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The objective of this study is the analysis of dynamic systems represented by multi-model with variable parameters. Changes in these parameters are unknown but bounded. Since it is not possible to estimate these parameters over time, the simulation of such systems requires to consider all possible values taken by these parameters. More precisely, the goal is to determine, at any moment, the smallest set containing all the possible values of the state vector simultaneously compatible with the state equations and with a priori known bounds of the uncertain parameters. This set will be characterized by two trajectories corresponding to the lower and upper limits of the state at every moment. This characterization can be realized by a direct simulation of the system, given the bounds of its parameters. It can also be implemented with a Luenberger type observer, fed with the system measurements.

Introduction

As widely known, one of the main difficulties in system simulation, control or estimation is to deal with uncertainties. These uncertainties may affect the input or output signals of the system (e.g. unknown input, disturbance, measurement noises, etc) as well as the system model itself (e.g. non modeled dynamics, unknown parameter, etc). The uncertainties may also be of different natures: total lack of information (unknown value of a parameter) or partial knowledge (upper and lower bounds, statistical properties, etc). The proposed paper deals with system with uncertain parameters.

Even a low magnitude change in some parameters may have a significant impact on the system behavior, and namely on the system state trajectory. Uncertain parameters can be considered from two main points of view: the stochastic and the deterministic ones. In the first approach, the uncertain parameters are assumed to be the results of random process realizations. It then needs to chose the probability density functions and their parameters describing the system uncertain parameters. In the deterministic approach, no statistical models of the parameters are assumed to be available and only upper and lower bounds of the parameter values are known. This approach, also known as the interval approach, is adopted in the present paper.

The search for trajectories which are solutions of differential inclusions [START_REF] Puri | ε-Approximation of differential inclusions[END_REF] were the starting point of a large amount of works on stability, stabilization and state estimation. In the latter topic our communication follows the pioneering work of Gouzé [START_REF] Gouz | Interval observers for uncertain biological systems[END_REF] that proposed the synthesis of interval type observer to reconstruct the system state from measurements of inputs and outputs. Since then, many results were published on designing observers adapted to nonlinear systems with uncertain but bounded parameters [START_REF] Chisci | Recursive state bounding by parallelotopes[END_REF], [START_REF] Combastel | A state bounding observer for uncertain non-linear continuous-time systems based on zonotopes[END_REF], [START_REF] Chambon | Overview of linear time-invariant interval observer design : towards a non-smooth optimisation-based approach[END_REF], [START_REF] Chen | Positive state-bounding observer for interval positive systems under L1 performance[END_REF].

The model-based state estimation techniques in the context of bounded uncertainties can be classified into two categories. The first one is based on the mechanism "prediction/correction" [START_REF] Jaulin | Nonlinear bounded-error state estimation of continuous time systems[END_REF], [START_REF] Rassi | Mthodes ensemblistes pour l'estimation d'tat et de paramtres[END_REF]. Specifically, based on information at time k, the dynamic state equation provides the possible state set at the time k +1 through a one step prediction. At this k +1 instant, the available measures can also be used to provide a state set by inverting the output equations. The correction phase, which proceeds by searching for the intersection of the two sets obtained above, then provides the estimated state compatible with the model, its uncertainties and the measures. The second approach [START_REF] Chebotarev | Interval state observer for continuous-time LPV systems with L 1 /L 2 performance[END_REF], [START_REF] Efimov | On interval observer design for time-invariant discrete-time systems[END_REF], [START_REF] Bernard | Closed loop observers bundle for uncertain biotechnological models[END_REF], [START_REF] Wang | Interval observer design for LPV systems with parametric uncertainty[END_REF], [START_REF] Shu | Positive observers and dynamic outputfeedback controllers for interval positive linear systems[END_REF] consists in explicitly building an interval observer from the interval model of the system. Then, solving the interval state equations of the observer, upper and lower bounds of the state variable estimates are provided.

Studies on systems with bounded uncertain parameters can be found in several areas of automatic control: stability analysis [START_REF] Pastravanu | Diagonal stability of interval matrices and applications[END_REF], [START_REF] Faydasicoka | A new upper bound for the norm of interval matrices with application to robust stability analysis of delayed neural networks[END_REF], state estimation [START_REF] Efimov | Interval state observer for nonlinear time varying systems[END_REF] [14] [START_REF] Rassi | Mthodes ensemblistes pour l'estimation d'tat et de paramtres[END_REF], synthesis of iterative learning control law [1], system diagnosis [START_REF] Martnez-Sibaja | Simplified interval observer scheme: A new approach for fault diagnosis in instruments[END_REF] [22], components fault detection [START_REF] Lamouchi | Interval observer design for linear parameter-varying systems subject to component faults[END_REF], [START_REF] Rotondo | Robust fault diagnosis of proton exchange membrane fuel cells using a Takagi-Sugeno interval observer approach[END_REF] , data analysis [START_REF] Haoa | Equivalency between vertices and centerscoupled-with-radii principal component analyses for interval data[END_REF], model sensitivity analysis [START_REF] Shao | Sensitivity and inverse analysis methods for parameter intervals[END_REF], regression with abnormal values [START_REF] Wang | The normalized interval regression model with outlier detection and its real-world application to house pricing problems[END_REF], classification [START_REF] Utkin | A new robust model of one-class classification by interval-valued training data using the triangular kernel[END_REF]. Roughly speaking, uncertainties in the measures and in the parameters are handled in two main ways. In the first one, under robustness constraints, aims to develop analysis and synthesis techniques insensitive or partially immune to uncertainties. This leads in most cases to minimize a criterion reflecting the impact of these uncertainties on the objective to be pursued in terms of control or state estimation. In the second one, the aim is to quantify the impact of the uncertainties in the objective to pursue. The objective can be, for instance, to quantify the influence of uncertain and bounded parameters on the estimated system state, leading to analyze the uncertainty propagation throughout the control and state estimation procedures.

Up to the authors' knowledge, the use of observer adapted to real processes with bounded uncertain parameter is barely exposed in the literature, never-theless, one may find some applications with only simulations or laboratory processes. In [START_REF] Langowski | Monitoring of chlorine concentration in drinking water distribution systems using an interval estimator[END_REF], an interval observer was synthesized to estimate the water quality in a distribution network. In [START_REF] Moisan | Near optimal interval observers bundle for uncertain bioreactors[END_REF] [31], [2] and [START_REF] Goffaux | Improving continuous-discrete interval observers with application to microalgae-based bioprocesses[END_REF] bio-processes were considered as applications for observer design, as well as in [START_REF] Chambon | Overview of linear time-invariant interval observer design : towards a non-smooth optimisation-based approach[END_REF] with probabilistic uncertain parameters. In [START_REF] Chen | Interval eigenvalue analysis for structures with interval parameters[END_REF], a mechanical structure analysis with interval type parameters is proposed. In the field of transport, [START_REF] Goffaux | Continuous-discrete confidence interval observer -Application to vehicle positioning[END_REF] and [START_REF] Wang | Interval observer design for LPV systems with parametric uncertainty[END_REF] presented the synthesis of an interval observer to estimate the vehicle position and velocity. The socio-economic field is no exception to the use of this approach, as shown for example in [START_REF] Wang | The normalized interval regression model with outlier detection and its real-world application to house pricing problems[END_REF].

Our proposal also participates of this second approach, even if it differs markedly from two perspectives. First, based on bounded uncertainties, a multimodel approach provides two distinct models for the upper and lower bounds of the system state. Then, based on these two models, an interval Luenberger-like multi-observer is designed, to reconstruct the bounds of the system states from measurements of its inputs and outputs. The contributions of this paper is to develop an improved structure of an interval observer with an analytical form, to study its stability in order to compute its gains and to take into account the uncertainties affecting the system with the help of a polytopic representation.

The main required assumptions for the interval observer design to guarantee error boundedness is the exclusion of the zero value from the intervals defining the parameter uncertainties. Put in other words, it means that at least the signs of the uncertain parameters are known even if their exact values are not known. It can also be pointed out that our approach does not need to assume some structural requirements on the state matrix, such as being Metzler (off diagonal element should be positive) as often used in the literature [START_REF] Efimov | Interval state observer for nonlinear time varying systems[END_REF], [START_REF] Chambon | Overview of linear time-invariant interval observer design : towards a non-smooth optimisation-based approach[END_REF], [START_REF] Shu | Positive observers and dynamic outputfeedback controllers for interval positive linear systems[END_REF], [START_REF] Wang | Interval observer design for LPV systems with parametric uncertainty[END_REF] (and references therein).

The paper is organized as follows. Section 2 is devoted to the interval formulation of a system with time varying bounded parameters. In section 3, the stability of the proposed structure is studied. This result is then exploited in section 4 to derive the observer synthesis. After some concluding remarks in section 5, an appendix details the derivation of the proposed multi-model approach.

Interval model of a system with uncertain bounded parameters

Structure

The discrete time representation (1) is considered, where x ∈ IR n is the state vector, u ∈ IR m the input, y ∈ IR p the measured output, A k and B matrices of appropriate dimensions. Parametric variations ∆ k (which are not available for measurements) only affect the state matrix, taking into account changes in the B and C matrices being a simple extension.

   x k+1 = A k x k + B u k A k = A + ∆ k y k = C x k (1)
Hypothesis 1. Parametric variations ∆ k are bounded by

-∆ ≤ ∆ k ≤ ∆ (2)
where the bound ∆ is known and the inequalities in (2) are to be understood component-wise.

Hypothesis 2. The null matrix of the same size as those of A, does not belong to the interval matrix

[A -∆ A + ∆].
In other words, the lower and upper bounds of each element of this interval matrix have the same sign.

From (1), one can build the state trajectories x k and x k containing the set of reachable states given the parametric variations ∆ k . As it will be explained, the objective is to avoid to evaluate all the possible values of the uncertainties to determine all the possible corresponding state trajectories. What will be done is to recursively calculate only the upper and lower extremal trajectories of the state envelope and a proof will be provided to show that all the possible state trajectories are included in this envelope.

Envelope of a state trajectory

Proposition 1 (Product of two interval variables). Let us consider the scalar p k = (a + δ k )x k where | δ k |≤ δ and where x k is an interval variable, namely

x k ∈ [x k x k ].
To determine the bounds p k and p k of the interval variable p k , two cases must be distinguished whether a is positive or negative:

a > 0        p k = ax k -δ | x k | = x k (a -δsgn(x k )) p k = ax k + δ | x k | = x k (a + δsgn(x k )) (3) a < 0        p k = ax k -δ | x k | = x k (a -δsgn(x k )) p k = ax k + δ | x k | = x k (a + δsgn(x k )) (4) 
Having considered the two cases (3) and ( 4), p k is expressed in respect to its two bounds as follows:

                     p k = 1 2 [ (a+ | a |)x k + (a-| a |)x k ] - 1 2 [δ (| x k | + | x k | + sgn(a)(| x k | -| x k |)) ] p k = 1 2 [ (a-| a |)x k + (a+ | a |)x k ] + 1 2 [δ(| x k | + | x k | -sgn(a)(| x k | -| x k |)) ] (5) 
These results can directly be generalized to the case of matrix products as it appears in (1), which explicitly expresses the system state in an interval form, for any time k. The coupled recurrences are obtained and allow to recursively express the two bounds of the state [START_REF] Cherrier | Evaluation des bornes d'un systme incertain ; approche intervalle[END_REF]:

                     x k+1 = 1 2 [(A+ | A |) x k + (A-| A |) x k ] + Bu k - 1 2 [(∆ + ∆ * S A ) | x k | -(∆ -∆ * S A ) | x k |] x k+1 = 1 2 [(A-| A |) x k + (A+ | A |) x k ] + Bu k + 1 2 [(∆ -∆ * S A ) | x k | + (∆ + ∆ * S A ) | x k |] (6) 
where * symbolizes the Hadamard matrix product and S A = sgn(A) (where the sign function is applied component-wise to the matrix A).

Proposition 2 (Interval trajectory of uncertain dynamic system). The system with bounded uncertain parameters (1) is characterized by an interval-type state which bounds are given by the following augmented system:

x k+1 x k+1 = M x k x k + N | x k | | x k | + E B u k (7) 
with

M = 1 2 A+ | A | A-| A | A-| A | A+ | A | , E = I n I n , N = 1 2 -∆ -∆ * S A -∆ + ∆ * S A ∆ -∆ * S A ∆ + ∆ * S A (8) 
Remark 1 (Computation of the i th component of the interval state vector in the input free case u k = 0). Let us detail the computation of this component with respect to the lower bound of the system state (the calculation is similar to the upper bound). Denoting a i,j and δ i,j the respective elements of matrices A and ∆, from (6) one gets:

x k+1,i = 1 2 n j=1 (a i,j + | a i,j |) x k,j + (a i,j -| a i,j |) x k,j ) - 1 2 n j=1 δ i,j | x k,j | + | x k,j | + sgn(a i,j )δ i,j | x k,j | -| x k,j | (9 
) Let us define the term σ i,j of rank j in (9) such that x k+1,i = n j=1 σ i,j . One can then simplify the expression of the term σ i,j with respect to the sign of the matrix A coefficients:

• If a i,j > 0 σ i,j = a i,j x k,j - δ i,j 2 | x k,j | + | x k,j | + | x k,j | -| x k,j | = a i,j x k,j -δ i,j | x k,j | (10) 
• If a i,j < 0

σ i,j = a i,j x k,j - δ i,j 2 | x k,j | + | x k,j | -| x k,j | -| x k,j | = a i,j x k,j -δ i,j | x k,j | (11) 
These results will be used later.

Validation of the envelope of the state trajectory

In (6) the two bounds x k and x k of the state were recursively defined and they were claimed to define an envelope of the original system with interval parameters (1). It still remains to prove that the envelope does contain the actual state of the system (1). For this, the following property is proven by induction on k:

H k : x k ≤ x k ≤ x k (12) 
By definition of x 0 and x 0 in (6), it holds that x 0 ∈ [x 0 , x 0 ], so the property is satisfied for k = 0. Assuming that for a given positive k the property H k is true, then let us show that x k+1 ≤ x k+1 is true (the other inequality in ( 12) is proved similarly) implying that H k+1 is also true. Given ( 6) and (1), the distance between the actual state and the lower bound is deduced:

xk+1 = x k+1 -x k+1 = (A + ∆ k ) x k -1 2 (A+ | A |) x k -1 2 (A-| A |) x k + 1 2 (∆ + ∆ * S A ) | x k | -1 2 (∆ -∆ * S A ) | x k | (13) 
As reported in remark 1, the analysis of this difference can be made for the i th component of xk+1 . To do this, substitute ( 9) and (1) in ( 13) to obtain:

xk+1,i = x k+1,i -x k+1,i = n j=1 ((a i,j + δ k,i,j )x k,j -σ i,j ) (14) 
where δ k,i,j denotes the (i, j) entry of the matrix ∆ k . In the sum appearing in [START_REF] Dinh | Interval observer composed of observers for nonlinear systems[END_REF], only the term σi,j of rank j is explained in view of the expression ( 10) and (10) of σ i,j :

• If a i,j > 0 σi,j = (a i,j + δ k,i,j )x k,j -a i,j x k,j + δ i,j | x k,j | ≥ (a i,j + δ k,i,j )x k,j -a i,j x k,j + δ i,j | x k,j | ≥ δ k,i,j x k,j + δ i,j | x k,j | ≥ 0 (15) • If a i,j < 0 σi,j = (a i,j + δ k,i,j )x k,j -a i,j x k,j + δ i,j | x k,j | ≥ (a i,j + δ k,i,j )x k,j -a i,j x k,j + δ i,j | x k,j | ≥ δ k,i,j x k,j + δ i,j | x k,j | ≥ 0 (16) 
Finally, according to ( 14), ( 15) and ( 16), xk+1,i is a sum of non negative terms and thus x k+1,i ≥ x k+1,i , i.e. x k+1 ≥ x k+1 . Thus, the property H k+1 has been demonstrated and the induction principle ensures that for positive k, x k ≥ x k . In the same way, by analyzing the quantity xk = x k -x k , it can be established that x k ≤ x k . It can thus be concluded that ( 6) is an envelope of the system state trajectory.

Example

The considered example is a system (1) with m = 2 inputs and n = 2 state variables, defined by the matrices A and B given in [START_REF] Ellero | Unknown input interval observer for uncertain linear time invariant systems[END_REF]. The parametric variations ∆ k affecting the state matrix take values between -0.01 and 0.01 and accordingly its bound (2) is defined by the matrix ∆ in [START_REF] Ellero | Unknown input interval observer for uncertain linear time invariant systems[END_REF]. Figure 1 

Stability analysis

In this section, the stability of interval systems with bounded uncertain parameters is studied with the second Lyapunov method, which is known to be devoted to the analysis of internal stability of dynamic systems. The principle of this method is to study the convergence of the system state x to the origin. This is achieved through a scalar positive definite function of the state, denoted V , and called the Lyapunov candidate function.

Since no specific Lyapunov functions have already been proposed for interval models (6) defined by a generalized state encompassing the upper and lower bounds of the state as well as its absolute value, it is here proposed to transform the absolute value function using a nonlinear sector bounded approach. Section 3.1 is dedicated to this approach, which then allows the stability study in section 3.2.

New structure of the system model

Defining the generalized state z k = x T k x T k T the system (7) becomes:

z k+1 = M z k + N | z k | +E B u k ( 18 
)
with M and N defined in [START_REF] Chen | Interval eigenvalue analysis for structures with interval parameters[END_REF].

As mentioned in the preamble, the stability analysis is eased by writing the nonlinearity under a polytopic form depending on | z k |.

For any scalar α, the following decomposition holds:

     | α | = µ 1 (α) . (α) + µ 2 (α) . (-α) µ 1 (α) = 1 + sgn(α) 2 µ 2 (α) = 1 -µ 1 (α) (19) 
which can also be written as:

   | α | = 2 i=1 µ i (α) E i α E 1 = 1 E 2 = -1 (20) 
As detailed in the appendix Appendix A, this writing directly extends to a vector z ∈ IR 2n (Appendix A):

| z k |= r j=1 µ j (z k ) E j z k , r = 2 2n (21) 
Finally, with ( 21), the interval model ( 18) is expressed under the polytopic form:

z k+1 = r j=1 µ j (z k )(M + N E j )z k + E B u k ( 22 
)
where the activating functions µ j satisfy the so-called convex sum property:

r j=1 µ j (z k ) = 1, 0 ≤ µ j (z k ) ≤ 1, ∀k ∈ N, ∀j = 1, . . . , r (23) 

Stability criteria

Theorem 1. The asymptotical stability of the input free system (22) (i.e. with u k = 0) is guaranteed if there exists matrices P = P T > 0 and G such that the LMI (24) holds.

-P

(M + N E j ) T G G T (M + N E j ) P -G -G T < 0, j = 1, . . . , r (24) 
Proof. Defining a quadratic Lyapunov function V (z k ) = z T k P z k with P > 0, its variation along the state trajectory of [START_REF] Gucik-Derigny | Interval state and unknown inputs estimation for linear time-invariant systems[END_REF], defined by

∆V k = V (z k+1 ) -V (z k ), is given by ∆V k = z T k Mz k , with: M =   M + N r j=1 µ j (z k )E j   T P   M + N r j=1 µ j (z k )E j   -P (25) 
Obviously, the negativity of the variation ∆V k is implied if there exists P = P T > 0 satisfying M < 0. From lemma 3 of [START_REF] Delmotte | Continuous Takagi-Sugeno's models: Reduction of the number of LMI conditions in various fuzzy control design technics[END_REF], it is known that finding P = P T > 0 satisfying M < 0 is equivalent to find P = P T > 0 and G satisfying

-P (M + N r j=1 µ j (z k )E j ) T G G T (M + N r j=1 µ j (z k )E j ) P -G -G T < 0 (26) 
The positivity of the functions µ j ensures that [START_REF] Jaulin | Nonlinear bounded-error state estimation of continuous time systems[END_REF] are sufficient conditions to [START_REF] Langowski | Monitoring of chlorine concentration in drinking water distribution systems using an interval estimator[END_REF] and thus to ∆V k < 0 and to the input free asymptotical stability of [START_REF] Gucik-Derigny | Interval state and unknown inputs estimation for linear time-invariant systems[END_REF].

Corollary 1. The system ( 22) is asymptotically stable if there exists matrices P i = P T i > 0 and G such that:

M i,j + M j,i < 0, i, j = 1, . . . , r (27) 
where M i,j is defined by:

M i,j = -P i (M + N E i ) T G G T (M + N E i ) P j -G -G T (28) 
Proof. The proof is similar to the one of Theorem 1, with the Lyapunov candidate function defined by

V (z k ) = z T k ( r i=1 µ i (z k )P i )
z k and the factorization of [START_REF] Delmotte | Continuous Takagi-Sugeno's models: Reduction of the number of LMI conditions in various fuzzy control design technics[END_REF].

Observer design for a system with bounded uncertain parameters

Observer structure

Before detailing the proposed observer, let us recall that the state equation of the system (1) may also be described by its lower and upper bounds [START_REF] Chambon | Overview of linear time-invariant interval observer design : towards a non-smooth optimisation-based approach[END_REF].

Given the structure of ( 6), the proposed observer ( 29) is designed to provide an interval state estimate [x k xk ] which gives an envelope of the actual system state, based only on the input and output measurements of the system (1). Namely, it reduces to find the observer gains L 1 and L 2 such that x k ∈ [x k xk ], for every instant k and to impose some dynamics to the state reconstruction error.

             xk+1 = 1 2 (A+ | A |) xk + (A-| A |) xk -(∆ + ∆ * S A ) | xk | -(∆ -∆ * S A ) | xk | +L 1 (y k -C xk ) + B u k xk+1 = 1 2 [(A-| A |) xk + (A+ | A |) x k ] + (∆ -∆ * S A ) | xk | + (∆ + ∆ * S A ) | xk | +L 2 (y k -C xk ) + B u k (29) 

Rationale for observer structure

The rationale for this structure is done in two steps. First, it must be shown that xk ≤ x k ≤ xk . Secondly, the observer gains L 1 and L 2 must be adjusted to specify the temporal characteristics of state reconstruction error. Each of these steps is addressed in Theorem 2 and 3 respectively.

Theorem 2. The system ( 29) is an observer for (1), i.e. the state of (1) belongs to the envelope defined by [START_REF] Nagy | Systematic multimodeling methodology applied to an activated sludge reactor model[END_REF].

Proof. The proof proceeds by induction. Let H k be the following property:

H k : xk ≤ x k ≤ xk ( 30 
)
The gaps between the state x k and the lower and upper bounds of its estimate are defined by:

e k = x k -xk and e k = xk -x k (31) 
The first one is expressed at time k + 1, from (1) and ( 29), by:

e k+1 = (A + ∆ k ) x k - 1 2 (A+ | A |) xk + (A-| A |) xk -L 1 (y k -C xk ) - 1 2 (∆ + ∆ * S A ) | xk | + (∆ -∆ * S A ) | xk | (32) 
The i th component of this difference is given by:

e k+1,i = n j=1 (a i,j + δ k,i,j ) x k,j -1,i,j (x k,j -xk,j ) - 1 2 n j=1 (a i,j + | a i,j |) xk,j + (a i,j -| a i,j |) xk,j - 1 2 n j=1 δ i,j | x k,j | + | x k,j | + sgn(a i,j )δ i,j | xk,j | -| x k,j | (33 
) where 1,i,j are the coefficients of the L 1 matrix. In the previous sum, let us analyse the j th term whether a i,j, is positive or negative:

• If a i,j > 0 e k+1,i,j = (a i,j + δ k,i,j ) x k,j -a i,j xk,j + δ i,j | xk,j | -1,i,j (x k,j -xk,j ) = (a i,j + δ k,i,j -1,i,j ) x k,j -a i,j xk,j + δ i,j | xk,j | + 1,i,j xk,j ≥ (a i,j + δ k,i,j -1,i,j ) xk,j -a i,j xk,j + δ i,j | xk,j | + 1,i,j xk,j ≥ δ k,i,j xk,j + δ i,j | xk,j | ≥ 0 (34) • If a i,j < 0 e k+1,i,j = (a i,j + δ k,i,j ) x k,j -a i,j xk,j δ i,j | xk,j | -1,i,j (x k,j -xk,j ) = (a i,j + δ k,i,j -1,i,j ) x k,j -a i,j xk,j + δ i,j | xk,j | + 1,i,j xk,j ≥ (a i,j + δ k,i,j -1,i,j ) xk,j -a i,j xk,j + δ i,j | xk,j | + 1,i,j xk,j ≥ δ k,i,j xk,j + δ i,j | xk,j | ≥ 0 ( 35 
)
This shows that e k+1,i is a sum of non negative terms and then x k+1,i ≥ xk+1,i , i.e. x k+1 ≥ xk+1 . A similar calculus leads to the result x k ≤ xk . Therefore, the property H k+1 is demonstrated and the induction principle ensures that for all k > 0, we have xk ≤ x k ≤ xk which achieves the proof.

In the following, the state observer equations are denoted:

xk+1 = H 11 xk + H 12 xk + H 13 | xk | +H 14 | xk | +L 1 (y k -C xk ) + B u k xk+1 = H 21 xk + H 22 xk + H 23 | xk | +H 24 | xk | +L 2 (y k -C xk ) + B u k ( 36 
) with:

H 11 = 1 2 (A+ | A |), H 12 = 1 2 (A-| A |), H 13 = -1 2 (∆ + ∆ * S A ), H 14 = 1 2 (-∆ + ∆ * S A ) H 21 = 1 2 (A-| A |), H 22 = 1 2 (A+ | A |), H 23 = 1 2 (∆ -∆ * S A ), H 24 = 1 2 (∆ + ∆ * S A )
To characterize the observer's performance, let rewrite the deviations (31) as:

e k+1 = (A + ∆ k ) x k -H 11 xk -H 12 xk -H 13 | xk | -H 14 | xk | -L 1 (y k -C xk ) = (H 11 -L 1 C)e k -H 12 e k -∆ k x k -H 13 | xk | -H 14 | xk | e k+1 = H 21 xk + H 22 xk -(A + ∆ k ) x k + H 23 | xk | +H 23 | xk | +L 2 (y k -C xk ) = -H 21 e k + (H 22 -L 2 C) e k -∆ k x k -H 23 | xk | -H 24 | xk | (37)
The two deviations defined in [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis[END_REF] are gathered in the following augmented state estimation error: e T k = [e T k e T k ] and ruled by the following discrete time system:

e k+1 = (A 0 -L C 0 ) e k + B 0 ω k ( 38 
)
where the matrices A 0 , L, C 0 and B 0 and the input signal ω k are defined by

A 0 = H 11 -H 12 -H 21 H 22 , B 0 = I n -H 13 -H 14 -I n -H 23 -H 24 , L = L 1 0 0 L 2 , C 0 = C 0 0 C ω k = (∆ k x k ) T | xk | T | xk | T T (39) 
It is then necessary to analyze the dynamics of the deviations in [START_REF] Utkin | A new robust model of one-class classification by interval-valued training data using the triangular kernel[END_REF] to adjust the gains L 1 and L 2 in L to ensure the boundedness and the positivity of e k and e k . This can be done as the result of an LMI optimisation procedure, as stated in the following theorem.

Theorem 3. Given a scalar γ > 0, the system ( 29) is an observer of system (1), if there exists a matrix P = P T > 0 ∈ IR 2n×2n , matrices K 1 and K 2 ∈ IR n×p and invertible matrices G 1 and G 2 ∈ IR n×n , such that the following LMI holds

  I 2n -P 0 A T 0 G -C T 0 K T 0 -γ 2 I m B T 0 G G T A 0 -KC 0 G T B 0 P -G T -G   < 0 ( 40 
)
where G 0 and K 0 are the block diagonal matrices defined by:

G = G 1 0 0 G 2 K = K 1 0 0 K 2 (41) 
After solving the LMI (40), the observer gain is defined by:

L = (G T ) -1 K (42)
Proof. The evolution of the deviations is governed by [START_REF] Utkin | A new robust model of one-class classification by interval-valued training data using the triangular kernel[END_REF], depending on the gains L 1 and L 2 . The objective of the synthesis of the parameters L 1 and L 2 is twofold: ensure the stability of the matrix A 0 -L C 0 and reduce the influence of the disturbance-like term ω on the error e. This is translated as follows:

lim k→∞ e k = 0 if ω k = 0 e k 2 ω k 2 < γ if ω k = 0 (43) 
Let V (e k ) = e T k P e k be a Lyapunov candidate function. The state estimation error convergence is guaranteed and the gain L 2 of the transfer from ω k to e k is bounded by γ if:

V (e k+1 ) -V (e k ) + e T k e k -γ 2 ω T k ω k < 0 (44) 
Defining Ψ = A 0 -L C 0 and using [START_REF] Utkin | A new robust model of one-class classification by interval-valued training data using the triangular kernel[END_REF], one obtains:

V (e k+1 )-V (e k ) = e T k Ψ T P Ψe k +2e T k Ψ T P B 0 ω k +ω T k B T 0 P B 0 ω k -e T k P e x (45) 
and, with (45), (44) becomes:

e T k (Ψ T P Ψ -P + I)e k + 2e T k Ψ T P B 0 ω k + ω T k B T 0 P B 0 ω k -γ 2 ω T k ω k < 0 (46)
The constraint (46) is ensured if there exists matrices P and L satisfying:

I -P 0 0 -γ 2 I m + Ψ T B T 0 P Ψ B 0 < 0 (47) 
From lemma 3 of [START_REF] Delmotte | Continuous Takagi-Sugeno's models: Reduction of the number of LMI conditions in various fuzzy control design technics[END_REF], searching P and L satisfying (47) is known to be equivalent to searching P , G and L satisfying

  I -P 0 Ψ T G 0 -γ 2 I m B T 0 G G T Ψ G T B 0 P -G -G T   < 0 (48)
which is the LMI [START_REF] Wang | Interval observer design for LPV systems with parametric uncertainty[END_REF], up to the variable change G T L = K.

The Theorem 3 provides an observer design fulfilling the constraints (43). However, this approach suffers from a certain conservatism mainly due to the structure of the equations ( 36) expressing the evolution of reconstruction errors. Indeed, in [START_REF] Shu | Positive observers and dynamic outputfeedback controllers for interval positive linear systems[END_REF], and thus in [START_REF] Utkin | A new robust model of one-class classification by interval-valued training data using the triangular kernel[END_REF], the dependence between the variables x k and | x k | is not taken into account. Accordingly to [START_REF] Gouz | Interval observers for uncertain biological systems[END_REF], the magnitude of the lower and upper bounds of the state estimate can be expressed as a multi-model based on

| xk | = r i=1 µ 1 i (x k ) E i xk | xk | = r j=1 µ 2 j ( xk ) E j xk (49) 
where the activating functions µ 1 i and µ 2 j satisfy the convex sum property (23) and r = 2 n . Using this multi-model expression of the magnitude of the lower and upper bounds of the state estimation error [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis[END_REF], these equations become

e k+1 = (H 11 -L 1 C)e k -H 12 e k -∆ x k -H 13 r i=1 µ 1 i (x) E i x -H 14 r j=1 µ 2 j ( x) E j x e k+1 = -H 21 e k + (H 22 -L 2 C) e k -∆ k x k -H 23 r i=1 µ 1 i (x) E i x -H 24 r j=1 µ 2 j ( x) E i x
(50) Since the functions µ 1 i and µ 2 j satisfy ( 23), these two equations can be written as

e k+1 = r i=1 r j=1 µ 1 i (x)µ 2 j ( x) ((H 11 -L 1 C + H 13 E i )e k -(H 12 + H 14 E j )e k -(∆ + H 13 E i + H 14 E j )x k ) e k+1 = r i=1 r j=1 µ 1 i (x)µ 2 j ( x) (-(H 21 -H 23 E i )e k +(H 22 -L 2 C -H 24 E j )e k -(∆ + H 23 E i + H 24 E j )x k ) (51) 
With (51), the augmented system [START_REF] Utkin | A new robust model of one-class classification by interval-valued training data using the triangular kernel[END_REF] becomes

e k+1 = r i=1 r j=1 µ 1 i (x)µ 2 j ( x) ((A i,j -L C 0 ) e k + B i,j x k ) (52) 
where L and C 0 are already defined in [START_REF] Wang | The normalized interval regression model with outlier detection and its real-world application to house pricing problems[END_REF] and A ij and B ij are given by

A i,j = H 11 + H 13 E i -(H 12 + H 14 E j ) -(H 21 -H 23 E i ) H 22 -H 24 E j B i,j = - ∆ + H 13 E i + H 14 E j ∆ + H 23 E i + H 24 E j (53) 
This leads to the following theorem.

Theorem 4. Given a scalar γ > 0, the system ( 29) is an observer of system (1), if there exists a matrix P = P T > 0 ∈ IR 2n×2n , matrices K 1 and K 2 ∈ IR n×p and invertible matrices G 1 and G 2 ∈ IR n×n , such that

M ij + M ji < 0, i, j = 1, . . . , r (54) 
where M ij is defined by

M ij =   I 2n -P 0 A T ij G -C T 0 K T 0 -γ 2 I n B T ij G G T A ij -KC 0 G T B ij P -G T -G  
and where G 0 and K 0 are the block diagonal matrices defined in (41). After solving the LMI (54), the observer gain is defined by (42).

Proof. The proof follows the same lines of the one of Theorem 3: firstly the quadratic Lyapunov function V (e k ) = e T k P e k is defined and then its decreasing along the trajectory of (52) is studied, taking benefits of the positiveness of the activating functions satisfying [START_REF] Haoa | Equivalency between vertices and centerscoupled-with-radii principal component analyses for interval data[END_REF].

Remark 2. In Theorems 3 and 4, the attenuation level γ can be minimized, by considering the classical variable change γ = γ 2 and by minimizing γ under the LMI constraints of Theorems 3 or 4.

Remark 3. The corollary 1 can be used to introduce some additional degrees of freedom in the LMI optimization and thus reduce the conservatism implied by a simple quadratic Lyapunov function. Nevertheless a trade-off should thus be made between relaxing the conservatism and limiting the computational burden of seeking numerous LMI variables.

Example

The example 2.4 is continued with the same system matrices [START_REF] Ellero | Unknown input interval observer for uncertain linear time invariant systems[END_REF] and an output defined by C = [1 0]. Figure 2 depicts the evolution of the two inputs and the two states. As in example 2.4, the red plot is a possible state trajectory given the parameter uncertainty and the green and blue ones are the upper and lower bounds of each state trajectory. Solving the LMI conditions (54), the following solutions are obtained 3, that the actual system state (red plot) appears to be in the envelope provided by the interval observer (green and red lines). It can also be pointed out that the envelope provided by the interval observer gives a thinner estimate of the actual state of the system. The comparison of figures 2 and 3 clearly shows the interest of the interval observer: firstly it reconstructs the interval system state from the measured inputs and outputs, secondly the obtained radius of the envelope is smaller than the one provided by the direct simulation of the state equation interval. 

P =     3.011 0.
             xk+1 = 1 2 (A+ | A |) xk + (A-| A |) xk -(∆ + ∆ * S A ) | x k | -(∆ -∆ * S A ) | xk | + L 1 (y k -C xk ) -F ( xk -xk ) + B u k xk+1 = 1 2 [(A-| A |) xk + (A+ | A |) x k + (∆ -∆ * S A ) | xk | + (∆ + ∆ * S A ) | xk | + L 2 (y k -C xk ) + F ( xk -xk ) + B u k (55) 

Conclusion

The proposed approach provides a systematic state estimation for a system with uncertain but bounded parameters. It significantly differs from earlier work in showing that the system model can be used to simultaneously model the lower and upper bounds of the system state trajectory. Both models are structured in a polytopic form and allow to synthesize an interval observer. This approach can easily be extended to other situations. On the one hand, the inclusion of uncertainty affecting all system state matrices appears as a direct extension. On the other hand, one can consider changing the observer interval to encompass the case of interval measures of the inputs and outputs.

Appendix A. Some details on the multi-model form of the absolute value function

The simulation of the interval model [START_REF] Faydasicoka | A new upper bound for the norm of interval matrices with application to robust stability analysis of delayed neural networks[END_REF] does not pose any particular difficulty, except the fact that the equation number is twice the one of the initial system. However, the presence of the absolute value operator can make tedious the stability analysis and the observer design. For this reason, it is proposed to reformulate the interval model by replacing the absolute value operator by a polytopic model that is more easily handled.

To begin with, let us consider a two component vector z = [z 1 z 2 ] T . Its component wise absolute value is then defined by |z| = [|z 1 | |z 2 |] T and it can be expressed by:

     | z i |= µ i1 (z i ) . (z i ) + µ i2 (z i ) . (-z i ) µ i1 (z i ) = 1 + sgn(z i ) 2 µ i2 (z i ) = 1 -µ i1 (z i ) , i = 1, 2 (A.1)
Each scalar | z i | is expressed in terms of both its own weight functions µ i1 and µ i2 . In order to express all of these scalars with the same weight function set, they can be equivalently written as:

| z i |= (µ i1 + µ i2 ) (µ i1 . (z i ) + µ i2 . (-z i )) , i = 1, 2 (A.2)
Defining µ 1 = µ 11 µ 21 , µ 2 = µ 11 µ 22 , µ 3 = µ 12 µ 21 , µ 4 = µ 12 µ 22 and 

E 1 = 1 0 0 1 E 2 = 1 0 0 -1 E 3 = -1 0 0 1 E 4 = -1 0 0 -1 (A.
| z | = 4 i=1 µ i E i z (A.4)
Based on the previous developments in the two dimensional case, the polytopic writing can easily be generalized to any vector z ∈ IR r , as described in [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis[END_REF] or [START_REF] Nagy | Systematic multimodeling methodology applied to an activated sludge reactor model[END_REF]. The common weighting functions µ i (z) are defined by products of the weighting functions depending on each vector component (namely µ i1 (z i ) and µ i2 (z i )) and the matrices E i are diagonal matrices which entries are equal to the extremal values of µ i1 (z i ) and µ i2 (z i ), i.e. 1 or -1.
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