ(r) = −∆b(r), (9)

where P (∂) is a wave-type operator (propagator) given as

P (∂) := −1

3
∆ +

∂2

∂z2
.

Because (9) is the inverse Fourier transform of (6), the inverse
problem of recovering X(k) in (6) may be viewed as the k-
space representation of the PDE (9). This PDE is a wave-type
equation in χ, where the z-axis is considered time, but is a
Laplace equation in b. As noted in [82], one good strategy
for investigating any PDE is to identify its explicit solutions;
this can be achieved by deriving a fundamental solution. Since
every constant coefficient linear PDE on Rn has a fundamental
solution [83], a solution of (9) denoted as χ] can be expressed
as

χ] = g ∗ (−∆b) = −
∫
R3

g(r− r′)∆r′b(r
′) dr′, (10)

where r′ = (x′, y′, z′) ∈ R3 is a position vector and

g(r) =

{
3

4π
√
z2−2(x2+y2)

if r ∈ Υ;

0 otherwise
(11)

is the fundamental solution of the differential operator P (∂)
with F [g](k) = 3

4π2(k2x+k2y−2k2z) =: 1
P (k) as displayed in Fig.

1 and Υ defined as

Υ := {r ∈ R3 | z2 − 2(x2 + y2) > 0}.
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g(r) 1/P (k) D(k)

Fig. 1. The fundamental solution g(r) is displayed on the left with the
window level [0, 5] in sagittal view. Notice that the conic surface is spanned
by ∼ 35.3◦. Its Fourier transform F [g](k) = 1/P (k) = 1/(4π|k|2D(k))
is displayed in the middle with the window level [−100, 100] in sagittal
view. The dipole kernel D(k) is displayed on the right with the window level
[−0.01, 0.01] in sagittal view. Here, the conic surface is spanned by ∼ 54.7◦.
Observe that the conic surface of the fundamental solution is perpendicular
to that of D(k).

The detailed derivation of (11) can be found in Appendix 0.3
in [84]. Note that Υ defines a double-cone in R3 whose conic
surface is spanned by the angle ' 35.3◦, the complimentary
magic angle. The fundamental solution g is shown in Fig. 1.

We can also obtain from (7), the Fourier transform of (9),
a solution in k-space as follows:

X(k) = B(k)/D(k), k ∈ R3 \ {0}. (12)

How do we interpret these two explicit forms—(10) and
(12)—of a solution to the field-to-source inversion problem,
particularly when there is some perturbation, e.g., noise, in the
RDF b?

A. Dipole-Compatible Field Data

Suppose that RDF data is “purely” generated by dipoles
(denoted here as bc(r), Bc(k),), i.e.,

Bc(k) =
P (k)Xc(k)

4π2|k|2
= D(k)Xc(k), k ∈ R3 \ {0}, (13)

and we assign some constant to Bc(0). Then, the field Bc is
said to be dipole compatible. For any Bc, one can perfectly
recover Xc for k ∈ R3 \ Γ0 by the relation

Xc(k) =
Bc(k)

D(k)
=

4π2|k|2Bc(k)

P (k)
. (14)

For k ∈ Γ0 \{0}, Xc is recovered by the following limit [85]:

Xc(k) = lim
h↘0

4π2|k + hez|2Bc(k + hez)

P (k + hez)
(15)

where ez = (0, 0, 1). It should be noted that neither
limk→0Xc(k) nor Xc(0) exist. This can easily be shown by
considering two different paths (such as kx = ky = 0, kz → 0,
then 1/D → −3/2 or kx = kz = 0, ky → 0, then 1/D → 3).
Therefore, Xc is only recovered up to a constant shift, i.e.,
Xc(0), by using the direct reconstruction formulas (14) and
(15). Note that Xc(0) is a symbolic notation for some constant
shift in image space. The performance of (14) and (15) is
shown in Fig. 2 where we assume that Xc(0) = 0.

Remark 1: That Xc(k) is undefined at the center of k-
space can be also checked from the PDE (9): We see that

Reference χc bc Recovered χc

Fig. 2. The dipole compatible field bc displayed in the middle with the
window level [−0.3, 1] was generated from the dipole model (13) using the
reference χc shown on the left with [−0.5 ppm, 1 ppm]. We recovered χc
shown on the right with [−0.5 ppm, 1 ppm] using (14) and (15). Here, the
largest sphere is 0.7 ppm and the background (outside the sphere) is 0 ppm.
The four spheres inside the largest one, have susceptibility values of 1, 0.85,
0.45, and 0.2 ppm, going counterclockwise starting from the bottom.

P (∂)(χ(r) + C) = P (∂)χ(r) = −∆b(r) for any constant C.
Hence, susceptibility values are often reported with respect
to an estimate of reference tissue susceptibility. This is also
reflected in (8) that limε↘0

∫
|r−r′|>ε Cd(r′) dr′ = 0.

B. Dipole-Incompatible Field Data—Streaking and Shadow

Let ΓB0 be the set {k ∈ Γ0 |B(k) 6= 0} ⊆ Γ0 \ {0}. Then,
regarding the dipole-compatible part, we see ΓBc0 = ∅ since
Bc(k) = D(k)Xc(k) where D(k) = 0 in Γ0 \ {0}. Let Bi
be a measured field such that ΓBi0 6= ∅; then we call such a
field dipole-incompatible as the field cannot be expressed by
the dipole model (13). Consider a dipole-compatible field with
additive noise, Bi(k) = D(k)X(k) + N(k), where N(k) is
(Gaussian) noise in k-space. Then, we express the underlying
susceptibility χi in terms of the fundamental solution g in (10)
and (11) as follows:

χi(r) = (g ∗ (−∆bi))(r) =

∫
R3

−3∆r′bi(r
′)

4π
√
E(r, r′)

dr′, (16)

where E(r, r′) := (z − z′)2 − 2((x − x′)2 + (y − y′)2) > 0
defines the double-cone Υ above and below the incompat-
ible source −∆r′bi(r

′). Strong propagation of −∆r′bi(r
′) is

present along the double-cone surface where E(r, r′) vanishes,
which manifests as streaking in sagittal and coronal views and
ringing in the axial view.

To see this more concretely, suppose that an incompatible
source is expressed as a linear combination of the Dirac delta
functions, i.e., −∆bi(r) =

∑N
j=1 cjδ(r − r′′j ), where cj ∈ R

and r′′j = (x′′j , y
′′
j , z
′′
j ) ∈ R3 is a position vector. Therefore,

χi is expressed as a linear combination of Green’s functions,
where each of the functions defines the double-cone Υ located
at r′′1 , . . . , r

′′
N as follows:

χi(r) = g(r) ∗
N∑
j=1

cjδ(r− r′′j ) =

N∑
j=1

cjg(r− r′′j ).

Notice that the singular support of the double-cone Υ defined
as the set of r ∈ R3 such that z2 − 2(x2 + y2) = 0 forms
a conic surface spanned by the complimentary magic angle
(' 35.3◦) along the z-axis. This conic surface is associated
with Γ0 defined in k-space, a zero cone surface spanned by the
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bi in axial bi in sagittal bi in coronal

χi in axial χi in sagittal χi in coronal

χc + χi in axial χc + χi in sagittal ∆bi in sagittal

Fig. 3. The top row shows a dipole-incompatible field bi (point sources)
with the window level [−0.3, 1]; the susceptibility values of white and black
dots are +1 and −1, respectively. The rightmost image in the bottom row
is the Laplacian of bi in sagittal with the window level [−0.5, 1]. The
middle row shows the recovered susceptibility χi with the window level
[−0.5 ppm, 1 ppm]. Artifacts manifest as ringing in the axial view and streak-
ing in sagittal and coronal views. The leftmost and middle panels in the bottom
row show the recovered map with the window level [−0.5 ppm, 1 ppm] from
the RDF bc+bi where bc is given as in Fig. 2. Susceptibility was reconstructed
using TKD [58] with 0.005 as the value of truncation.

magic angle (' 54.7◦) with respect to the kz-axis as shown in
Fig. 1. Note that the two cone surfaces meet at a right angle.
Hence, strong streaking in sagittal and coronal views with the
angle 35.3◦ from the z-axis is observed as demonstrated in
Fig. 3.

Remark 2: Observe that E(r, r′) in the denominator of (16)
that causes propagating artifacts does not come into play when
the field is dipole-compatible. As can be seen in the direct
reconstruction formulas (14) and (15), 1/P (k) = F [g](k) is
effectively canceled out when the field is dipole-compatible.
This observation reassures the existence of streaking-free
solutions proved in [84, 85].

Not only is streaking explained by (16), but also the ex-
pression allows χi to have other types of “apparent artifacts”.
Suppose that ∆bi is smoothly distributed across the image
volume; then, χi is expected to exhibit slowly varying spatial
artifacts that manifest as dark shadows as demonstrated in Fig.
4. Note that if the sign of ∆bi is flipped, bright clouds will
be seen instead. Although these artifacts appear different with
low-frequency components as opposed to streaking with high-
frequency, it is crucial to keep in mind that the expression (16)
remains the same in both cases. In other words, dark shadows

bi in axial bi in sagittal bi in coronal

χi in axial χi in sagittal χi in coronal

χc + χi in axial χc + χi in sagittal ∆bi in sagittal

Fig. 4. The top row shows a dipole-incompatible field bi (smooth distribution)
with the window level [−0.3, 1]; the values of susceptibility distribution
that generates the field bi are all negative. The rightmost image in the
bottom row is the Laplacian of bi with the window level [−0.5, 1]. The
middle row shows the recovered susceptibility χi with the window level
[−0.5 ppm, 1 ppm]. Artifacts manifest as dark shadows. The leftmost and
middle panels in the bottom row show the recovered map with the window
level [−0.5 ppm, 1 ppm] from the RDF bc + bi where bc is given as in Fig.
2. Susceptibility was reconstructed using TKD [58] with 0.005 as the value
of truncation.

are simply a superposition of the double-cones Υ computed
by (16).

How does a solution expressed as (10) behave? If a given
RDF is dipole-compatible, perfect recovery is possible up to
a constant shift using (14) and (15). If the RDF is dipole-
incompatible, streaking and shadow artifacts will be present
according to (16) and the shape of dipole-incompatible source
distributions.

C. Minimizing Streaking and Shadow: Early Attempts based
on k-space truncation versus Bayesian MAP Estimation

Dipole-incompatible field data that deviates from the dipole
model (13) includes noise, anisotropic sources, chemical shift,
or discretization error. Projecting or filtering out the incompat-
ible part directly from the GRE data is very difficult, because
1) noise is omnipresent in practice, 2) anisotropic sources
cannot be measured reliably in a single-angle acquisition, and
3) discretization is indispensable for numerical computation.
Consequently, the formulas (14) and (15) cannot be used in
practice, as their use on the MRI estimated field data causes
severe artifacts from the dipole-incompatible part.
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Early attempts to solve the inverse problem are based on k-
space truncation to modify (13) near the zero-cone Γ0 where
1/D(k)→∞ for k near Γ0. These methods include truncated
k-space division (TKD) [58], truncated singular value de-
composition (TSVD) or Tikhonov-regularized minimal norm
(MN) [53, 63], iterative susceptibility weighted imaging and
susceptibility mapping (iSWIM) [86], and analytic continu-
ation (AC) [87]. Truncation in k-space changes the dipole
kernel near the zero-cone Γ0, which is equivalent to adding
dipole-incompatible field components. Consequently, k-space
truncation causes additional streaking according to (16), and
is demonstrated in Fig. 5.

Remark 3: Observe that in Fig. 5, strong streaking appears
at the interface between two different homogeneous regions
(jump set). A rigorous analysis on this type of streaking can
be found in [85, 88] where the notion of wave front set [89]
plays a crucial role in identifying its appearance.

Bayesian inference approaches overcome the limitations
of k-space truncation by directly penalizing streaking and
shadow in image space, which can be solved by a variational
method. In this framework, one seeks an optimal solution that
minimizes

E(χ) := Edata(b|χ) + λEreg(χ),

where the data fidelity term Edata measures the disagreement
between χ and b, and the regularization term Ereg that encodes
additional information measures a certain property of χ, e.g.,
smoothness, sparsity, and consistency with known morpho-
logic and biologic information. The regularization parameter
λ > 0 balances the two terms, which can be empirically cho-
sen by the L-curve heuristic [90, 91]. Note that this variational
method is intrinsically connected to Bayesian MAP estimation
[92], i.e., p(b|χ) = e−Edata(b|χ) and p(χ) = e−Ereg(χ). If
the objective E(χ) is convex, its globally optimal solution
(MAP estimate) can be computed by solving the corresponding
Euler–Lagrange equation—whose solutions are functions for
which E(χ) is stationary. Note that writing out an explicit
solution for the Euler–Lagrange equation is typically impos-
sible, making numerical optimization required to compute a
numerical solution. In general, the data fidelity term is derived
from the forward problem; in most cases it is of the form
||d ∗ χ − b||2w, a weighted 2-norm. However, there are a
wide range of variations in the regularization term Ereg to
reduce streaking and shadows, generating various Bayesian
QSM algorithms as outlined in the next section.

IV. BAYESIAN QSM METHODS

In this section, we give an overview of Bayesian QSM
methods based on an archetypal model. These methods are
capable of reducing both streaking and shadow when proper
priors are employed—which is under active development.

A. Reducing Streaking—Morphology Enabled Dipole Inver-
sion (MEDI)

The morphology-enabled dipole inversion (MEDI) method
[72] is an archetypal model that has been widely used for

ηΓε1
ηΓε2

ηΓε3

χε1 χε2 χε3

χε1 − χc χε2 − χc χε3 − χc

Fig. 5. The top row shows the indicator function of Γε denoted by ηΓε ,
where Γε is defined as {k ∈ R3 : |D(k)| < ε} with different values of
ε, where ε1 = 0.1, ε2 = 0.01, and ε3 = 0.001. That is, ηΓε (k) = 1 for
k ∈ Γε and ηΓε (k) = 0 for k ∈ R3 \ Γε, i.e., white = 1 and black = 0.
For the dipole-compatible field described in Fig. 2, the second row shows
the corresponding TKD solutions defined as χε = F−1(Bc(k)/D(k)(1 −
ηΓε (k))) = χc − F−1(Bc(k)/D(k)) ∗ F−1(ηΓε (k))) with the window
level [−0.5 ppm, 1 ppm]. The bottom row shows the difference image be-
tween χc in Fig. 2 and χε with the window level [−0.5 ppm, 1 ppm]. Notice
that even for a dipole-compatible field, truncation causes streaking artifacts
around the high-frequency regions (interfaces between regions—jump set).

QSM. Let χ : (Ω ⊂ R3)→ R, then MEDI minimizes

EMEDI(χ) :=

∫
Ω

|w(d ∗ χ− b)|2 + λ

∫
Ω

|M∇χ|1. (17)

Here, w : L2(Ω) → L2(Ω) is the SNR (signal-to-noise ratio)
weighting and M is a matrix acting on∇χ. Then, the integrand
in the regularization term is defined as

|M(r)∇χ(r)|1 =
∑

i=x,y,z

|(1− δi(r))∂iχ(r))|.

Here, δi(r) is an edge indicator for the i-direction at r.
For example, δx(r0) = 1 if there is an edge along the x-
axis at r0; otherwise δx(r0) = 0. These edge indicators
are derived from the magnitude image associated with the
unknown susceptibility map under the assumption that edges
in the two images coexist. Therefore, the weighted anisotropic
total variation

∫
Ω
|M∇χ|1 penalizes only the regions where

tissue structure is not expected [93].

Remark 4: The 2-norm is also applicable for the inte-
grand in the regularization term, which is known as weighted
isotropic total variation (TV). As opposed to anisotropic TV,
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Fig. 6. Simulation result. Top row: Reference QSM (left) which does not
contain white matter anisotropy, MEDI (middle) and QSM0 (right) generated
from a field which contains white matter anisotropy. Bottom row: Highlighted
QSM for CSF. Notice the reduced shadow artifact indicated by the red
arrows in QSM0 compared to MEDI. Meanwhile, the homogeneity of CSF
is improved using QSM0.

isotropic TV is rotation invariant. However, the difference in
accuracy between the two norms in the weighted TV for QSM
is very subtle; this invites further investigation.

Incorporating tissue edge information into TV is a notable
feature of MEDI [93]. Recall that streaking and tissue bound-
aries have similar penalties in terms of TV, but streaking
only appears along the singular support of the double-cone Υ,
making it distinct from the tissue edges. Furthermore, SNR
weighting in the data fidelity term plays an important role in
robust fitting. These have been shown in [1, 88, 94]. Note that
the objective in (17) does not truncate data in k-space so that
more data is exploited.

B. Variations and Flexibility

Numerous QSM methods have been proposed in the context
of Bayesian image reconstruction with MEDI. These methods
can be understood as variations of MEDI—their common goal
is to reduce streaking artifacts—and include:
• Nonlinear MEDI [95]
• Compressed sensing compensated (CSC) inversion [75]
• Homogeneity enabled incremental dipole inversion

(HEIDI) [74]
• Total generalized variation (TGV) based inversion [96,

97]
• Iterative LSQR (iLSQR) [98]
• Quantifying susceptibility by inversion of a perturbation

(QSIP) model [99]
• Vessel orientation constrained QSM [100]
• Structural featured based collaborative reconstruction

(SFCR) [101]
• MEDI based on anisotropic weighting [102]

These methods can be combined in a plug-and-play fashion to
tackle targeted applications. For instance, the nonlinear data
fidelity term proposed in [95] can be combined with TGV [96,
97] to reduce noise and effects of phase unwrapping failures as

Fig. 7. Comparison between magnitude image (left), QSM reconstructed
using MEDI (middle) and QSM0 (right) for in vivo data. Ventricles appear
more homogeneous in QSM0 with reduced shadows compared to MEDI. Here,
SPURS [104] and PDF [67] were used for phase unwrapping and background
field removal, respectively.

well as the undesirable staircasing effect [103], i.e., artificial
piecewise constant regions, caused by TV regularization. Two
regularization terms can be also combined, e.g., anisotropic
weighting [102] and TGV to promote the parallel orientation
between the magnitude and susceptibility edges, and to reduce
the staircasing effect. The flexibility of the Bayesian MAP
estimation framework is a unique and appealing feature in
that new priors will continue to be proposed.

C. Reducing Shadow and zero reference—QSM0

MEDI and its variations listed above can effectively reduce
strong streaking by TV-based regularization. However, they
are inherently incapable of penalizing slowly fluctuating ar-
tifacts as demonstrated in [88] because the gradient of such
fluctuation is much smaller than that of streaking. A naı̈ve
approach is to make use of a high pass filter, however this
also filters out desired susceptibility variations below the
cutoff frequency. Inspired by [2], cerebrospinal fluid (CSF)
regularization to enforce a natural zero susceptibility reference
needed for absolute quantification has been shown to reduce
shadow artifacts [105, 106], with the following cost function

EQSM0(χ) :=

∫
Ω

|w(d ∗ χ− b)|2

+ λ1

∫
Ω

|M∇χ|1 + λ2

∫
CSF

|χ− χCSF|2,

where λ1 and λ2 are regularization parameters and χCSF is the
arithmetic mean of χ inside the CSF region. The rationale for
the second regularization term is as follows: CSF is chemically
almost pure water so that its susceptibility distribution is
expected to be homogeneous (i.e., the variance of χ in the CSF
region is very small), and the CSF region can be automatically
segmented. There are often apparent susceptibility variations
in the CSF region, because anisotropic white matter near
the region contributes to a dipole-incompatible field. Hence,



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2017 7

imposing CSF homogeneity in the QSM reconstruction can be
an effective way of reducing shadow as demonstrated in Figs.
6 and 7.

Remark 5: As its name QSM0 reveals, EQSM0 was proposed
in the context of CSF zero reference [105, 106]. Additionally,
it has the benefit of reducing shadow that has low spatial
frequency variations over the CSF region. In general, shadow
artifacts may be minimized by penalizing such low spatial
frequency variations where tissues are expected to be uniform.

V. COMPUTATIONAL METHODS—SOLVERS

Bayesian QSM methods need to be solved by iterative
methods because writing out an explicit solution for the Euler–
Lagrange equation associated with the objective is difficult or
impossible. Here, we focus on minimizing EMEDI in (17).
The major algorithmic challenge in this optimization comes
from the presence of TV which is nonsmooth (albeit convex).
We present three well-established algorithms for MEDI which
can be also applied to the variations listed in Section IV-B:
Quasi-Newton, split-Bregman, and primal-dual algorithms.

We start with a standard discrete setting for minimizing (17).
As discussed in [107], an improper discretization scheme for
the differential operator in (17) leads to inaccuracy as well as
visual artifacts in the final susceptibility map. Keeping this in
mind, consider a 3D regular Cartesian grid of size Nx×Ny×
Nz as follows:

{(ihx, jhy, khz) : 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, 1 ≤ k ≤ Nz} ,

where hx, hy , and hz denote the voxel size and (i, j, k) denotes
the voxel location. Then, χ is discretized in H = RNx×Ny×Nz
where a scalar product is defined as

〈χ, ψ〉H =
∑
i,j,k

χi,j,kψi,j,k, χ, ψ ∈ H.

For χ ∈ H, the discrete gradient is defined by

(∇χ)i,j,k = ((∇χ)xi,j,k, (∇χ)yi,j,k, (∇χ)zi,j,k),

where

(∇χ)xi,j,k =

{
(χi+1,j,k − χi,j,k)/hx if i < Nx,

0 if i = Nx;

(∇χ)yi,j,k =

{
(χi,j+1,k − χi,j,k)/hy if j < Ny,

0 if j = Ny;

(∇χ)zi,j,k =

{
(χi,j,k+1 − χi,j,k)/hz if k < Nz,

0 if k = Nz.

Notice that the forward difference scheme with the Neumann
boundary condition is used for the discrete gradient [108, 109].
Also, the gradient vector ∇χ is a vector in K = H×H×H
where a scalar product is given as

〈ξ, ζ〉K =
∑
i,j,k

ξxi,j,kζ
x
i,j,k + ξyi,j,kζ

y
i,j,k + ξzi,j,kζ

z
i,j,k, ξ, ζ ∈ K.

Now, we define a linear map M : K → K such that

ξi,j,k 7→ (Mξ)i,j,k = (Mx
i,j,kξ

x
i,j,k,M

y
i,j,kξ

y
i,j,k,M

z
i,j,kξ

z
i,j,k).

The objective in (17) is discretized accordingly, yielding the
following optimization problem in a finite dimensional vector
space:

χ̂ ∈ argminχ ||w(d ∗ χ− b)||22 + λ||M∇χ||1,1, (18)

where w : H → H is SNR weighting, d is the discretized
dipole kernel, and b ∈ H is the RDF. We define || · ||1,1 as

||ξ||1,1 =
∑
i,j,k

|ξxi,j,k|+ |ξ
y
i,j,k|+ |ξ

z
i,j,k|.

After vectorization, the formulation (18) can be rewritten as:

χ̂ ∈ argminχ ||W (FHDFχ− b)||22 + λ||MGχ||1 (19)

where W is a diagonal matrix associated with w, F is the
discrete Fourier transform (DFT) matrix, D is a diagonal
matrix whose diagonal elements correspond to the Fourier
transform of d, and the superscript H denotes the Hermitian
transpose in the data fidelity term. The finite difference matrix
G : RNxNyNz → R3NxNyNz is constructed from the forward
difference scheme with the Neumann boundary condition, and
M is a diagonal matrix associated with M.

A. Quasi-Newton Method (Gauss–Newton in QSM)

Since the optimization problem (19) is convex, a necessary
and sufficient condition for optimality of (19) is to find χ̂ such
that 0 ∈ ∂χE(χ̂), where E(χ) := ||W (FHDFχ − b)||22 +
λ||MGχ||1. Here, ∂χE(χ) is given as

∂χE(χ) = 2(WFHDF )H(WFHDF )χ− (WFHDF )Hb

+ λ(MG)H

(
MGχ√

diag(MGχ)2

)
. (20)

Then, the lagged diffusivity fixed-point iteration (LDFPI)
method [110, 111] is used to linearize the nonlinear equa-
tion ∂χE(χ) = 0 by substituting 1/

√
diag(MGχ)2 with

1/
√

diag(MGχk)2 + ε, where χk denotes the k-th iterate
and ε is a strictly positive relaxation parameter which avoids
division by zero. Note that ∂χ||MGχ||1 leads to a nonlinear
diffusion equation, and this linearization procedure makes the
diffusivity coefficient lag one step (iteration) behind. LDFPI
then computes χk+1 by solving the following linear system

L(χk)χk+1 = b̃, (21)

where L(χk) := 2(WFHDF )H(WFHDF )χ +
λ(MG)H(MG)/

√
diag(MGχk)2 + ε, and b̃ :=

(WFHDF )Hb. Once χk+1 is computed, χk ← χk+1

and solve (21) until ||χk+1 − χk|| becomes sufficiently
small (fixed-point iteration). The rate of convergence largely
depends on how fast LDFPI solves a series of the linear
systems (21). Krylov subspace methods such as conjugate
gradient (CG) can be used with preconditioning techniques
[112]

From (20) and (21), observe that b̃ = L(χk)χk−∂χE(χk).
Using this relation, we can rewrite (21) as follows:

L(χk)δχ = −∂χE(χk), (22)
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Fig. 8. The continuation method helps speed up the quasi-Newton formulation
of LDFPI (qNewton) if the decreasing factor γ is properly chosen (see the
purple, green, and red curves below the black). Continuation converges rather
slowly when γ ≥ 0.3; see the yellow, blue, and cyan curves above the black.

where δχ = χk+1 − χk. Then, solving (22) with respect to
δχ is a quasi-Newton method where L(χk) is an estimate of
the Hessian matrix of E(χ) at χk. To see this, consider the
second order Taylor expansion of E(χ) around χk as follows:

E(χk + δχ) ' E(χk) + ∂χE(χk)>δχ+
1

2
δχ>[HE(χk)]δχ,

where HE(χk) is the Hessian matrix. Newton’s method sets
the derivative of this expansion with respect to δχ equal to
zero:

HE(χk)δχ = −∂χE(χk),

where

HE(χk) (23)

=L(χk) + λ(MG)H(MGχk)∂χ

(
1√

diag(MGχ)2 + ε

)∣∣∣∣∣
χ=χk

.

L(χk) is an estimate of the Hessian HE(χk) by dropping the
last term from (23). The quasi-Newton approach, therefore,
iteratively approximates the original nonlinear minimization
problem (19) by a series of quadratic minimization problems.
An advantage of the quasi-Newton form (22) over the fixed-
point form (21) is that (22) tends to be less sensitive to round-
off error [113].

The accuracy of the quasi-Newton form (22) depends on
the value of the numerical relaxation parameter ε, which, by
default, is set to 10−6 for QSM. Accuracy can be improved by
decreasing ε but this comes at the cost of significantly slowing
down the rate of convergence [107]. This can be overcome
by using the so-called continuation method. That is, at each
outer iteration, we reset ε by the rule ε ← γ · ε where γ is
a decreasing factor. We initialize ε = 0.1 and set γ to values
ranging from 0 to 1. Fig. 8 shows relative errors when γ is
0.01, 0.05, 0.1, 0.3, 0.5, and 0.8.

Remark 6: This quasi-Newton method has been frequently
referred to as Gauss-Newton in the QSM literature [1]. This
may be because Newton’s method has been often referred to
as the Newton–Raphson method for finding roots in physics.

B. Split-Bregman Method

The split-Bregman method [114] makes use of variable
splitting and the Bregman iteration. Unlike the quasi-Newton
method, this solves (19) without numerical approximation for
TV regularization. The method of variable splitting reformu-
lates (19) as

(χ̂, v̂) (Constrained)

= argmin(χ,v) ‖W (FHDFχ− b)‖22 + λ‖v‖1 s.t. v = MGχ.

A quadratic penalty is incorporated and we have

(χ̂, v̂) (Unconstrained)

= argmin(χ,v) ‖W (FHDFχ− b)‖22 + λ‖v‖1 +
ρ

2
‖v −MGχ‖22.

This can be solved by alternating continuation, i.e., taking
ρ→∞ one alternatively minimizes the objective with respect
to χ and v. However, the problem becomes ill-conditioned as
ρ→∞ [115]. Instead of taking ρ→∞, the Bregman iteration
[116] is used with a fixed value of ρ. This procedure makes its
numerical behavior much more stable; the iterative sequence
is as follows:

χk+1 (24)

= argminχ ‖W (FHDFχ− b)‖22 +
ρ

2
‖vk −MGχ− zk‖22

= argminχ

∥∥∥∥[ WFHDF√
ρ/2MG

]
χ−

[
Wb√

ρ/2(vk − zk)

]∥∥∥∥2

2

,

vk+1 (25)

= argminv λ||v||1 +
ρ

2
||v −MGχk+1 − zk||22

= proxρ/λ,||·||1(MGχk+1 + zk),

zk+1 (26)

= zk + (MGχk+1 − vk+1),

where Krylov subspace methods, e.g., CG or LSQR, can be
used for (24). The proximal operator proxρ/λ,||·||1(·) in (25) is
given as soft-thresholding [115]. The last line of the algorithm
(26) is known as the Bregman update and its derivation can
be found in [116]. In QSM, the split-Bregman method was
applied to (19) without SNR weighting in [117] to accelerate
the speed of deconvolution. The method was subsequently
considered with SNR weighting in [118].

Remark 7: Note that the split-Bregman method with linear
constraints is equivalent to the alternating direction method
of multipliers (ADMM) [115]. Hence, its convergence can be
analyzed by ADMM.

C. Primal-Dual Algorithm

Similar to the distributional derivative for a function
whose differentiation is not pointwise defined [83, 119], we
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can derive a generalized (dual) definition of the weighted
(anisotropic) TV [107, 120] as follows:∫

Ω

|M∇χ|1 = sup
ξ:||ξ||∞≤1

∫
Ω

〈M∇χ, ξ〉, (27)

where the dual variable ξ : Ω → R3 is a smooth map and
|| · ||∞ is the pointwise maximum norm. Replacing the TV
term in EMEDI with its dual formulation (27), we notice that
minimizing EMEDI in χ is equivalent to finding a saddle-point
(χ̂, ξ̂) such that

min
χ

max
ξ:||ξ||∞≤1

∫
Ω

|w(d ∗ χ− b)|2 + λ

∫
Ω

〈M∇χ, ξ〉.

Then, one can use gradient descent in χ and gradient ascent
in ξ with the relation 〈M∇χ, ξ〉 = 〈χ, (M∇)Hξ〉. The data
term can be further dualized to avoid solving a linear system
that appears as a nested routine as seen in the quasi-Newton
and split-Bregman methods. For technical and implementation
details, we refer the reader to [107].

D. Final Remarks on Solvers

As opposed to Newton’s method in optimization that makes
use of the Hessian matrix of the objective function, first-order
methods (quasi-Newton, split-Bregman, and primal-dual) have
a linear rate of convergence for the complete class of non-
smooth convex problems [121]. Since only subtle differences
in speed and accuracy are observed, any method can be used,
for instance NESTA [122] can be also used. That being said,
it is unclear if second-order methods (Newton-type methods)
would outperform the first-order methods because they require
computation of the Hessian matrix at each step; this is not only
expensive, but also noise sensitive [123].

New regularization terms may appear nonconvex, therefore
the first-order methods may not be useful in finding a near-
optimal solution. In this case, the Hessian matrix can help
escape saddle points towards a globally optimal solution [124].
Algorithmic advances will be then necessary to catch up with
realistic nonconvex energies.

VI. COMPUTATIONAL METHODS—PRECONDITIONING

Numerical computation of a solution in Bayesian QSM can
be accelerated using preconditioning techniques that incorpo-
rate prior knowledge of the targeted susceptibility solution. As
known in matrix inversion [125, 126], a well-chosen left/right
preconditioner can accelerate the rate of convergence of an
iterative solver. In Bayesian MAP estimation, preconditioning
may play a role in guiding the path of a minimizing sequence
in such a way that it emphasizes certain properties of a final
solution [127, 128]. Here, we present an overview of recent
advances in background field removal methods in the context
of preconditioning.

A. Background Field Removal

The field generated by the sources inside a tissue volume of
interest (VOI) such as the brain, known as tissue (local) field,
turns out to be much smaller than the field generated by the

sources outside the VOI, which include strong susceptibility
gradients at air-tissue interfaces and in the skull, known as
background field [129]. A typical QSM strategy is to first
perform data fitting and removal of this background field on
the total field estimated from MRI phase, which is referred to
as background field removal [1, 2, 67, 78]. The tissue field
after background field removal is then inverted to generate a
tissue susceptibility map. Because background field removal
does not require precise susceptibility source localization, it
can be executed rapidly. With the removal of the background
field, the susceptibility range to be searched for mapping
tissue susceptibility can be reduced by ∼ 10 fold (but this
breaks down in case of hemorrhage [95, 130], leading to a
rapid convergence in solving (17). Therefore, current QSM
algorithms typically consist of two steps [1]: background field
removal and tissue field inversion.

As discussed in [1], the lack of MRI signal in the back-
ground is one of the QSM challenges to determine the back-
ground field inside the VOI accurately. All current methods
to remove the background field in the tissue VOI are based
on Maxwell’s equations, which state that the background field
in the tissue VOI obeys the homogeneous Laplacian equation.
The lack of boundary condition makes it an ill-posed problem
to solve this Laplacian equation [129]. Numerous formula-
tions of prior knowledge have been proposed for estimating
background field, including:
• High pass filtering (HPF) [131–133]
• Projection onto dipole fields (PDF) [67]
• Sophisticated harmonic artifact reduction for phase data

(SHARP) [62]
• Laplacian boundary value (LBV) method [129]
• Iterative spherical mean value method (iSMV) [134]
• Regularization-enabled SHARP (RESHARP) [135]

For a complete review on background field removal methods,
we refer the reader to [78]. It should be noted that these prior
knowledge formulations contain error, and the background
field removal assumption of reducing the susceptibility search
range fails when susceptibility values are large, such as in the
case of hemorrhage [130]. It was recently shown that a tissue
susceptibility map could be recovered without background
field removal but this required a long processing time [130],
because a tissue susceptibility map was still computed from the
total field by minimizing EMEDI in (17). This work elucidates
the rate of convergence of an iterative solver, demonstrating
that the background field removal step plays a role in pre-
conditioning in a classical sense. It also demonstrates that the
error in a background field removal method can be avoided
by focusing on minimizing EMEDI from the total field.

The remaining concern for minimizing EMEDI is system-
atically incorporating preconditioning in such a way that its
solution is computed as fast as the current two-step procedure
(background field removal + tissue field inversion) in Bayesian
QSM. In the following sections, we present two notable
examples.

B. Preconditioned MEDI
Preconditioning can be systematically incorporated into a

Bayesian QSM method [130] by modifying the cost function
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Fig. 9. MEDI versus preconditioned MEDI (TFI). (a) Plot of error between
estimated and true brain susceptibility with respect to the CG iteration
number in numerical simulation (b) QSM reconstructed by MEDI and TFI
in numerical simulation and in vivo. Notice that preconditioning dramatically
reduces the hypointense artifact around the hemorrhage site. For both MEDI
and TFI, SPURS [104] was used for phase unwrapping, and PDF [67] was
additionally used for background field removal for MEDI.

EMEDI in (17) with a preconditioner P :

EPMEDI(Py) :=

∫
Ω

|w(d ∗ Py − b)|2 + λ

∫
Ω

|M∇Py|1.

which is minimized with respect to y to generate a sus-
ceptibility solution χ = Py. Here, b is the total field, and
the preconditioner P is chosen from prior knowledge about
the distribution of brain susceptibility. In the case of QSM
reconstruction of a patient with intracerebral hemorrhage, P
is chosen as a binary matrix with higher weights in the hem-
orrhage than other regions to reflect the strong susceptibility
contrast between the hemorrhage and the surrounding brain
tissue [130]. Both simulation and in vivo results (Fig. 9)
show that the preconditioner helps suppress shadow artifacts
adjacent to the hemorrhage site by improving the convergence
behavior of CG involved in the inner loop of the quasi-Newton
method presented in Section V-A.

C. Differential Model
Along with the integral approach in (17) where the data term

is derived from (8), differential approaches proposed in [136–

Fig. 10. Comparison between MEDI and MEDI + SMV. (a) Plot of error
between estimated and true brain susceptibility with respect to the CG iteration
number in numerical simulation. (b) QSM reconstructed by MEDI and MEDI
+ SMV in numerical simulation (100 CG iterations) and in vivo (150 CG
iterations). MEDI + SMV produces more homogeneous map at the cost
of brain erosion. Here, SPURS [104] and PDF [67] were used for phase
unwrapping and background field removal, respectively.

139] are also commonly used Bayesian QSM methods which
can be understood in the context of preconditioning. These
approaches make use of the PDE (4) or (9) as the data fidelity
term of EMEDI in (17). As a result, a background field removal
step is no longer needed, making these approaches as fast as
the two-step (e.g., PDF + MEDI) procedure. Additionally, it
has been shown that some of the approaches known as single-
step QSM [138, 139] have less shadow artifacts. Recall that the
integral form (8) is derived from the differential form (4) with
the assumption that the Fourier transform of each term in (4)
exists and k 6= 0. Therefore, both integral and differential rep-
resentations appear to be equivalent. Yet, a rigorous analysis
needs to be carried out because the differential approach seems
more capable of reducing shadow artifacts than the integral
approach.

From a computational point of view, this behavior may be
explained by the 4π|k|2 left preconditioner that comes from
the Laplacian operator. In other words, as opposed to the data
term of the integral approach in (17), the following differential
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term∫
Ω

|w̃∆(d ∗ χ− b)|2 =

∫
Ω

|w̃F−1[4π|k|2(DX −B)]|2

may emphasize the high frequency components of a candidate
susceptibility distribution more than its low frequency com-
ponents containing slowly varying dark shadows. Note that
unlike the single-step QSM model [138, 139], here we have
considered the SNR weighting w̃ which is modified from w in
the integral approach (17) as follows: Let L be the Laplacian
operator in a matrix form, and let n be the random noise vector
n = d ∗χ− b. Since we define w as the inverse of the square
root of the covariance matrix of the noise vector n, a proper
way of determining the new SNR weighting w̃ is to set it to the
inverse of the square root of the covariance matrix associated
with Ln.

The differential approach can be implemented by using the
spherical mean value (SMV) kernel and incorporated into
EMEDI; this is denoted by MEDI + SMV. Here, we use
the diagonal components of the inverse of the square root
of the covariance matrix associated with Ln for w̃. Fig. 10
shows both simulation and in vivo results, where the tissue
field contains unresolved background fields and is used as an
input for both MEDI and MEDI + SMV. This SMV kernel
considerably improves the rate of convergence of CG. Visually,
MEDI + SMV produces a more homogeneous map than
MEDI. However, any SMV implementation causes erosion
of the VOI region since the field outside the VOI cannot be
measured. This causes loss of anatomical information at the
boundaries of the brain, especially when the voxel size is large.

Remark 8: These Bayesian preconditioning techniques have
only been empirically explored. A rigorous analysis is required
as preconditioning seems to give promising results in QSM.

VII. DISCUSSION AND CONCLUSION

QSM based on the Bayesian MAP estimation framework
can accurately and robustly map strong isotropic sources, such
as biometals including iron in ferritin and deoxy-heme in
hemoglobin [8, 70], calcium in bones and other pathologic
calcifications [43, 48], and highly paramagnetic gadolinium
and iron in contrast agents [49, 50]. The accuracy and robust-
ness of Bayesian MAP estimation are well established, such as
in image processing known to outperform classical multistep
algorithms for tasks including denoising [140], deblurring
[141], segmentation [142], and optical flow estimation [143].
Effective QSM applications in clinical problems that are often
complex require further technical innovation. Although we
have used the convex cost in (17) for elucidating the Bayesian
QSM framework, more sophisticated priors capable of pre-
cisely modeling the underlying susceptibility distribution are
desired so that streaking and shadow can be better penalized.
Fast and robust algorithms that can handle nonconvex priors
are often necessary as such priors may well be no longer
convex, such as when fat presents in tissue [48, 104, 144, 145]
or when SNR is poor [95]. As seen in Section VI, Bayesian
methods benefit from further investigation in preconditioning
techniques. These innovations may be made based on a

deeper understanding of the biophysics behind tissue magnetic
susceptibility and solvers in numerical optimization.

A particularly complex problem is the molecular mi-
crostructure and its anisotropic susceptibility of white matter
(WM) in the brain [146]. This WM susceptibility anisotropy
has been attributed to anisotropic lipid molecules that are
radially oriented in the myelin sheathes of white matter
fibers [71, 147–149]. Accordingly, a hollow cylinder fiber
model may account for effects from both microstructure and
anisotropy of WM [150], which is used to study the orien-
tation of WM fibers [151–153]. WM microstructure can be
inspected from the orientation dependent local frequency shift
[154, 155]. The molecular anisotropy of WM in a non-local
frequency perturbation [156] may be estimated using various
inversion algorithms [61, 71, 147, 148]. A recent and more
complex model combines the generalized Lorentzian approach
[154] with the lipoprotein structure of myelin sheath [157] and
water attempting to explain experimental phase data [158].
Although QSM can be used to study WM fibers using multi-
orientation scans, a reliable measurement of anisotropy in WM
and microstructure in a voxel from a single-angle acquisition
has not been achieved. In fact, clinical MR scanners do not al-
low “perfect” multi-orientation sampling using a combination
of uniformly distributed field directions because of the limited
range of orientations with human subjects [148].

In summary, we have tried to provide a systematic overview
of the current status and recent advances in QSM methods, and
remaining challenges. The notion of a fundamental solution
in the theory of linear PDEs makes it possible to write
out an explicit form of the solution for the magnetic field
to susceptibility source inversion problem. We have demon-
strated that streaking and shadows are two types of artifacts
characterized by the PDE solution for field data deviating
from or incompatible with the continuous dipole field pat-
tern. As dipole-incompatibility in field data is unavoidable in
practice, it is critical to devise effective methods capable of
reducing streaking and shadow artifacts. Early attempts that
make use of truncation in k-space unnecessarily cause dipole-
incompatibility in the field, giving rise to additional streaking
and shadows. On the other hand, Bayesian QSM methods
provide desired results with significant improvements over the
truncation-based methods, allowing for the design of problem-
specific and physics-based priors. The QSM community con-
tinues to devise new priors that will improve the current state
of the art. As these new priors may be nonconvex, they will
be more capable of modeling the complicated biophysical
nature behind QSM; therefore, the community looks forward
to algorithmic advances with preconditioning techniques.
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