
HAL Id: hal-01657866
https://hal.science/hal-01657866v1

Submitted on 7 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Verifying the configuration of Virtualized Network
Functions in Software Defined Networks

Johan Pelay, Fabice Guillemin, Olivier Barais

To cite this version:
Johan Pelay, Fabice Guillemin, Olivier Barais (Dir.). Verifying the configuration of Virtualized Net-
work Functions in Software Defined Networks. bcom, pp.1-6, In press. �hal-01657866�

https://hal.science/hal-01657866v1
https://hal.archives-ouvertes.fr

Verifying the configuration of Virtualized Network
Functions in Software Defined Networks
Johan Pelay

b<>com
Email: johan.pelay@b-com.com

Fabrice Guillemin
Orange Lab. (France)

Email: fabrice.guillemin@orange.com

Olivier Barais
INRIA, University of Rennes 1

Email: olivier.barais@inria.fr

Abstract—The deployment of modular virtual network functions
(VNFs) in software defined infrastructures (SDI) enables cloud and
network providers to deploy integrated network services across
different resource domains. It leads to a large interleaving between
network configuration through software defined network controllers
and VNF deployment within this network. Most of the configuration
management tools and network orchestrators used to deploy VNF
lack of an abstraction to express Assume-Guarantee contracts
between the VNF and the SDN configuration. Consequently, VNF
deployment can be inconsistent with network configurations. To
tackle this challenge, in this paper, we present an approach to check
the consistency between the VNF description described from a set of
structural models and flow-chart models and a proposed deployment
on a real SDN infrastructure with its own configuration manager. We
illustrate our approach on virtualized Evolved Packet Core function.

I. INTRODUCTION

The emergence of virtualization techniques is revolutionizing
the architecture of telecommunications networks. In particular,
network functions, which were so far designed and deployed
on dedicated hardware, are progressively migrating onto virtual
infrastructures (see for instance [1]). The dissociation between
functions and hosting hardware allows network operators to be
more agile in the deployment of new services. The goal for a
network operator is eventually to be able to deploy on demand
network functions according to customer’s needs and thus create
new businesses.

Several functions are currently redesigned in order to be
virtualized and flexibly instantiated on common hardware. This
is notably the case of Radio Access Network (RAN) and Evolved
Packet Core (EPC) functions for mobile networks. The virtual-
ization of these two sets of functions enables a network operator
to instantiate a mobile network on demand according to the needs
of a company or a (virtual) mobile operator.

The virtualization of network functions urges network oper-
ators to change their business models. Instead of offering con-
nectivity and information transport, they become IT technology
providers and have to operate distributed storage and compute fa-
cilities in addition to their traditional role of connectivity provider.
It is very likely that VNFs will be hosted and maybe split over
several data centers disseminated throughout the network.

The decomposition of a global VNF into several components
(or micro-services [2] [3]), which can be instantiated on distant
servers, raises the problem of interconnecting them. This is
deeply related to the method of programming the network.
With the emergence of Software Defined Networking (SDN), it
becomes possible to program a network by means of external
controllers and thus to completely configure how different entities
communicate between each other. In some sense, for a network

operator, SDN and Network Function Virtualization (NFV) will
rapidly become intimately interleaved and will raise the problem
of consistency between the service which has to be offered by a
VNF and the way the VNF is deployed within the network.

Beyond performance issues, which pose the problem of the
placement of the various components of a VNF in the network
so as to meet the associated grade of service objectives, a
problem that network operators will have to solve in the next
future is the consistency between the exchange of information
between the components of a VNF and the configuration of
the network. In this paper, we precisely address the problem of
consistency between call flows and network configuration. We
propose an approach, where the VNF call flow is attached to
the VNF definition as a behavioral contract and we define the
SDN behavior using the NetKAT formalism [4] [5] [6]. Then,
on the basis of a deployment model of VNF micro-services on
a real network infrastructure, we check the consistency between
the VNF network assumption and the SDN guarantees [7].

NetKAT relies on the fact that network procedures acting
on packets can be viewed as regular expressions on a certain
alphabet (namely, that formed by the fields of packets). Then,
by introducing the concept of history capable of tracking the
progression of a generic packet through the network, notably
depending on the forwarding decisions in each switch along the
data path, and using the theory developed by Kozen in 90’s
[8] [9], it is possible to show that the system is decidable and
provable. While the NetKAT framework is capable of proving
that any given property is satisfied or not by the network,
when configured by means of SDN and in particular by using
OpenFlow, this formalism however does not account of VNFs.
To remedy this situation, we introduce in this paper an artifact,
which allows us to describe the micro-services of a VNF as
switches and to verify that the history of a generic packet in
this augmented network topology, is compliant with the targeted
call flow of a VNF.

This paper is organized as follows: In Section II, we motivate
our proposal by using a detailed example of EPC VNF. Through
this example, we illustrate that a VNF provider cannot easily
attach to its VNF modular implementation a contract that defines
its assumptions regarding the network configuration. Section III
provides an overview of our approach based on NetKAT and we
illustrate its use on the virtual EPC (vEPC) use case. Section IV
discusses related works. Section V presents some conclusions and
future work.

II. CONTEXT AND MOTIVATING EXAMPLE

A. Decomposition of a VNF into micro-services

A VNF is a complete software suite composed of several
modules and accomplishing a number of tasks. The current trend
is to decompose a complete VNF in the form of micro-services
[2], [10], [3], [11], [12] interacting between each other, each
micro-service executing a set of elementary tasks. Once a VNF
is decomposed into micro-services, the subsequent task is to
instantiate them onto a virtualized architecture.

Before proceeding to the instantiation phase, let us stress the
fact that a micro-service is a software package that is developed
by independent entities (companies specialized in software devel-
opment or open-source communities) and used as plug-and-play
by a network operator. Engineers, who are in charge of software
development or who design services, do a job different from that
of network administrators and have different skills.

This gap between these two worlds can cause misunderstand-
ings or configuration errors between the wanted VNF logical
architecture [13] and the real set up. The services are often
designed without taking into account the use of the network
by others, which can lead to problems such as security of
communications, latency, congestion, etc.

There exists several configuration management tools and net-
work orchestrators, that allow operators to quickly describe VNF
architectures, i.e., the micro-services using VMs or containers,
micro-service configuration and assembly. We can cite Ansi-
ble1, Chef2, Puppet3, Docker Compose4, etc. Currently to the
best of our knowledge, only openMANO and of course the
SONATA NFV service platform propose a way to declare network
configuration assumptions, that has to be declared before the
deployment5.

In the following, we pay special attention to the way the micro-
services of a VNF are interconnected. When dealing with the
implementation correctness of a VNF, we can definitely identify
two aspects:

• The semantic correctness: The various micro-services ex-
change messages between them according to a given proto-
col. The semantic checking of the VNF amounts to verify
the correctness of the implementation of the protocol. This
can be done off-line when coding the VNF in the form of
micro-services. Usual model checking tools [14] can be used
to check behavioral consistency between services [15].

• The correctness of the exchange of information: When
micro-services are implemented on various servers, they
have to communicate between them across the network.
Micro-services are hosted by a server attached to the net-
work. The key point is to check that the messages are
correctly exchanged between micro-services interconnected
by a network configured by means of OpenFlow.

In this paper, we focus on the second issue.

1https://www.ansible.com/
2https://www.chef.io/
3https://puppet.com/
4https://docs.docker.com/compose/
5In OpenMANO, connection_point can be used to declare that a service must

communicate with another service.

B. Motivating example: A modular implementation of vEPC

1) The various functions of vEPC: An EPC is composed
of data and control plane functions as depicted in Figure 1,
which displays the various functions for cellular and WiFi radio
access. In the following, we focus on 4G access composed of
HSS (Home Subscriber Server), S/PGW (Serving/Packet data
network Gateway), MME (Mobility Management Entity). Note
when considering non cellular access, additional modules are
necessary (e.g., ePDG, WiFi controllers, etc.).

Fig. 1. Data and control plane modules for radio access [16].

2) Attach and Authentication: To get attached to the radio
network, a UE (User Equipment) identified by its SIM card
connects to an eNodeB base station. Before authorizing a UE to
access the network its identity is verified by the MME thanks to
a database that describes the entities of the network and contains
the list of users and the associated rights and permissions as well
as the current sessions (HSS). For the sake of conciseness in our
next examples, we will focus on those first steps.

3) Default Radio Bearer Setup : UE’s mobility is managed by
the 4G control plane. A packet is routed by using an address that
is generally linked to a fixed location. The solution chosen in 4G
is to pass traffic through a Packet Gateway (PGW). When the UE
moves and changes the base station, the PGW is informed of its
new location by the MME.

According to the LTE standard, the S/PGW must provide an
IP address to the client. This step is divided into two distinct
parts: on the one hand, the request followed by the transmission
of the IP address and on the other hand, the choice of the IP
address. This choice can be made directly by the S/PGW if it has
a database with the pool of IP addresses or through the query from
a DHCP server. The IP address can be returned to the customer
via the MME, or only after the opening of the tunnel (bearer) by
the S/PGW when the client requests it through a tunnel.

The call flow of the attachment of a UE is depicted in Figure 2.
The various elements of the EPC has to exchange information,
which has to be forwarded through the network. In current
networks, all servers (MME, HSS) and the data plane network
elements (eNodeB, S/PGW) have fixed IP addresses and routing
is static. The challenge of NFV is to dynamically implement these
functions on data centers.

C. Implementation issues

We tested the deployment of an open source EPC (as illustrated
in Figure 3) in the Network Architecture Lab at b<>com, namely
the Open Air Interface (OAI) EPC6 [17]. For deploying this

6http://www.openairinterface.org/?page_id=864

UE + eNodeB MME

Attach Request

HSS

Authentication Info
Request

Authentication Info
Answer

Ciphered Options Request

Ciphered Options Reponse

Fig. 2. UE attachment call flow.

vEPC with a simple configuration manager, we used Ansible
scripts to define roles and a Vagrant file to mount and connect
all of the resources. A role is defined by a list of files to be
installed or imported, a list of values that will change for each
resource associated with the role (name, IP ...). The same type of
equipment usually plays several roles, a playbook lists them for
all types and passes to the associated roles the variables to apply
for each resource. The configuration of the various services as
well as the routing tables are fixed and written in files that are
copied by Ansible after the launch of the VMs.

Fig. 3. Micro-services needed for UE attachment.

A total of 1047 lines in Ansible code and 344 of configuration
files was necessary to deploy the six micro-services that form the
vEPC as well as the network equipment and their controller. No
verifications could be made to ensure that the network configu-
ration allows for the necessary exchanges. When the deployment
was done on a different architecture than the development lab
(namely, when implementing the vEPC on the platform of another
project), network problems appeared (loops). Tests performed
when writing configurations are valid only on the network tested
at a given time.

This simple example incites us to develop a methodology for
testing the consistency between the decomposition of a VNF in
terms of micro-services and its deployment in the multi-cloud
environment.

III. PROPOSED SOLUTION

The NFV approach promises to be able to encapsulate network
functions into reusable boxes that operates predictably without
requiring network operators know the details of how it does
so. To detect inconsistencies between NFV assumptions and real
SDN configurations, this section introduces an extended model
of VNF with software contracts. This section shows how these

contracts could be used in combination with existing approach
such as NetKat, to check the overall consistencies of the VNF
deployment. We define below the four main steps of our approach
and illustrate each of these steps on the EPC case study:

1) Define a reusable VNF model (subsection III-A);
2) Define the augmented topology of the network and IT

infrastructure (subsection III-B);
3) VNF deployment model (subsection III-C);
4) Check the consistency of the VNF deployment model (sub-

section III-D).

A. Step 1 - Reusable VNF model

We first introduce an abstract definition of a VNF.
Definition 1: A VNF is defined as :
• A set of micro-services S = {s1, s2, ..., si}.
• A set of Hubs H = {h1, h2, hi}, where H represents a logical

links between a set of services and meta-data. For example,
if h1 = {services : {s1, s2}, secured : f alse} and h2 =
{services : {s2, s3}, secured : f alse} means that s1 can
send message to s2, s2 can send message to s3 but s1 can
not exchange message with s3 and cannot view the messages
between s2 and s3. h2 = {services : {s3, s4, s5}, secured :
true} means that communication between s3, s4, s5 must be
encrypted.

• A behavioral contract (see definition 2).
• A set of micro-service implementation.
In the above definition, we have used the concept of behavioral

contract defined as follows.
Definition 2: A behavioral contract is defined through

a set of messages. Each message is a tuple msg =

(s1, s2, order, {a1, a2, ..., an}) where:
• s1 is the micro-service source of the message,
• s2 is the target micro-service of the message,
• order is the order number of the message in the correspond-

ing sequence diagram structure tree,
• a1, a2, ..., an is a set of routing rule actions (addition, remove,

modification) that can be triggered before the message re-
ception or after its emission (see Definition 3).

All the order numbers of messages in the sequence diagram
construct a partial order. The order number of a message is given
according to its position in the tree. The root node corresponds
to the starting micro-service of a sequence diagram.

Definition 3: A routing rule action a is defined using NetKAT
syntax, it has a name and it handles virtual nodes and virtual
ports of a VNF. A virtual node (V N(si)) maps the nodes where
the micro-service si is deployed. A virtual port (VPk(si)) maps
the port k of the node where the micro-service si is deployed.

1) vEPC attachment illustration: To illustrate this formalism,
a vEPC can be characterized as follows.

Proposition 1: A vEPC can be described as a set S =

{eNodeB,M ME,HSS} with
• a set of hubs H = {h1, h2} with

h1 = {services : {eNodeB,MME}, secured : f alse}
h2 = {services : {M ME,HSS}, secured : f alse}

• a behavioral contract

BC = {Attach_Request, Auth_in f o_Req,

Auth_in f o_Ans,Ciphered_Req,Ciphered_Rep},

with: Attach_Request = {eNodeB,MME, 1},
Auth_in f o_Req = {MME,HSS, 2},
Auth_in f o_Ans = {HSS,M ME, 3},
Ciphered_Req = {M ME, eNodeB, 4},
Ciphered_Rep = {eNodeB,MME, 5}.

We could show that the vEPC has three micro-services
connected through two different unsecured hubs (h1, h2). The
behavioral contract contains five messages: Attach_Request,
Auth_in f o_Req, Auth_in f o_Ans, Ciphered_Req and
Ciphered_Rep.

B. Step 2 - Augmented topology based on NetKAT

To describe the network configuration, we directly propose to
use NetKAT. In the following subsection, we recall the basic
elements of NetKAT.

1) Basic elements of NetKAT: The basic approach of NetKAT
is to suppose that functions implemented in a network can
be viewed as regular expressions acting on packets. In this
framework, a packet pk is a series of fields, namely

pk ::= { f1 = v1, . . . , fk = vk}

where fi , i = 1, . . . , k are fields expressed as series of bits. The
most common fields used in the context of IP networks are source
and destination IP addresses, source and destination port numbers,
protocol types, DiffServ Code Point (DSCP), etc. Moreover, to
track the position of a packet in the network, NetKAT introduces
two additional fields: the switch label and the port number at
which the packet appears when arriving at the switch. The key
observation is that these two fields are changed at each switch
while other fields are relevant end-to-end (except the DSCP
field which may be updated inside the network in the case of
untrusted marking but which should have in theory an end-to-
end value). With the above definition, packets form an alphabet
of 2N elements if N = | f1 |+ . . .+ | fk |. This number is potentially
very high but most network procedures act only on a restricted
number of fields (IP addresses in case of rerouting inside the
network, switch and port labels).

The fundamental idea of NetKAT is recognize that usual
network functions such as forwarding, rerouting, firewall, etc.
can be viewed as regular expressions which can be:
• either predicates (f = v, where f is a field and v a given

value);
• or else policies, for instance updating a field (f ← v).

The basic procedures (policies and predicates) of NetKAT are
given in Table I. The Kleene star

p∗ =
∑
n≥0

p . . . p︸ ︷︷ ︸
n times

is the sum of the finite iterates of procedure p. The dup policy
is introduced to duplicate packets in the construction of histories

TABLE I
PREDICATES AND POLICIES IN NETKAT.

Predicates Policies
a, b::= 1 Identity p, q ::= a Filter

0 Drop f ← v Modification
f = v Test p + q Union

a + b Disjunction p · q Sequential
composition

a.b Conjunction p∗ & Kleene star
¬a Negation dup Duplication

(namely prepends the same packet at an history); histories are in-
troduced below and are instrumental in the capability of NetKAT
of proving properties of the network.

The set of policies with identity 1 (no actions) and null 0
(packet drop) procedures and equipped with +, ·, the star ∗

operations constitutes a Kleene algebra. The set of predicates with
the identity 1 and the drop 0 equipped with the operations +, ·
and ¬ is a Boolean algebra. Predicates with + and · operations is
a subalgebra of policies. The set of policies and predicates with
the above operations is a Kleene Algebra with Tests (KAT).

With the above notation, a firewall which drops all packets
towards a given IP address (say, A0) can be written as

(@IPd = A0) · 0,

where as stated above, 0 is the filtering policy that drops all
packets. Similarly, forwarding a packet from port pt1 on switch
A to port pt2 on switch B reads

(SW = A, pt = pt1) · (SW← B, pt ← pt2)

To record the path taken by a packet through the network,
NetKAT introduces the concept of history that is the list of states
occupied by a generic packet when traversing the network. A
history h has the form < pk1, . . . , pkn > where pki is the state
of packet pk at the n − i switch (the list reads from the right to
the left). All NetKAT predicates and policies act on the packet-
history to create a new history (possibly empty if the packet is
dropped). Policies and predicates act on histories as detailed in
Section 3 of [4].

More precisely, a predicate on a history h returns a singleton
{h} or the empty set {}. A field modification (f ← v) returns
a singleton history in which the field f of the current packet
has been set equal to v. Thus, usual predicates and policies
induce functions on histories. The function induced by policy
p is denoted by [[p]]. A function [[p]] is from the set of histories
H to P(H), the set of parts of H.

Using the same formalism, NetKAT describes the network
topology in order to check if rules are not trying to make links
that do not physically exist (as described in the example provided
in Proposition 2).

The key properties of NetKAT is that this language is sound
and complete. This means that with KAT axioms and the NetKAT
axioms (see Section 2 of [5]), every equivalence provable by
using NetKAT axioms also holds in the equational model (sound-
ness) and conversely, every equivalence in the equational model
is provable with NetKAT axioms (completeness); these two
statements are proved in Section 4 of [4].

In particular, it is possible to prove that a packet follows a
given route (namely a sequence of switches in the network). This

simple remark motivates us to introduce an augmented version
of the network.

2) Augmented network topology: The network is configured
by means of SDN, for instance OpenFlow. By acquiring the
configuration of the network (namely, the OpenFlow rules pushed
in the network elements via the controllers), it is possible to
completely translate the network configuration in NetKAT. We
can then abstract the network topology in terms of nodes, ports
and links.

To build the augmented topology of the virtualized infrastruc-
ture, we consider micro-services exchanging messages as (virtual)
switches exchanging packets. Indeed, from a transport of view,
micro-services receive messages, process them and transmit them
to other micro-services or to the end users. Everything happens
as if micro-services were switches and messages were (virtual)
packets.

On the basis of the (physical) network topology and the
(virtual) topology of micro-services, we are able to build the
augmented topology of the network combined with VMFs. With
this artifact and the power of the NetKAT formalism, we are able
to verify that virtual packets are routed through the augmented
topology so that the call flows of a VNF can be implemented.

3) Illustration with the UE attachment: The micro-services are
illustrated in Figure 3 and the associated call flow in Figure 2.
We introduced an augmented topology with four nodes (host1,
host2, host3, sw1), each hosti has one port, sw1 has three ports.
There is a link between each hosti and sw1. Considering micro-
services as switches, the augmented topology of our example can
be described as follows.

Proposition 2: The augmented topology of the UE attachment
procedure for the example depicted in Figure 3 is

t = (sw = host1 · pt = 1 · sw ← sw1 · pt ← 1)
+(sw = sw1 · pt = 1 · sw ← host1 · pt ← 1)
+(sw = host3 · pt = 1 · sw ← sw1 · pt ← 2)
+(sw = sw1 · pt = 2 · sw ← host3 · pt ← 1)
+(sw = host2 · pt = 1 · sw ← sw1 · pt ← 3)
+(sw = sw1 · pt = 3 · sw ← host2 · pt ← 1)

We could combine this topology with a deployment model of
a new VNF to check the consistency between the VNF model
and the current network topology before acting the real VNF
deployment.

C. Step 3 - VNF deployment model

To deploy a reusable VNF on a real network, the deployment
model creates a mapping between each micro-services belonging
to a VNF model and a node belonging to the network configu-
ration model.

Definition 4: A deployment model D is defined as D =

{m1,m2, ...,mi} and m is tuple such as m = {ni, sj}.
In our illustrative use case (UE attachment), the proposed

mapping is as follows:
Proposition 3: The VNF deployment model for the UE at-

tachment procedure of the example depicted in Figure 3 is
D = {m1,m2,m3}, m1 = {host1, eNodeB}, m2 = {host2,HSS},
m3 = {host3,M ME}.

The micro-service eNodeB is deployed on the host host1. The
micro-service HSS is deployed on the host host2. The micro-
service MME is deployed on the host host3.

Once the topology and the VNF description are combined we
can write the desired networks rules in NetKAT which will then
be translated in OpenFlow.

Proposition 4: The NetKAT policies for the UE attachment
procedure in the example in Figure 3:

p = (sw = sw1 · pt = 1 · sw ← MME · pt ← 1)
+(sw = sw1 · pt = 2 · dst = HSS · sw ← HSS · pt ← 1)
+(sw = sw1 · pt = 2 · dst = eNodeB
· sw ← eNodeB · pt ← 1)
+(sw = sw1 · pt = 3 · sw ← MME · pt ← 1)
+(dst = HSS · src = eNodeB · 0)

D. Step 4 - Checking consistency of a VNF deployment model

1) Running call flow on augmented topology: For a call flow
of a VNF, a virtual packet is introduced and a history is created
to record the journey of this virtual packet in the augmented
network. NetKAT can then be used to prove that the exchange
in the call flows are achieved by the virtual packet. This method
can notably be used to prevent from loops, undue packet discard,
missing forwarding rules, etc.

To check the compliance between histories and call flow, we
basically built two message sequences traces and we check that
it exists a weak bisimulation [18] relation between histories and
call flows to check trace equivalence.

2) History applied to our use case: To illustrate the last
step, we focus on Attach and Authentication behavioral contract
defined in Figure 2. In NetKAT formalisms, for a packet from
eNodeB virtual switch, we obtain the following history (recall
that it must be read from last to first):

pk ::= {
pk1[src:=eNodeB; dst:=M ME; sw:=sw1; port:=2],
pk2[src:=eNodeB; dst:=M ME; sw:=eNodeB; port:=1],
pk3[src:=MME ; dst:=eNodeB; sw:=sw1; port:=1],
pk4[src:=MME ; dst:=eNodeB; sw:=MME ; port:=1],
pk5[src:=HSS; dst:=MME ; sw:=sw1; port:=3],
pk6[src:=HSS; dst:=MME ; sw:=HSS; port:=1],
pk7[src:=M ME; dst:=HSS; sw:=sw1; port:=3],
pk8[src:=M ME; dst:=HSS; sw:=M ME; port:=1],
pk9[src:=eNodeB; dst:=M ME; sw:=sw1; port:=2],
pk10[src:=eNodeB; dst:=M ME; sw:=eNodeB; port:=1]}

Based on this history, we could build two label transition
systems (LTS) in which the label is defined using the source name
and the target name. Then we check the trace inclusion between
the VNF behavioral contract and the NetKAT history. To check
the trace inclusion of LTSs we check a global property of weak
bi-simulation between LTS and it is known that weak simulation
implies trace inclusion [19]. For tooling the approach, on top of
NetKAT, we use the LTSA [20] model checker. LTSA can check
the weak simulation by representing the VNF behavioral contract
as the safety property process.

IV. RELATED WORK

The interleaving between SDN and NFV is one of the challenge
that has recently been investigated in technical literature. In [21],

Medhat et al explore the limitations of current service function
chaining approaches in next generation networks in terms of
architectural and conceptual research work by providing a brief
analysis of each solution in the state of the art. This article also
proposes some new research directions. With regard to placement
of functions, they discus the automatic placement/migration of
VNF to ensure their correct execution. In such a scenario,
guaranteeing the consistency between the VNF assumptions and
the network configuration guarantees could be used as an oracle
to accept a placement/migration.

Closer to our approach, in [22], Spinozo et al. check that the
functionalities implemented in the VNF are not disturbed by the
modifications made by the middle-boxes or other VNFs. For this
purpose, they use a satisfiability modulo theories (SMT) solver
that quickly provides formal proof before a deployment. The
topology of the network is not managed but only the network
graph/service chaining. With respect to their approach, we focus
in this paper on possible errors in forwarding rules that can cause
loop, reachability issue or security breach, etc. Our work could
easily be extended to packet modification by middle-boxes and
VNFs viewed as virtual switches in our augmented topology.

In [23], Shin et al. provide formal foundations for support-
ing the development of reliable network services. The solution
proposed uses a packet based Algebra of Communicating Shared
Resources to check whether there is any inconsistency between
chosen specifications and the implementation. All the above cited
studies stress the fact, as we do in this paper, that there is a real
need for formally proving the correctness of the implementation
of VNFs in an SDN context.

V. CONCLUSION

We have addressed in this paper the correctness of the deploy-
ment of VNFs when distributed on distant data centers. We have
advocated for the development of a unified view of all resources
involved in the implementation and deployment of VNFs, notably
how they are interconnected. On the basis of this view, we have
introduced the concept of augmented topology where micro-
services appear as switches. By associated virtual packets with
call flows of VNFs it is possible to use the NetKAT formalism
to verify that histories of virtual packets are compliant with the
call flows of a VNF and thus the VNF is correctly implemented.

We furthermore believe that such an approach is utmost rele-
vant in the development of ONAP (Open Network Automation
Project) [24], which aims at automating the creation and the
instantiation of VNFs. By adopting the solution proposed in this
paper, ONAP will be capable of safely instantiating VNFs in
a network programmed by means of SDN. ONAP is in the first
development phase but has already identified a number of features
which are required for the automatic creation and instantiation
of VNFs. In particular, ONAP aims at developing a holistic
view of network resources, including traditional assets of the
network (types of connectivity and bandwidth) managed with
OpenDayLight together with IT resources (storage and compute)
managed by OpenStack. Hence, ONAP can develop a unified
view of all resources so as to optimize and configure resources.

The developed solution is valid for a static environment, where
micro-services do not migrate from one data center to another.

Building such a model, in particular the network configuration
model, that can be highly dynamic, could be error-prone. But we
can get it through system introspection.

REFERENCES

[1] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function virtualiza-
tion: Challenges and opportunities for innovations,” IEEE Communications
Magazine, vol. 53, no. 2, pp. 90–97, 2015.

[2] D. Namiot and M. Sneps-Sneppe, “On micro-services architecture,” Inter-
national Journal of Open Information Technologies, vol. 2, no. 9, pp. 24–27,
2014.

[3] D. Jaramillo, D. V. Nguyen, and R. Smart, “Leveraging microservices
architecture by using docker technology,” in SoutheastCon, 2016. IEEE,
2016, pp. 1–5.

[4] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen, C. Schlesinger,
and D. Walker, “NetKAT: Semantic foundations for networks,” ser. POPL
’14. New York, NY, USA: ACM, 2014, pp. 113–126.

[5] N. Foster, D. Kozen, M. Milano, A. Silva, and L. Thompson, “A coalgebraic
decision procedure for NetKAT,” in Proc. POPL 2015, 2015.

[6] N. Foster, D. Kozen, K. Mamouras, M. Reitblatt, and A. Silva, “Probabilistic
netkat,” in Proceedings of the 25th European Symposium on Programming
Languages and Systems - Volume 9632. New York, NY, USA: Springer-
Verlag New York, Inc., 2016, pp. 282–309.

[7] C. Chilton, B. Jonsson, and M. Z. Kwiatkowska, “Assume-guarantee rea-
soning for safe component behaviours.” in FACS, vol. 12. Springer, 2012,
pp. 92–109.

[8] D. Kozen, “A completeness theorem for kleene algebras and the algebra of
regular events,” Inf. Comput., vol. 110, no. 2, pp. 366–390, May 1994.

[9] ——, “Kleene algebra with tests,” ACM Trans. Program. Lang. Syst.,
vol. 19, no. 3, pp. 427–443, May 1997.

[10] K. Katsalis, N. Nikaein, E. Schiller, R. Favraud, and T. I. Braun, “5g
architectural design patterns,” in Communications Workshops (ICC), 2016
IEEE International Conference on. IEEE, 2016, pp. 32–37.

[11] W. John, F. Moradi, B. Pechenot, and P. Sköldström, “Meeting the observ-
ability challenges for vnfs in 5g systems.”

[12] A. Sheoran, X. Bu, L. Cao, P. Sharma, and S. Fahmy, “An empirical
case for container-driven fine-grained vnf resource flexing,” in Network
Function Virtualization and Software Defined Networks (NFV-SDN), IEEE
Conference on. IEEE, 2016, pp. 121–127.

[13] P. B. Kruchten, “The 4+ 1 view model of architecture,” IEEE software,
vol. 12, no. 6, pp. 42–50, 1995.

[14] D. Giannakopoulou and J. Magee, “Fluent model checking for event-based
systems,” in ACM SIGSOFT Software Engineering Notes, vol. 28, no. 5.
ACM, 2003, pp. 257–266.

[15] A. Beugnard, J.-M. Jézéquel, N. Plouzeau, and D. Watkins, “Making
components contract aware,” Computer, vol. 32, no. 7, pp. 38–45, 1999.

[16] K. Gierlowsky, “Ubiquity of client access in heterogeneous access environ-
ment,” Journal of Telecommunications and Information technology, 2014.

[17] P. Ravali, S. K. Vasudevan, and R. Sundaram, “Open air interface–
adaptability perspective,” Indian Journal of Science and Technology, vol. 9,
no. 6, 2016.

[18] R. van Glabbeek and U. Goltz, “Equivalence notions for concurrent systems
and refinement of actions,” in Mathematical Foundations of Computer
Science 1989. Springer, 1989, pp. 237–248.

[19] R. Milner, “A calculus of communicating systems,” 1980.
[20] J. Magree, “Behavioral analysis of software architectures using ltsa,” in

Software Engineering, 1999. IEEE, 1999, pp. 634–637.
[21] A. M. Medhat, T. Taleb, A. Elmangoush, G. A. Carella, S. Covaci, and

T. Magedanz, “Service function chaining in next generation networks:
State of the art and research challenges,” IEEE Communications Magazine,
vol. 55, no. 2, pp. 216–223, February 2017.

[22] S. Spinoso, M. Virgilio, W. John, A. Manzalini, G. Marchetto, and R. Sisto,
Formal Verification of Virtual Network Function Graphs in an SP-DevOps
Context. Cham: Springer International Publishing, 2015, pp. 253–262.

[23] M. K. Shin, Y. Choi, H. H. Kwak, S. Pack, M. Kang, and J. Y. Choi,
“Verification for nfv-enabled network services,” in 2015 International
Conference on Information and Communication Technology Convergence
(ICTC), Oct 2015, pp. 810–815.

[24] “Open network automation project,” https://www.onap.org/, accessed: 2017-
07-09.

