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Abstract

In a context of predictive control strategy, this paper addresses the
computation of admissible control set for a trajectory tracking over a
prediction horizon. The proposed method combines numerical methods
based on set-membership computation and control methods based on a
flatness concept. It makes possible i) to provide a guaranteed computation
of admissible controls, ii) to deal with uncertain reference trajectory, iii)
to reduce the time complexity of the algorithm compared to the existing
approach. Simulations illustrate the efficiency of the developed methods
in two different cases. For Single Input - Single Output (SISO) systems,
generalized affine forms are computed otherwise a Branch & Prune algo-
rithm with an inner inclusion test is used for Multi Inputs - Multi Outputs
(MIMO) systems. The computational time is reduced significantly com-
pared to the one required by the existing approach.

Keywords: set-membership computation, flatness, nonlinear predictive control, dis-
crete-time systems.
AMS subject classifications: 65P99, 93C55

1 Introduction
Among the control methods capable of tracking a reference trajectory, Nonlinear Model
Predictive Control (NMPC) is well-adapted, especially in the presence of constraints
on state and/or input variables [1]. The aim of NMPC is to determine a sequence
of controls by solving a constrained optimization problem at time k over a prediction
horizon np. Only the first component of the sequence is really applied to the process.
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At time k+ 1, information is updated thanks to measurements, the prediction horizon
moves one sampling period ahead, and the whole optimization procedure is repeated.

In some cases, for example in economic application [2], the reference trajectory
may not be known precisely due to uncertainties or confident intervals of the targeted
variable. Hence, we consider not a reference trajectory but a set of possible reference
trajectories to which the reference trajectory must belong. The sequence of controls
consequently becomes a set of controls. Computing such a set is intractable in general,
but set-membership computation can be a very useful tool to provide outer or inner
approximations of this set.

Several methods are based on set-membership computations: linear matrix in-
equalities [5], affine forms [20], interval analysis [15] or generalized affine forms [4].
Classical intervals [17] are used in many situations to compute rigorously sets of val-
ues with intervals instead of reals, leading to outer approximations of the desired sets.

Interval analysis has already been used in robotics to solve control problems such as
navigation and localisation [12], collision avoidance or reliability [14]. Modelling errors
can be taken into account in the interval formulation. Robust control approaches based
on interval analysis have largely been developed to deal with uncertain parameters for
linear systems [18]. More recently set-membership computations were considered for
nonlinear estimation [9] or control [10].

In our problem, since the objective is to determine the set of admissible controls,
the computation of an inner approximation of the control set is mandatory. In this
context, most methods use the Branch & Prune algorithm (B&P)[6] combined with
interval analysis. In [7], the SIVIA algorithm based on this kind of combination has
been used for parameter estimation, then was enhanced in [8]. In [9], among all the
guaranteed sequences of control, the search of only one was considered. In [10], the
computation of all the guaranteed sequences of control was considered, but only for
a short prediction horizon because of the time complexity of the SIVIA algorithm.
Indeed, the major drawback of the B&P algorithm is its time complexity, exponential
in the dimension of the control sequence. Considering a control input of dimension
m, the dimension of the control sequence is m × np, leading to a time complexity
O(exp(m× np)).

To avoid the aforementioned drawback, we propose a direct method to compute
an inner approximation of the admissible control set for tracking an uncertain refer-
ence trajectory. The flatness [3], an intrinsic property of dynamical systems, is used
and makes possible to guarantee the inner approximation result with the algorithm
complexity reduced to O(np × exp(m × n)) with n 6 np the dimension of the state.
Two different methods are developed according to the dimension of the control m. For
the generic case (m > 1), the method is based on the B&P algorithm with an inner
test. For the special case (m = 1), it is based on generalized affine forms.

This paper is organized as follows: brief reviews of set-membership computation
and interval analysis are presented in Section 2. The existing approach and its lim-
itation are detailed. Section 3 is devoted to the flatness concept and to the main
results of this paper. Finally simulations on SISO and MIMO systems illustrate the
computation time and precision efficiency of the proposed methods.
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2 Review of Set Membership Computation and
Existing Approach

The set computation usually provides two kinds of approximations: an inner approx-
imation and/or an outer approximation. For a given set P, the set Q is an inner
approximation of P if these sets verify the quantified proposition

(Q ⊆ P )⇔ (∀q ∈ Q)(∃p ∈ P)(p = q); (1)

the set Q is an outer approximation of P if they verify

(P ⊆ Q)⇔ (∀p ∈ P)(∃q ∈ Q)(p = q). (2)

If P = Q, both quantified propositions are verified.
In the following, classical results on interval analysis used in Section 2.2 and Sec-

tion 3 are reviewed briefly.

2.1 Interval Analysis
We denote an interval by [x] = [x, x] with x 6 x and the set of intervals by IR =
{[x] = [x, x] | x, x ∈ R, x 6 x}. The Cartesian product of intervals [x] ∈ IRn is called
a box. The main result of interval analysis is its fundamental theorem [17] stating
that the evaluation of an expression using intervals leads to an outer approximation
of the resulting set of values for this expression whatever the values considered in the
intervals. To deal with interval functions, an interval inclusion function also known as
interval extension of a function can be defined.

Definition 2.1 (Inclusion function [15]) Consider a function f : Rn → Rm. The
interval function [f ] : IRn → IRm is an interval inclusion function of f if the evaluation
of [f ]([x]) gives an outer approximation of the image of [x] by the function f , denoted
by f([x]) = {f(x), x ∈ [x]},

∀[x] ∈ IRn, f([x]) = {f(x), x ∈ [x]} ⊆ [f ]([x]). (3)

This definition can also be expressed as a quantified proposition,

(∀x ∈ [x])(∃z ∈ [f ]([x]))(z = f(x)). (4)

Remark 2.1 The quantified proposition (4) corresponds to the one described in Eq. (2)
with Q = f([x]) and P = [f ]([x]).

Many interval extensions of function can be defined that satisfy the quantified
proposition (4). We can cite the natural extension [15], which replaces the operations
on reals by their interval counterparts using interval arithmetic, and the mean value
extension [15], which linearizes the function around its mean value.

Inclusion functions allow us to compute outer approximations. For inner approxi-
mations, much harder to compute, the SIVIA algorithm [7] is the most frequently used.
It is based on the B&P algorithm with an inclusion test (verification of a property).
To compute the set of values x ∈ X which verify a property P , the SIVIA algorithm
defines two lists of boxes, LInside and LBoundary, such that

(∪LInside) ⊆ {x ∈ X | P (x)} ⊆ (∪LInside) ∪ (∪LBoundary), (5)
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with (∪LInside) and (∪LBoundary), the union of the boxes contained in these lists. We
require an interval evaluation [P ] ([x]) of the property P (inclusion test)

[P ] ([x]) =


0 if ∀x ∈ [x], x verifies P
1 if ∀x ∈ [x], x does not verify P
[0, 1] otherwise.

The B&P algorithm is described in Algorithm 1. The resulting list LInside is a sub-
paving of {x ∈ X | P (x)}.

Algorithm 1: The B&P algorithm.
Input: [P ], [x], ε
Output: LInside (list of boxes), LBoundary (list of boxes)
LInside,LBoundary ← ∅; // empty lists of boxes
LDomain ← {[x]}; // list containing only [x]
while LDomain not empty do

[x̃]← Extract(LDomain); // extraction of an element from LDomain
[ỹ]← [P ] ([x̃]); // Inclusion test
if [ỹ] = 0 then
LInside ← LInside ∪ {[ỹ]};

else if [ỹ] = [0, 1] then
if width([x̃]) ≥ ε then

Bisection of [x̃] to get [x̃′] and [x̃′′];
LDomain ← LDomain ∪ {[x̃′] , [x̃′′]};

else
LBoundary ← LBoundary ∪ {[ỹ]};

return (LInside,LBoundary);

2.2 Existing Approach for Control Purposes

We consider the class of nonlinear discrete-time systems described by

(Sd)

{
xk+1 = f(xk, uk)

yk = h(xk),
(6)

where xk ∈ Rn, uk ∈ Rm and yk ∈ Rp are respectively the state, the input and
the output of the system at the current time k, x0 is the initial condition. The
functions f : Rn × Rm 7→ Rn and h : Rn 7→ Rp are nonlinear vector functions.
The reference trajectory to be tracked is not certainly known, but belongs to a set
Yref = {Yref

k+1,Yref
k+2, . . . }. The control objective is to determine the set of admissible

controls U∗i , at time i, such that

U∗i = {ui ∈ Rm | h(f(xi, ui)) ∈ Yref
i+1}. (7)
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Considering a prediction horizon np, we have to compute all the sets U∗i for i = k to
k + np − 1 denoted:

U∗k..k+np−1 = {(uk, . . . , uk+np−1) ∈ Rm×np | ∀i = k, . . . , k + np − 1,

h(f(xi, ui)) ∈ Yref
i+1}. (8)

Let us define g` : Rm×(`+1) → Rm such that for uk..k+` = (uk, uk+1, . . . , uk+`):

gk+`(uk..k+`) = h(f(f(. . . f︸ ︷︷ ︸
`+1 times

(xk, uk), uk+1), . . . ), uk+`). (9)

Considering Eq. (9), the set expressed in Eq. (8) can be reformulated as:

U∗k..k+np−1 = {(uk, . . . , uk+np−1) ∈ Rm×np | ∀` = 0, . . . , np − 1,

gk+`(uk..k+`) ∈ Yref
k+`+1}. (10)

The computation of the set U∗k..k+np−1 is the typical case of a set inversion problem,
solved in [10] by using the SIVIA algorithm. This method has a major drawback: the
time complexity is exponential on the size of the considered box to split which is here
m× np. It consequently limits the method for short prediction horizons np.

In the next section, we present a new way of computing a guaranteed inner ap-
proximation of the projection, on each control ui (i = k, . . . , k + np − 1), of the set
described in Eq. (10) by using the flatness concept.

3 Main Results
The proposed method guarantees the computation of an inner approximation of the
set described in Eq. (10) component-wise. It combines numerical methods based on
interval analysis or generalized affine forms with the flatness concept. The flatness
property can simplify the computation thanks to a difference parametrization of the
system variables.

3.1 Flatness
The idea of differential flatness was first introduced by Fliess et al. in 1995 [3].
A system is differentially flat if there exists a set of independent variables (equal in
number to the dimension of inputs) referred to as flat outputs such that all states
and inputs of the system can be expressed in terms of those flat outputs and a finite
number of their successive time derivatives (resp. advances) for continuous-time (resp.
discrete-time, [13]) systems. In the case of linear systems, a controllable system is
a flat system. In the case of nonlinear systems, there is no general theorem. A flat
nonlinear system is consequently controllable. The property of flatness is now detailed
for nonlinear discrete-time systems.

Definition 3.1 (Flatness) The nonlinear discrete-time system (Sd) described in (6)
is flat if there exists an output Fk ∈ Rm such that the following relationships are
verified for all k:

xk = ψ(Fk, Fk+1, . . . , Fk+r−1) (11)
yk = h(ψ(Fk, Fk+1, . . . , Fk+r−1)) (12)
uk = ϕ(Fk, Fk+1, . . . , Fk+r). (13)
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The relative degree of the system r is equal to the number of advances (forward-shifts)
of the considered output in order to have at least one component of the input vector uk

explicitly appearing.

The output Fk ∈ Rm is then called a flat output, and Equations (11)–(13) are differ-
ence parameterizations of the system variables. We denote by zk ∈ Rr×m the vector
composed of the flat output Fk and its r − 1 advances:

zk =

 zk,1
...

zk,r

 =

 Fk

...
Fk+r−1

 . (14)

Equations. (11)-(13) can be reformulated as:

xk = ψ(zk) (15)
yk = h(ψ(zk)) (16)
uk = ϕ(zk, vk). (17)

The new input vk = Fk+r is the local solution of uk = ϕ(zk, vk), meaning there exists
θ such that vk = θ(zk, uk). If ψ is a locally invertible function, Eq. (15) can be seen as
a coordinate change between xk and zk. Figure 1 represents the connections between
all the variables of a flat system. The local representation of the system with the
coordinate change is given by the canonical Brunovsky form

zk+1 = Azk +Bvk, (18)

with

A =



0 1 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0
0 0 0 . . . 1
0 0 0 . . . 0


and B =


0
...
0
1

 . (19)

3.2 Computation of Admissible Controls for Flat Systems
The flatness property allows us to express the state and input variables in terms of
the flat output variable. In our study, it is a twofold advantage. On one hand, we
can guarantee the inner computation of the admissible control set (expressed in terms
of the flat output). On the other hand, the computational load is reduced (algebraic
expression). As shown in Figure 1, we have

xk+1 = f(xk, uk) = ψ(zk+1) = ψ
(
Aψ−1(xk) +Bθ(ψ−1(xk), uk)

)
. (20)

The right member in Eq. (20) can be used to define an inclusion function for f(xk, uk),
but is generally not tight due to multiple occurrences of xk in the expression, leading
to larger over-estimates than directly using the expression of f(xk, uk):

[f ] ([xk] , [uk]) ⊆ [ψ] (A
[
ψ−1] ([xk]) +B [θ] (

[
ψ−1] ([xk]), [uk])) (21)

with [f ], [ψ], [θ] and [ϕ], the interval extensions of f , ψ, θ and ϕ, respectively. Thanks
to flatness, the set of controls can be evaluated directly by taking into consideration
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uk xk xk+1

vk zk zk+1

ϕ ψ ψ

θ ψ−1 ψ−1

Nonlinear system (f)

Linear system (A,B)

Figure 1: Connection diagram between variables of a flat system.

the definition of the control in terms of the flat output uk = ϕ(zk, vk). The reference
trajectory is an admissible trajectory for the flat output. The set of admissible controls
U∗k at each time k is

U∗k = {ϕ(zk, vk) ∈ Rm | zk ∈ Yref
k..k+r−1, vk ∈ Yref

k+r}. (22)

Property 3.1 Consider the sets U∗k described in Eq. (22) and U∗k..k+np−1 described in
Eq. (10) with np > r + 1. We have:

U∗k = proj
uk

(U∗k..k+np−1) (23)

with proj
uk

(U∗k..k+np−1), the projection of the set U∗k..k+np−1 onto the control uk.

Proof: i) Let us prove that proj
uk

(U∗k..k+np−1) ⊆ U∗k . We assume that a control uk ∈

proj
uk

(U∗k..k+np−1). Then there exist (uk+1, . . . , uk+np−1) such that (uk, . . . , uk+np−1) ∈

U∗k..k+np−1 is an admissible control sequence. The restriction to the r first components
of this control sequence satisfies

(gk(uk), gk+1(uk..k+1), . . . , gk+r−1(uk..k+r−1)) = (yk+1, . . . , yk+r).

Thanks to the flatness, there exists yk such that the difference parameterization of the
control gives uk = ϕ(yk, yk+1, . . . , yk+r) ∈ U∗k .

ii) We now prove that U∗k ⊆ proj
uk

(U∗k..k+np−1). We assume that a control uk ∈ U∗k .

Consequently, There exists (yk, . . . , yk+r) such that uk = ϕ(yk, . . . , yk+r) ∈ U∗k . We
can extract uk+1..k+i = (uk+1, . . . , uk+i) such that gk+i(uk, uk+1..k+i) = yk+i+1 for
all i = 1 to r − 1. It implies that uk ∈ proj

uk

(U∗k..k+r). The outputs gk+i do not

depend on the control uk according to the definition of the relative degree. Thus uk ∈
proj
uk

(U∗k..k+np−1).
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Characterizing the set of admissible controls defined in Eq. (22) corresponds to the
problem of computing the image S of a set X by a function F

S = {F(x) | x ∈ X}, (24)

where S corresponds to the set U∗k , F to the function ϕ and X to the reference trajectory
set Yref. The computation of such a set S has already been addressed in [4, 16] with
two different methods. In [4], the set S considered is of dimension 1, and in [16], the
dimension can be greater than 1.

3.2.1 Generic case: m > 1

For SISO and MIMO systems (uk ∈ Rm,m > 1), the method proposed in [16] combines
the B&P algorithm with a specific property P for Algorithm 1. This property to be
checked is a test based on the Hansen-Sengupta operator (see Corollary 3.1 in [16]).
It consists of constructing a pseudo-inverse inclusion function of F , noted

[
F†
]
and

comparing the initial box [x] with the resulting box
[
x†
]

=
[
F†
]

([y]), where [y] =
[F ] ([x]). In the sequel, this test will be referred to as the inner test. Applied to our
problem, the function F corresponds to the function ϕ from Rm×(r+1) to Rm. If the
rank of ϕ is m and given its inclusion function [ϕ], any box [yk..k+r] ⊆ Yref

k..k+r can be
used to compute an inner approximation of U∗k .

Remark 3.1 If additional constraints on the controls have to be satisfied, meaning
that uk must belong to a particular set U , the set of admissible controls U∗k becomes:

U∗k = {ϕ(zk, vk) ∈ U | zk ∈ Yref
k..k+r−1, vk ∈ Yref

k+r}. (25)

To take into consideration this modification, the property P in the B&P algorithm
is supplemented with a test based on the inclusion function [ϕ]: for any candidate
[yk..k+r] ⊆ Yref

k..k+r, [ϕ] ([yk..k+r]) ∈ U . If constraints on state variables (xk ∈ Xk) have
to be handled, the set U∗k becomes:

U∗k = {ϕ(zk, vk) ∈ Rm | zk ∈ Yref
k..k+r−1, vk ∈ Yref

k+r, ψ(zk) ∈ Xk}. (26)

Using an inclusion function [ψ] and add a test in P verifying that [ψ] ([yk..k+r]) ⊆ X
for a given box [yk..k+r] ⊆ Yref

k..k+r.

To summarize, constraints on states and/or controls can be handled easily by the
proposed method without increasing its time complexity.

3.2.2 Special case: m = 1

For the special case of a SISO system, another method based on generalized inter-
vals [11] and affine forms [20] is developed. A generalized interval is an interval [x, x]
without the constraint x 6 x. Generalized intervals allow us to compute inner approx-
imations in specific cases instead of outer approximations using classical intervals. For
an interval [x] = [x, x], if x 6 x (classical interval), [x] is said to be proper. Otherwise,
if x > x, [x] is improper. An operator pro returns a proper interval: pro([x, x]) = [x, x]
if x > x, and pro([x, x]) = [x, x] if x 6 x.

Affine forms are designed to retain the linear dependencies between variables oc-
curring in computation. An affine form x̂ representing the set of values taken by a
variable x is denoted by

x̂ = αx
0 +

n∑
i=1

αx
i εi, (27)
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with αx
i ∈ R for all i. Each noise symbol εi ∈ [−1, 1] is unknown. It represents an

independent component of the global uncertainty on x̂. An interval [x] = [x, x] can be
converted easily to an affine form x̂ by

x̂ =
x+ x

2
+
x− x

2
ε1. (28)

From an affine form, the associated interval can be computed by replacing each noise
symbol by the interval [−1, 1]:

[x̂] = αx
0 +

n∑
i=1

αx
i [−1, 1] , (29)

which is an outer approximation of the values x can take.
When nonlinear operations occur on affine forms, the nonlinear dependencies are

represented by a new noise symbol η with its associated partial deviation. They rep-
resent an outer approximation of the associated nonlinear dependency. For example,
one way to compute the multiplication between two affine forms x̂ = αx

0 +
∑n

i=1 α
x
i εi

and ŷ = αy
0 +

∑n
i=1 α

y
i εi is

x̂×ŷ = αx
0α

y
0 +

1

2

n∑
i=1

αx
i α

y
i +

n∑
i=1

(αx
0α

y
i +αy

0α
x
i )εi+

1

2

∣∣∣∣∣
n∑

i=1

αx
i α

y
i

∣∣∣∣∣+

∣∣∣∣∣∣∣∣
n∑

i=1

n∑
j=1
j 6=i

αx
i α

y
j

∣∣∣∣∣∣∣∣
 η.

(30)
In [4], the authors dealt with the computation of inner approximations by combin-

ing generalized intervals and affine forms.

Definition 3.2 (First-order generalized affine vectors) A first-order generalized
affine vector from Rn to Rp is a triple (Ẑ, c, Ĵ) such that Ẑ ∈ M(n + m + 1, p) is a
vector of affine forms, c ∈ Rp a vector, and Ĵ ∈ (M(n, p))n is a matrix of affine forms.

The generalized affine form (Ẑ, c, Ĵ) associated to a function F and a set X have the
properties

• the affine vector Ẑ represents an outer approximation of {F(x) | x ∈ X},

• the vector c corresponds to the center of {F(x) | x ∈ X}, and

• the matrix of affine forms Ĵ is an outer approximation of the values the Jacobian
of F can take for x ∈ X.

From a generalized affine form x̌ = (Ẑx, cx, Ĵx) representing the set of values a variable
x can take, an outer approximation of [x̂] can be computed using Ẑx in Eq. (29). An
interval considered as an inner approximation of this set can be computed as

[x̌] = pro(cx +
[
Ĵx
]

[1,−1]). (31)

However, the formulation into an inner approximation using intervals is only possible
for affine forms (m = 1, SISO sytem where uk ∈ R) and not for affine vectors. To
implement this method, we first define the generalized affine forms corresponding to
the values of the reference trajectory Yref

k..k+r, and then we compute the generalized
affine form ǔk thanks to ϕ.
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4 Simulations

The methods we developed are tested and compared with the existing method [10] in
two different cases: a SISO system (m=1) and a MIMO system (m=2). Simulations
highlight a significant reduction of computation time, while keeping a satisfactory
precision for the resulting inner approximations.

4.1 Case of a SISO System

Consider the nonlinear discrete-time SISO system


x1(k + 1) = x1(k)x2(k)

x2(k + 1) = x2(k) + u(k)

y(k) = x1(k).

(32)

The system is controllable. The objective is to determine the set of admissible controls
to track the reference trajectory over a prediction horizon np = 2 to be able to compare
the results with the existing approach. The first step is to verify that the output
variable x1(k) is a flat output of the system. Let us set F (k) = x1(k) and express the
state and the input variables in terms of the flat output F (k) and its advances,

x1(k) = F (k)

x2(k) =
x1(k + 1)

x1(k)
=
F (k + 1)

F (k)

u(k) = x2(k + 1)− x2(k) =
F (k + 2)

F (k + 1)
− F (k + 1)

F (k)
.

By setting z(k) = (F (k) F (k + 1))T and v(k) = F (k + 2), the input uk is

u(k) =
v(k)

z2(k)
− z2(k)

z1(k)
= ϕ(z(k), v(k)). (33)

The function ϕ requires the knowledge of the flat output and its two successive ad-
vances (r = 2). It means that to compute the set of admissible controls (u(0) and
u(1)) over the prediction horizon np (np = 2), np +r values are necessary: the value of
the flat output at time k = 0 and three values of the reference trajectory from k = 1
to np + 1. The set of the reference trajectory Yref

1..3 is

Yref
1..3 = (Yref

1 ,Yref
2 ,Yref

3 ) = ([1, 2] , [1, 2] , [5, 7]). (34)

4.1.1 Generalized affine forms (Method 1)

We have to compute the generalized affine form associated with u(0) and u(1) using
the function ϕ and the reference trajectory Yref

1..3. The first step is to compute the
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generalized affine forms associated with F (0) = x1(0),Yref
1 ,Yref

2 ,Yref
3 by using Eq. (28):

x̌0 =

 x̂0 = 1
cx0 = 1

Ĵx0 = (0 0 0)

 (35)

y̌1 =

 ŷ1 = 3
2

+ 1
2
ε1

cy1 = 3
2

Ĵy1 = ( 1
2

0 0)

 (36)

y̌2 =

 ŷ2 = 3
2

+ 1
2
ε2

cy2 = 3
2

Ĵy2 = (0 1
2

0)

 (37)

y̌3 =

 ŷ3 = 6 + ε3
cy3 = 6

Ĵy3 = (0 0 1)

 . (38)

The quantities ε2, ε3 ∈ [−1, 1] are noise symbols. Thanks to Eq. (33), we can compute
the generalized affine form associated with ǔ0 and ǔ1:

ǔ(0) =
y̌2
y̌1
− y̌1
x̌0
, ǔ(1) =

y̌3
y̌2
− y̌2
y̌1
. (39)

The computation of the inverse of a generalized affine form was not previously defined.
For this purpose, we extended the Min-Range approximation defined for affine forms
in Corollary 1 in [19] to a generalized affine form inverse. The resulting generalized
affine forms are

ǔ0 =


û0 = − 3

8
− 11

16
ε1 + 3

8
ε2 + 5

16
η

cu0 = − 1
2

Ĵu0 =
(
(− 35

32
+ 9

128
ε1 − 0.197917ε2 + 0.471354η)

( 3
8
− 1

16
ε1 + 1

16
η) (0)

)
 , and (40)

ǔ1 =


û1 = 3.375 + 0.1875ε1 +−1.125ε2 + 0.75ε3 + 1.3125η
cu1 = 3

Ĵu1 = ((0.59375− 0.0703125ε1 + 0.197917ε2 + 0.471354η)
(− 11

4
+ 1

16
ε1 + 9

32
ε2 − 0.395833ε3 + 1.67708η)

( 3
4
− 1

8
ε2 + 1

8
η)
)

 . (41)

Replacing the quantities ε2, ε3, η by their interval counterparts [−1, 1], we obtain the
intervals U∗0 and U∗1 thanks to Eq. (31).

4.1.2 B&P algorithm with an inner test (Method 2)

For this method, only the function ϕ and its Jacobian are necessary for the computa-
tion,

Jϕ =
(

z2(k)

z1(k)2
− v(k)

z2(k)2
− 1

z1(k)
1

z2(k)

)
.

4.1.3 Results

To highlight the improvement in terms of computation time, the results of Method 1
and 2 are compared with the method described in [10] referred to as Method 3, where
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Table 1: Results for the computation of U∗0 .

Method Method 1 Method 2 Method 3
Results [−1.375, 0.375] [−1.4375, 0.8125] [−1.2696, 0.7812]

Computation time 1.37672× 10−6s 0.009s 0.030s§

Table 2: Results for the computation of U∗1 .

Method Method 1 Method 2 Method 3
Results [1.5, 4.5] [0.5938, 5.687] [1.3672, 4.4921]

Computation time 2.86311× 10−6s 0.013656s 0.030s§

the set U∗0,1 is considered. Results for the computation of U∗0 and U∗1 are shown in
Table 1 and Table 2, respectively. The parameter ε giving the minimum width of the
considered boxes is equal to 0.1 for Methods 2 and 3. (§) : the computation time
of Method 3 is the time required for the computation of the set U∗0,1. Method 1
provides a single interval which cannot be improved. By contrast, the computational
time is faster than the B&P-based methods. For the computational time required
by Method 1, Methods 2 and 3 cannot provide any result. On the other hand, they
provide a more precise result with respect to the parameter ε chosen. Method 2 gives
larger intervals than Method 3.

The total computation times for both U∗0 and U∗1 are 0.0042ms, 13.85ms and 30ms
for Methods 1, 2 and 3, respectively. The number of bisections for methods 2 and 3 is
165 and 8507 respectively. The developed methods (Methods 1 and 2) show a signifi-
cant reduction of the computation time, while maintaining a satisfactory precision.

Figure 2 corresponds to an iterated computation of the controls from time t = 0 to
4. At each time instant t, an inner approximation of the set of possible controls u(t)
is provided using our method, and a particular control is chosen (here the center of
the interval). The control is then applied to the system, and the computation starts
again at the time instant t + 1. Figure 2 shows that the computed set of admissible
controls computed guarantees the reference tracking by ensuring the process output
to belong to the reference interval.

4.2 Case of a MIMO System

Consider the nonlinear MIMO system (x(k) ∈ R4, u(k) ∈ R2, y(k) ∈ R2):



x1(k + 1) = x1(k)x2(k)

x2(k + 1) = x3(k)(2− x4(k))

x3(k + 1) = x1(k)u1(k)

x4(k + 1) = u2(k)

y(k) =

(
x1(k)

x4(k)

) (42)
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Figure 2: Set of admissible reachable sets according the computed controls.

Table 3: Reference trajectory for Yref
1..7 for the MIMO example (δ = [−0.2, 0.2]).

k 1 2 3 4 5 6 7
z1(k) 1.7 + δ 1.5 + δ −0.8 + δ −4.9 + δ −4.1 + δ 1.6 + δ −1.6 + δ

z2(k) 1.2 + δ −1 + δ 1.5 + δ 1 + δ 1.5 + δ 1.2 + δ 0.8 + δ

This system is flat with the flat output y(k) = (x1(k), x4(k))T . We can rewrite u(k)
in terms of the flat output and its advances:

u(k) = ϕ(z1(k), z2(k), z1(k + 2)︸ ︷︷ ︸
z(k)

, z1(k + 3)︸ ︷︷ ︸
v(k)

) =

(
z1(k+3)

z1(k)z1(k+2)(2−z2(k))

z2(k + 1)

)
. (43)

The prediction horizon np = 5 and the relative degrees are r1 = 3 and r2 = 1 for y1(k)
and y2(k), respectively. The reference trajectory Yref

1..7 is a sequence of intervals with
δ = [−0.2, 0.2] given in Table 3. We can compute u(k) from k = 0 to 4 by taking into
consideration the advances of the flat output required for the computation.

4.2.1 Results

The B&P algorithm with the inner test is applied with a parameter ε = 0.05. Figure 3
and Figure 4 represent the set of admissible controls for u(0) and u(4), respectively.
The set of blue boxes is an inner approximation, and the union of blue and red boxes is
an outer approximation. Computation times for each control set are given in Table 4.
The existing method cannot provide any result. Indeed, due to the dimension of



24 Mullier and Courtial, Computation of Admissible Controls

Table 4: Time needed to compute an inner approximation of u(0) to u(4).

u(k) u(0) u(1) u(2) u(3) u(4)
time (s) 0.32 0.14 0.14 0.32 0.67

0.9

1

1.1

1.2

1.3

1.4

1.5

-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2

u
2
(0
)

u1(0)

Figure 3: Set of admissible controls for u(0).

the control box (m × np = 2 × 5 = 10), the computational time largely exceeds an
acceptable time.

5 Conclusion
In this paper, two methods are proposed for the computation of admissible control
set for an uncertain trajectory tracking over a prediction horizon. Based on set-
membership computation combined with the flatness property of dynamical systems,
the control problem can be viewed as the computation of the image of a set by a func-
tion. Two methods for the computation of inner approximations have been developed
according to the dimension of the control input. A Branch & Prune algorithm with an
inner test can be used whatever the dimension considered. Furthermore, constraints
on states and controls can be handled easily in this case. For the special case of SISO
systems, generalized affine forms can easily provide inner approximations with a very
fast computational time. For both cases, simulations show the computational time
and precision efficiency of the methods.

Our methods could be used for online purposes to track robustly an uncertain
reference trajectory. The domain of applications concerned by this study is very
widespread, from mobile robot navigation to economic applications where an uncer-
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Figure 4: Set of admissible controls for u(4).

tain targeted variable has to be tracked. An extension to nonlinear continuous-time
systems is under investigation.
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