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cCentre de Mathématiques Appliquées, Ecole Polytechnique, 91128 Palaiseau Cedex, France

Abstract

Thanks to computing power increase, the certification and the conception of complex
systems relies more and more on simulation. To this end, predictive codes are needed,
which have generally to be evaluated in a huge number of input points. When the
computational cost of these codes is high, surrogate models are introduced to emulate
the response of these codes. In this paper, we consider the situation when the system
response can be modeled by two nested computer codes. By two nested computer
codes, we mean that some inputs of the second code are outputs of the first code.
More precisely, the idea is to propose sequential designs to improve the accuracy of the
nested code’s predictor by exploiting the nested structure of the codes. In particular, a
selection criterion is proposed to allow the modeler to choose the code to call, depending
on the expected learning rate and the computational cost of each code. The sequential
designs are based on the minimization of the prediction variance, so adaptations of the
Gaussian process formalism are proposed for this particular configuration in order to
quickly evaluate the mean and the variance of the predictor. The proposed methods
are then applied to examples.

Keywords:
nested computer codes, surrogate model, Gaussian process, uncertainty quantification,
Bayesian formalism.

1. Introduction

A lot of industrial issues involve multi-physics phenomena, which can be associated
with a series of computer codes. However, when these code networks are used for
conception, uncertainty quantification, or risk analysis purposes, they are generally
considered as a single code. In that case, all the inputs characterizing the system
of interest are gathered in a single input vector, and little attention is paid to the
potential intermediate results. When trying to emulate such code networks, this is
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clearly sub-optimal, as much information is lost in the statistical learning, such that
too many evaluations of each code are likely to be required to get a satisfying prediction
precision.
In this paper, we focus on the case of two nested computer codes, which means that
the output of the first code is an input of the second code. We assume that these two
computer codes are deterministic, but expensive to evaluate. To predict the value of
this nested code in a unobserved point, a Bayesian formalism [23] is adopted in the
following. Each computer code is a priori modeled by a Gaussian process, and the idea
is to identify the posterior distribution of the combination of these two processes given
a limited number of evaluations of the two codes. The Gaussian process hypothesis is
widely used in computer sciences ([24, 25, 22, 14, 15, 4, 18, 16]), as it allows a very
good trade-off between error control, complexity, and efficiency. The two main issues
of this approach, also called Kriging, concern the choice of the statistical properties of
the Gaussian processes that are used, and the choice of the points where to evaluate
the codes. When a single computer code is considered, several methods exist to add
one new point or a batch of new points sequentially to an already existing Design of
Experiments ([24, 25, 3, 7, 6]), in order to minimize the global prediction uncertainty.
These methods are generally based on a post-processing of the variance of the code
output prediction, which expression can be explicitly derived under mildly restrictive
conditions on the mean and the covariance of the prior Gaussian distribution.
The adaptation of these selection criteria to the case of two nested codes is not direct.
Indeed, the combination of two Gaussian processes is not Gaussian, such that the
prediction uncertainty is much more complicated to estimate. Moreover, if the two
codes can be launched separately, the selection criterion has also to indicate which
one of the two codes to launch. In that prospect, the first objective of this paper is
to propose several adaptations of the Gaussian Process formalism to the nested case,
in order to be able to evaluate the two first statistical moments of the code output
predictor quickly. Then, original sequential selection criteria are introduced, which try
to exploit as much as possible the nested structure of the studied codes. In particular,
these criteria are able to integrate the fact that the computational cost associated with
the evaluation of each code can be different.
The outline of this paper is the following. Section 2 presents the theoretical framework
of the Gaussian process-based surrogate models, its generalization to the nested case,
and introduces several selection criteria based on the prediction variance to reduce the
prediction uncertainty sequentially. Section 3 introduces a series of simplifications to
allow a quick evaluation of the prediction variance. In section 4, the presented methods
are eventually applied to two examples.

The proofs of the results that will be presented in the following sections have been
moved to the appendix.
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2. Surrogate modeling for two nested computer codes

2.1. Notations

In this paper, the following notations will be adopted:

• x, y correspond to scalars.

• x, y correspond to vectors.

• X, Y correspond to matrices.

• The entries of a vector x are denoted by (x)i, whereas the entries of a matrix X

are denoted by (X)ij .

• XT denotes the transpose of a matrix X.

• N (x, X) corresponds to the multidimensional Gaussian distribution, whose mean
vector and covariance matrix are respectively given by x and X.

• GP(m, k) corresponds to the distribution of a Gaussian process whose mean func-
tion is m, and whose covariance function is k.

• E [·] and V(·) are the mathematical expectation and the variance respectively.

• For all real-valued functions y and z that are square integrable on X, (·, ·)X and
‖·‖

X
denote respectively the classical scalar product and norm in the space of

square integrable real-valued functions on X:

(y, z)X :=

∫

X

y(x)z(x)dx, ‖y‖2
X

:= (y, y)X. (2.1)

2.2. General framework

Let S be a system that is characterized by a vector of input parameters, xnest ∈ Xnest.
Let ynest : Xnest → R be a deterministic mapping that is used to analyze the studied
system. In this paper, we focus on the case where the function xnest 7→ ynest(xnest)
can be modeled by two nested codes. Two quantities of interest, y1 and y2, are thus
introduced to characterize these two codes, which are supposed to be two real-valued
continuous functions on their respective definition domains X1 and R×X2. Given these
two functions, the nested code is defined as follows:

x1 ∈ X1 →

x2 ∈ X2

y1(x1) ∈ R

ց
ր

ynest(xnest) := y2(y1(x1), x2) ∈ R, (2.2)

where xnest := (x1, x2) ∈ Xnest = X1 × X2. The sets X1 and X2 are moreover supposed
to be two compact subsets of R

d1 and R
d2 respectively, where d1 and d2 are two positive
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integers. In theory, the definition domains may be unbounded, but the reduction to
compact sets enables the square integrability of ynest on Xnest.
Given a limited number of evaluations of the functions x1 7→ y1(x1) and (ϕ1, x2) 7→
y2 (ϕ1, x2), the objective is to build a stochastic predictor of ynest with the following
properties:

• its mean is as close as possible to the real output of the nested code, that is, the
bias is small,

• its uncertainty (given by its variance) is as small as possible.

In other words, the mean square error of the stochastic predictor has to be small.

2.3. Gaussian process-based surrogate models

The Gaussian process regression (GPR), or Kriging, is a technique that is widely used
to replace an expensive computer code by a surrogate model, that is to say a fast to
evaluate mathematical function. The GPR is based on the assumption that the two
code outputs, y1 and y2, can be seen as the sample paths of two stochastic processes,
ŷ1 and ŷ2, which are supposed to be Gaussian for the sake of tractability:

ŷi ∼ GP(µi, Ci), i ∈ {1, 2}, (2.3)

where for all 1 ≤ i ≤ 2, µi and Ci denote respectively the mean and the covariance
functions of ŷi.

Let x
(1)
1 , . . . , x

(N1)
1 be N1 elements of X1 and

(
ϕ

(1)
1 , x

(1)
2

)
, . . . , (ϕ

(N2)
1 , x

(N2)
2 ) be N2 ele-

ments of R × X2. Denoting by

yobs
1 := (y1(x

(1)
1 ), . . . , y1(x

(N1)
1 )), yobs

2 := (y2(ϕ
(1)
1 , x

(1)
2 ), . . . , y2(ϕ

(N2)
1 , x

(N2)
2 )), (2.4)

the vectors that gather the evaluations of y1 and y2 in these points, it can be shown
that:

ŷc
i := ŷi | yobs

i ∼ GP(µc
i , C

c
i ), (2.5)

and we refer to [24, 25] for further details about the expressions of conditioned mean
functions, µc

i , and conditioned covariance functions, Cc
i .

According to Eq. (2.2), the nested code, xnest 7→ ynest(xnest), can thus be seen as
a particular realization of the conditioned process ŷc

nest, such that for all (x1, x2) ∈
X1 × X2,

ŷc
nest(x1, x2) := ŷc

2(ŷ
c
1(x1), x2). (2.6)

Under this Gaussian formalism, the best prediction of ynest in any unobserved point
xnest = (x1, x2) in X1 × X2 is given by the mean value of ŷc

nest(x1, x2), whereas its
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variance can be used to characterize the trust we can put in that prediction. As ex-
plained in Introduction, there is no reason for ŷc

nest to be Gaussian, but according to
Proposition 2.1, the first- and second-order moments can be obtained by computing
two one-dimensional integrals with respect to a Gaussian measure. This can be done
by quadrature rules or by Monte-Carlo methods ([2]).

Proposition 2.1. For all (x1, x2) ∈ X1 × X2, if ξ ∼ N (0, 1), then:

E [ŷc
nest

(x1, x2)] = E [µc
2(µ

c
1(x1) + σc

1(x1)ξ, x2)] , (2.7)

E
[
(ŷc

nest
(x1, x2))

2] = E

[
{µc

2(µ
c
1(x1) + σc

1(x1)ξ, x2)}
2

+ {σc
2(µ

c
1(x1) + σc

1(x1)ξ, x2)}
2

]
, (2.8)

where for all i in {1, 2}, (σc
i (xi))

2 = Cc
i (xi, xi).

2.4. Parametric representations of the mean and covariance functions

As explained in Introduction, the relevance of the Gaussian process predictor strongly
depends on the definitions of µi and Ci. When the maximal information about yi is
a finite set of evaluations, these functions are generally chosen in general parametric
families. In this paper, functions Ci are supposed to be two elements of the Matérn-5/2
class (see [25, 17] for further details about classical parametric expressions for Ci), with
θi be the hyper-parameters that characterize these covariance functions, whereas linear
representations are considered for the mean functions,

µi = hT
i βi, (2.9)

where hi is a given Mi-dimensional vector of functions (see [21] for further details on
the choice of the basis functions). In the following, the framework of the ”Universal
Kriging” is adopted, which consists in:

• assuming an (improper) uniform distribution for βi,

• conditioning all the results by the maximum likelihood estimate of θi,

• integrating over βi the conditioned distribution of ŷi.

In that case, the distribution of ŷc
i , which is defined by Eq. 2.5 is Gaussian, and its

statistical moments can explicitly be derived (see [24, 5, 3, 21]).
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2.5. Sequential designs for the improvement of Gaussian process predictors

The relevance of the predictor ŷc
nest strongly depends on the space filling properties of the

sets gathering the inputs of the available observations of y1 and y2, which are generally
called Designs of Experiments (DoE). Space-filling Latin Hypercube Samplings (LHS)
or quasi-Monte-Carlo samplings are generally chosen to define such a priori DoE ([9,
8, 20]). The relevance of the predictor can then be improved by adding new points to
an already existing DoE, as the higher the values of N1 and N2, the more chance there
is for ‖E [ŷc

nest] − ynest‖
2
Xnest

to be small.

In the case of a single code, most of the existing selection criteria to add a new point are
based on the minimization of a quantity associated with the predictor variance, such
as its integral over the input domain for instance [24, 25, 7, 3, 6, 19, 13, 11]. Indeed, if
ẑ is a Gaussian process that is indexed by x in X, and if we denote by k its covariance
function, the variance of the conditioned random variable ẑ(x) | ẑ(xnew), where x and
xnew are any elements of X, is given by:

k(x, x) − k(x, xnew)2/k(xnew, xnew), (2.10)

such that it does not depend on the (unknown) value of ẑ(xnew). To minimize the
global uncertainty over ẑ at a reduced computational cost, a natural approach would
consist in searching the value of xnew such that

∫

X

{k(x, x) − k(x, xnew)2/k(xnew, xnew)}dx (2.11)

is minimal (under the condition that this integral exists).

In the nested case, we also have to choose on which code to add a new observation point.
To this end, let τ1 and τ2 be the numerical costs (in CPU time for instance) that are
associated with the evaluations of y1 and y2 respectively. For the sake of simplicity, we
assume that these numerical costs are independent on the value of the input parameters,
and that they are a priori known. Two selection criteria are eventually proposed to
optimize the relevance of the Gaussian process predictor sequentially. To simplify the
reading, the following notation is proposed:

(x̃i, X̃i) :=





(x1, X1) if i = 1,

((ϕ1, x2) , R × X2) if i = 2,

((x1, x2), X1 × X2) if i = 3,

(2.12)

and we denote by V(ŷc
nest(xnest)|x̃i) the variance of ŷc

nest(xnest) under the hypothesis
that the code(s) corresponding to the new point x̃i is(are) evaluated in this point (in
practice, we remind that these code evaluations are not required for the estimation of
this variance).
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• First, the chained I-optimal criterion selects the best point in X1 × X2 to minimize
the integrated variance of the predictor of the nested code:

x̃
new
3 = argmin

ex3∈eX3

∫

Xnest

V(ŷc
nest(xnest)|x̃3)dxnest. (2.13)

Such a criterion is a priori adapted to the case when it is not possible to run
independently the codes 1 and 2.

• Secondly, the best I-optimal criterion selects the best among the candidates in X1

and X2 in order to maximize the decrease per unit of computational cost of the
integrated predictor variance of the nested code:

(inew, x̃new
inew) = argmax

exi∈eXi, i∈{1,2}

1

τi

×

∫

Xnest

[V (ŷc
nest(xnest)) − V (ŷc

nest(xnest)|x̃i)] dxnest.

(2.14)

In that case, the difference in the computational costs is taken into account, and
a linear expected improvement per unit of computational cost is assumed for the
sake of simplicity.

3. Fast evaluation of the prediction variance

As explained in Section 2.5, to choose the position of the new point, for each potential
value of x̃i in X̃i, we need to compute the value of Var(ŷc

nest(xnest)|x̃i) for all xnest in
Xnest. If quadrature rules or Monte Carlo approaches are used to evaluate this variance,
as it is proposed in Section 2.3, the optimization procedure quickly becomes extremely
demanding, even if discretized approximations of the optimization problem defined by
Eqs. (2.14) and (2.13) are considered, that is to say where the integral over Xnest is
replaced by an empirical mean over any Nnest-dimensional set of randomly chosen points
of Xnest. To circumvent this problem, we present in this section several approaches to
make the evaluation of Var(ŷc

nest(xnest)|x̃i) explicit, and therefore extremely fast to
evaluate.

3.1. Explicit derivation of the two first statistical moments of the nested code predictor

Proposition 3.1. Using the notations of the Universal Kriging framework that is in-
troduced in Section 2.4, and denoting by g the family of functions such that g (x, α) :=
x(α)1 exp [(α)2x + (α)3x

2] , α ∈ N × R
2 if:

1. for 1 ≤ k ≤ M2 the mean function (h2)k is of the form:

(h2((ϕ1, x2))k = mk(x2) g (ϕ1, αk) , (3.1)

where mk is a deterministic function from X2 to R and αk ∈ N×R
2 is such that

2(αk)3C
c
1(x1, x1) < 1 for all x1 ∈ X1,
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2. the covariance function C2 is an element of the Gaussian class or corresponds to
the covariance function of any derivative of a zero-mean process with covariance
function of the Gaussian class,

then the conditional moments of order 1 and 2 of ŷc
nest

(x1, x2), which are defined by
Eqs. (2.7) and (2.8) can be calculated analytically.

In other words, if the prior of the Gaussian process modeling the function y2 can be seen
as any derivative of a Gaussian process with a trend which is a linear combination of
products of polynomials by exponentials of order less than 2, and a covariance function
of the Gaussian class, then conditionally to some integration criteria, the moments of
order 1 and 2 of the coupling of the predictors of the two codes can be computed ex-
plicitly at a reduced cost. However, the approach cannot be generalized to the coupling
of more than two codes.

3.2. Linearized approach

In the cases where the conditions for Proposition 3.1 are not fulfilled (or if more than
two codes were considered), another approach is proposed in this section, which is based
on a linearization of the process modeling the nested code. Indeed, for i ∈ {1, 2}, let εc

i

be the Gaussian process such that:

ŷc
i = µc

i + εc
i . (3.2)

By construction, εc
i is the residual prediction uncertainty once ŷi has been conditioned

by Ni evaluations of yi. We remind that these two Gaussian processes are statistically
independent. Under the condition that N1 is not too small compared to the complexity
of y1, it is therefore reasonable to assume that εc

1 is small compared to µc
1.

Proposition 3.2. If:

1. the predictor of two nested computer codes can be written ŷc
nest

(x1, x2) := ŷc
2(ŷ

c
1(x1), x2),

where ŷc
i are Gaussian processes which can be written as ŷc

i = µc
i + εc

i where
εc

i ∼ GP (0, Cc
i ) , i ∈ {1, 2},

2. and εc
1 is small enough for the linearization to be valid,

then the predictor of the two nested computer codes can be defined as a Gaussian process
with the following mean and covariance functions:

µc
nest

= µc
2(µ

c
1(x1), x2)

Cc
nest

((x1, x2), (x
′
1, x

′
2)) = Cc

2((µ
c
1(x1), x2), (µ

c
1(x

′
1), x

′
2))

+
∂µc

2

∂ϕ1
(µc

1(x1), x2)
∂µc

2

∂ϕ1
(µc

1(x
′
1), x

′
2)C

c
1(x1, x

′
1).

(3.3)

8



Hence, thanks to the proposed linearization, the variance of ŷc
nest(xnest) but also the

one of ŷc
nest(xnest)|x̃i can explicitly be derived for all (xnest, x̃i) in Xnest × X̃i. Under the

condition that the linearization is valid, this approach can be applied to configurations
with more than two nested codes.
However it can be inferred from equation (3.3) that the variance depends on yobs

1

through µc
1. To circumvent this problem for the evaluation of the forward variance

in the sequential designs, we assume that a candidate x1 is associated with the current
estimate of the output of the first code µc

1 (x1), in accordance with the Kriging Believer
strategy proposed in [10].

4. Applications

The previously proposed methods are applied to two examples: an analytical one-
dimensional one and a multidimensional one.

4.1. Characteristics of the examples

4.1.1. Analytical example

In the analytical example the properties of the Gaussian process mean functions and
of the codes are:

h1 (x1) =




1

x1

x2
1


 , β∗

1 =




−2
0.25

0.0625


 , y1 (x1) = h1 (x1)

T
β∗

1 − 0.25 cos (2πx1) ,

(4.1)

h2 (ϕ1) =




1

ϕ1

ϕ2
1

ϕ3
1


 , β∗

2 =




6
−5
−2
1


 , y2 (ϕ1) = h2 (ϕ1)

T
β∗

2 − 0.25 cos (2πϕ1) ,

(4.2)
where x1 ∈ [−7, 7]. In this example X2 = ∅.

Figure 1 shows the variations of the outputs of the codes 1, 2 and nested. The codes
1 and 2 outputs are relatively smooth compared with the one of the nested code. The
amplitude of the variations is strongly non-stationary for the nested code.

4.1.2. Hydrodynamic example

This example consists in the coupling of two computer codes. The objective is to
determine the impact point of a conical projectile.

The first code computes the drag coefficient of a cone divided by the height of the cone.
Its inputs are the height and the half-angle of the cone, so the dimension of x1 is 2.

9



−6 −4 −2 0 2 4 6

−2

−1

0

1

2

x1

y 1

(a) Code 1

−2 −1 0 1 2 3 4
−5

0

5

10

15

x2
y 2

(b) Code 2

−6 −4 −2 0 2 4 6

−5

0

5

xnest

y n
es

t

(c) Nested code

Figure 1: Analytical example: variations of the outputs y1, y2 and ynest of the codes 1,
2 and nested with respect to their input.
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The second code computes the range of the ballistic trajectory of a cone. Its inputs are
the output of the first code, associated with ϕ1, and the initial velocity and angle of
the ballistic trajectory of the cone, gathered in x2. The dimension of x2 is therefore 2.

Figure 2 illustrates the two codes inputs and outputs.
Figure 3 shows the variations of the output with respect to each component of the input
for each code. This figure enables to propose a basis of functions for the prior mean of
the processes associated with the two codes.
For the first code the scatter plots highlight a linear variation with respect to (x1)1 and
a multiplicative inverse variation with respect to (x1)2, so the proposed basis functions
are:

h1 (x1) =

(
1 , (x1)1 ,

1

(x1)2

)T

. (4.3)

For the second code only a multiplicative inverse variation with respect to y1 is evident,
so the proposed basis functions are:

h2 (ϕ1, x2) =

(
1 ,

1

max (ϕ1, ϕ1min
)

)T

. (4.4)

The denominator has a lower boundary ϕ1min
in order to avoid any inversion problem

around zero. This boundary is small and set arbitrarily.

4.2. Reference: ”blind box” method

In this method, the nested computer code is considered as a single computer code.
Only the inputs xnest and the output ynest are taken into account. The intermediary
information ϕ1 is not considered. A Gaussian process regression of this single computer
code is done.
Only the chained I-optimal sequential design could be applied in this framework, the
other proposed sequential design requiring to consider the partial information.

4.3. Choice of the covariance functions and estimation of their hyperparameters

In the analytical example the covariance functions are Gaussian. This implies that
the sample paths of the Gaussian processes associated with the codes are infinitely
differentiable functions. This enables to apply Proposition 3.1 and Proposition 3.2 to
this example.
In the hydrodynamic example the covariance functions are Matérn 5

2
, which implies

that the sample paths of the Gaussian processes associated with the codes are mean
square one time continuously differentiable functions (see [22]). This enables to perform
the linearization of Proposition 3.2.
In both cases the covariance functions include a non-zero nugget term (see [12] for
further details).
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(b) Code 2: range of a ballistic trajectory
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(x2)2

y2

(x2)1

Figure 2: Hydrodynamic example: Inputs and outputs of the two codes.

The hyperparameters of the covariance functions are estimated for each set of ob-
servations, including the sequential designs. They are estimated by maximizing the
Leave-One-Out log predictive probability (see [22], chapter 5, and [1]).

4.4. Comparison between the analytical and the linearized method

Figure 4 illustrates the convergence of the two first statistical moments estimated with
the Monte Carlo (see Proposition 2.1) and the linearized methods (see Proposition 3.2)
towards their real values calculated with the analytical method described in Proposition
3.1.
Both methods converge when the uncertainty of the first code predictor decreases. It
can be seen that the linearized method is a very good compromise between computation
time and accuracy compared to the Monte Carlo method.

4.5. Definition of the performance criterion of the predictor mean

A set of validation observations if available. Let x
(1)
nest . . .x

(Nnest)
nest be Nnest elements of

Xnest.

Denoting by ynest

(
x

(1)
nest

)
. . . ynest

(
x

(Nnest)
nest

)
the evaluations of the nested code in these

points, the performance criterion of the nested predictor mean, also called error on the
mean can be defined as:
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Figure 3: Hydrodynamic example: variation of the outputs y1 and y2 of the two codes
with respect to the components of the inputs x1 and x2. The 20 input points are drawn
according to a maximin LHS design on X1 × X2.
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Figure 4: Comparison of the linearized (Proposition 3.2) and Monte-Carlo (Proposition
2.1) methods in terms of computation time and accuracy for the evaluation of the two
first moments of the process ŷc

nest. The Monte Carlo method is run with 100 and 1000
points to compute the one-dimensional integral with a Gaussian measure. The Monte
Carlo draws are repeated 50 times and the curves correspond to the median of these
repetitions.
The real values are computed with the analytical method (Proposition 3.1). The covari-
ance functions are Gaussian. The predictor of the first code is of the form yc

1 = µc
1 +σc

1u
with u ∼ N (0, 1), σc

1 ∈ {10−4, 10−3, 10−2, 10−1} and for each value of σc
1, 100 values

of µc
1 on a grid on [−2, 4] are considered. The predictor of the second code is build

using 20 input observation points drawn on a grid on [−2, 4] for the second code of the
analytical example.
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Figure 5: Analytical example: Predictors of the nested code obtained with the linearized
and the blind box methods. The set of 20 observations is drawn according to a maximin
LHS on X1. Actual values shown by dots, the mean of prediction by a line and the 95%
prediction interval of prediction by a grey area.

Error on the mean =

Nnest∑
i=1

(
ynest

(
x

(i)
nest

)
− E

[
ŷc

nest

(
x

(i)
nest

)])2

Nnest∑
i=1

(
ynest

(
x

(i)
nest

)
−

1

Nnest

Nnest∑
j=1

ynest

(
x

(j)
nest

))2 . (4.5)

4.6. Comparison between the blind box and the linearized methods

Figure 5 shows that the linearized method enables to better take into account the
non-stationarity of the variations of the nested code output. On the contrary, in the
blind box method the magnitude of the prediction interval is the same across the input
domain and depends only on the distance to the observation points. The prediction
interval is too big in the area with small variations and too small in the area with larger
variations.

Figure 6 shows the similar accuracies of the prediction mean computed with the ana-
lytical and linearized methods proposed in Proposition 3.1 and Proposition 3.2.
For both examples, the precision of the prediction mean is better with the linearized
method than with the blind box method, showing the interest of taking into account
the intermediary information.
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Figure 6: Comparison of the prediction mean accuracy for the blind box and the lin-
earized (Proposition 3.2) methods, and, in case of a Gaussian covariance function, the
analytical method (Proposition 3.1). The curves correspond to the median of 50 draws
of maximin LHS designs on X1 × X2 of increasing size.
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4.7. Performances of the sequential designs with identical computational costs

Figure 7 shows the relevance of the proposed sequential designs for improving the
prediction mean of the linearized nested predictor, compared to the maximin LHS
design on Xnest.
In the analytical example, the best I-optimal sequential design enables to obtain the
most accurate prediction mean at a given computational cost. In the hydrodynamic
example, the different sequential designs give similar results, except for the first new
observation points added, where the best I-optimal is better.

In both examples the new observation points are mostly added on the first code, as
shown in figure 8. It seems that the uncertainty propagated from the first code into
the second code is predominant at the beginning. The best I-optimal sequential design
aims therefore to reduce this uncertainty by first adding new observation points on the
first code. Then new observations points can be added on both codes.

4.8. Performances of the sequential designs with different computational costs

Figure 9 shows the prediction mean accuracy with a best I-optimal sequential design
when the costs of the two codes are different. It can be seen that at a given total
computational cost the accuracy of prediction is better when the cost of the first code is
lower. In other words the prediction mean accuracy is better at a given computational
budget when more observation points can be added to the first code for the same
computational budget. These results are consistent with those of figure 8.

5. Conclusions and future work

In this paper the Gaussian process formalism is adapted to the case of two nested
computer codes.
Two methods to evaluate quickly the mean and variance of the nested code predictor
have been proposed. The first one, called ”analytical” computes the exact value of the
two first moments of the predictor. But it cannot be applied to the coupling of more than
two codes. The second one, called ”linearized”, enables to obtain a Gaussian predictor
of the two nested codes, with mean and variance that can be instantly computed. The
approach could be generalized to the coupling of more than two codes.
Both proposed methods take into account the intermediary information, that means
the output of the first code. A comparison to the reference method, called ”blind box”,
is made. In this method a Gaussian process regression of the block of the two codes
is made without considering the intermediary observations. The numerical examples
illustrate the interest of taking into account the intermediary information in terms of
prediction mean accuracy.

Moreover, two sequential designs are proposed in order to improve the prediction accu-
racy of the nested predictor. The first one, the ”chained” I-optimal sequential design,
corresponds to the case when the two codes cannot be launched separately. The second
one, the ”best” I-optimal sequential design, allows to choose on which of the two codes
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Figure 7: Comparison of the linearized predictor mean precision with the maximin
LHS design on Xnest and the sequential designs applied to the two examples. In the
hydrodynamic example, the two curves representing the sequential designs are almost
superimposed. The initial designs are the same for the three curves, with a size of 10
points for the analytical example and 20 points for the hydrodynamical example. The
draw of the chained maximin LHS designs is repeated 50 times and the curves present
the median of the associated results. The costs of the two codes are assumed to be the
same.
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Figure 8: Comparison of the number of evaluations of each code in case of a sequential
best I-optimal design applied to both examples. The curves correspond to the median
of 50 draws of the initial design. The costs of the two codes are assumed to be the
same.
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Figure 9: Performances of the best I-optimal sequential design in terms of prediction
mean accuracy with different computational costs for the two codes. 1:2 ↔ cost 1
for code 1 and 2 for code 2, 2:1 ↔ cost 2 for code 1 and 1 for code 2. The curves
correspond to the median of 50 draws of the initial maximin LHS design on Xnest.
The initial designs are the same for the two curves corresponding to each example and
contain 15 observations and 30 observations on both codes for the analytical and the
hydrodynamical example.
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to add a new observation point and to take into account the different computational
costs of the two codes.
The numerical applications show the interest of the sequential designs compared to
a space-filling design (maximin LHS). Furthermore, they illustrate the advantage, in
terms of prediction mean accuracy, of choosing on which code to add a new observation
point compared to simply adding new observation points of the nested code. The results
obtained show an amplification of the uncertainties in the chain of codes, leading to the
addition of observation points on the first code firstly in the best I-optimal sequential
design. It can be assumed that this should be similar with the coupling of more than
two codes. In other words, the uncertainty of the beginning of the chain should be
reduced as a priority.

This paper has been focused on the case of two nested codes with a scalar intermediary
variable. Considering the case of a functional intermediary variable seems promising
for future work.
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Appendix

Proof of Proposition 2.1

According to Eq (2.5):

ŷc
i (xi) = µc

i (xi) + σc
i (xi) ξi, ξi ∼ N (0, 1), i ∈ {1, 2},

where ξ1 and ξ2 are independent according to the independence of the initial processes
ŷ1 and ŷ2.
Therefore the process modeling the nested code can be written:

ŷc
nest(x1, x2) = ŷc

2(ŷ
c
1(x1), x2)

= µc
2 (µc

1 (x1) + σc
1 (x1) ξ1, x2) + σc

2 (µc
1 (x1) + σc

1 (x1) ξ1, x2) ξ2

Given the independence of ξ1 and ξ2 and the fact that E (ξ2) = 0, it can be inferred
that the first moment of ŷc

nest can be written:

E (ŷc
nest(x1, x2)) = E (µc

2 (µc
1 (x1) + σc

1 (x1) ξ1, x2))

By noting that:

•

(ŷc
nest(x1, x2))

2 = (ŷc
2(ŷ

c
1(x1), x2))

2

= (µc
2 (µc

1 (x1) + σc
1 (x1) ξ1, x2) + σc

2 (µc
1 (x1) + σc

1 (x1) ξ1, x2) ξ2)

= (µc
2 (µc

1 (x1) + σc
1 (x1) ξ1, x2))

2 + (σc
2 (µc

1 (x1) + σc
1 (x1) ξ1, x2))

2 ξ2
2

+2µc
2 (µc

1 (x1) + σc
1 (x1) ξ1, x2) σc

2 (µc
1 (x1) + σc

1 (x1) ξ1, x2) ξ2

• ξ1 and ξ2 are independent,

• E (ξ2) = 0 and E (ξ2
2) = 1,

the second moment of ŷc
nest can be written:

E
(
(ŷc

2(ŷ
c
1(x1), x2))

2) = E

[
(µc

2 (µc
1 (x1) + σc

1 (x1) ξ1, x2))
2

+ (σc
2 (µc

1 (x1) + σc
1 (x1) ξ1, x2))

2

]

Proof of Proposition 3.1

If x ∼ N (µ, σ2) and f (x, a, b, c) = xc exp (ax + bx2) then the mean of f (x, a, b, c) is
defined as:

E [f (x, a, b, c)] = exp

(
−

1

2σ2

(
(σ2a + µ)

2

2σ2b − 1
+ µ2

))
E
[
xc

f

]
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where xf ∼ N

(
σ2a + µ

1 − 2bσ2
,

σ2

1 − 2bσ2

)
, under the condition that 1 − 2bσ2 > 0.

Given that the moments of a Gaussian variable can be calculated analytically, E
[
xc

g

]

and therefore E [f (x, a, b, c)] can be computed analytically.
So we have shown that if x ∼ N (µ, σ2), and f (x, a, b, c) = xc exp (ax + bx2) then, under
the integrability condition 1 − 2bσ2 > 0, the mean of f (x, a, b, c) can be calculated
analytically.

First moment

In the framework of Universal Kriging, the conditional mean function of the process
modeling the second code can be written:

µc
2 ((ϕ1, x2)) = h2 ((ϕ1, x2))

T
vh + C2

(
(ϕ1, x2) ,

(
ϕobs

1 , Xobs
2

) )
vc

=
M2∑
i=1

(h2 ((ϕ1, x2)))i (vh)i +
N1∑
i=1

C2

(
(ϕ1, x2) ,

(
ϕ

(i)
1 , x

(i)
2

))
(vc)i

= (1) + (2)

where vh ∈ R
M2 and vc ∈ R

N1 and ϕ1 ∼ N
(
µc

1, (σ
c
1)

2).

According to the assumptions of Proposition 3.1 the mean basis functions h2 can be
written:

(h2((ϕ1, x2))i = mi(x2) f (ϕ1, (αi)3 , (αi)1 , (αi)2) ,

with mi deterministic functions.
In the same way, the covariance function C2 can be written:

C2

(
(ϕ1, x2) ,

(
ϕ

′

1, x
′

2

))
= σ2

2

1

lϕ1

k(2nϕ1
)

(
ϕ1 − ϕ′

1

lϕ1

) d2∏

i=1

(
1

li
k(2ni)

(
(x2)i − (x′

2)i

li

))
,

with k : x 7→ exp (−x2/2), nϕ1
and ni positive integers and k(n) denoting the n-th

derivative of function k. So, we can written that:

C2

(
(ϕ1, x2) ,

(
ϕ

′

1, x
′

2

))
= σ2

2

nϕ1∑

j=1

ajf

(
ϕ1 − ϕ′

1, 0,
−1

2l21
, 2j

)
l (x2 − x′

2) ,

where l is a deterministic function defined according to the previous equation and aj

real numbers.

So the terms (1) and (2) of the previous equation can be written:

(1) =
M2∑
i=1

f (ϕ1, (αi)3 , (αi)1 , (αi)2) mi(x2) (vh)i
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(2) =
N1∑
i=1

σ2
2l
(
x2 − x

(i)
2

)
(vc)i

nϕ1∑
j=1

ajf

(
ϕ1 − ϕ

(i)
1 , 0,

−1

2l21
, 2j

)

According to the fact that mi and l are deterministic functions, vh, vc, x
(i)
2 and x2

deterministic vectors, and ϕ(i) and aj deterministic real numbers, then:

E [(1)] =
M2∑
i=1

E [f (ϕ1, (αi)3 , (αi)1 , (αi)2)] mi(x2) (vh)i

E [(2)] =
N1∑
i=1

σ2
2 l
(
x2 − x

(i)
2

)
(vc)i

nϕ1∑
j=1

ajE

[
f

(
ϕ1 − ϕ

(i)
1 , 0,

−1

2l21
, 2j

)]

The means E [(1)] and E [(2)] can therefore be calculated analytically, and consequently,
the mean E [µc

2 ((ϕ1, x2))] can be calculated analytically.

Second moment

In the framework of Universal Kriging, it can be written that:

(µc
2 ((ϕ1, x2)))

2 + (σc
2 ((ϕ1, x2)))

2 = σ2
2

+ h2 ((ϕ1, x2))
T

Ahh2 ((ϕ1, x2))︸ ︷︷ ︸
(1)

+ C2

(
(ϕ1, x2) ,

(
ϕobs

1 , Xobs
2

) )
Ac C2

((
ϕobs

1 , Xobs
2

)
, (ϕ1, x2)

)
︸ ︷︷ ︸

(2)

+ C2

(
(ϕ1, x2) ,

(
ϕobs

1 , Xobs
2

) )
Ach h2 ((ϕ1, x2))︸ ︷︷ ︸

(3)

,

where Ah, Ac and Ach are deterministic real-valued, M2 × M2, N1 × N1 and N1 × M2

dimensional matrices.
According to the assumptions of Proposition 3.1 and the previous equations, the terms
(1), (2) and (3) can be rewritten:

(1) =
M2∑
i=1

M2∑
j=1

(Ah)ij (h2 ((ϕ1, x2)))i (h2 ((ϕ1, x2)))j

=
M2∑
i=1

M2∑
j=1

(Ah)ij mi (x2)mj (x2) f (ϕ1, (αi)3 , (αi)1 , (αi)2) f
(
ϕ1, (αj)3 , (αj)1 , (αj)2

)
,

=
M2∑
i=1

M2∑
j=1

(Ah)ij mi (x2)mj (x2) f
(
ϕ1, (αi + αj)3 , (αi + αj)1 , (αi + αj)2

)
,
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(2) =
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N1∑
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According to the fact that mi and l are deterministic functions, x2 and x
(i)
2 deterministic

vectors, Ah, Ac and Ach deterministic matrices, and ϕ
(i)
1 and ai deterministic real

numbers, it can be written:

E [(1)] =
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.

The means E [(1)], E [(2)] and E [(3)] can therefore be calculated analytically, and con-
sequently, the mean
E
[
(µc

2 ((ϕ1, x2)))
2 + (σc

2 ((ϕ1, x2)))
2] can be calculated analytically.
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From the two previous paragraphs and Proposition 1, it can be inferred that if ver-
ifying the assumptions of Proposition 3.1, then the first and the second moments of
ŷc

nest(x1, x2) can be calculated analytically.

Proof of Proposition 3.2

If ŷc
nest(x1, x2) = ŷc

2(ŷ
c
1(x1), x2) where ŷc

i = µc
i + εc

i , εc
i ∼ GP(0, Cc

i ) , i ∈ {1, 2}, then if
εc
1 is small enough, the process ŷc

nest(x1, x2) can be linearized:

ŷc
nest(x1, x2) = µc

2(µ
c
1(x1) + εc

1(x1), x2) + εc
2(µ

c
1(x1) + εc

1(x1), x2),

≈ µc
2(µ

c
1(x1), x2) +

∂µc
2

∂ϕ1

(µc
1(x1), x2)ε

c
1(x1) + εc

2(µ
c
1(x1), x2),

ε1 and ε2 being Gaussian processes, the predictor of the nested code can therefore be
written as a Gaussian process:

ŷc
nest(x1, x2) ≈ µc

2(µ
c
1(x1), x2) + εc

nest(µ
c
1(x1), x2),

where εc
nest is a centred Gaussian process, whose covariance function, Cc

nest, is given by:

Cc
nest((x1, x2), (x

′
1, x

′
2)) = Cc

2((µ
c
1(x1), x2), (µ

c
1(x

′
1), x

′
2))

+
∂µc

2

∂ϕ1
((µc

1(x1), x2))
∂µc

2

∂ϕ1
((µc

1(x
′
1), x

′
2))Cc

1(x1, x
′
1).

26



[1] F Bachoc. Parametric estimation of covariance function in Gaussian-process based
Kriging models. Application to uncertainty quantification for computer experi-
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