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Abstract

The objective of this study is the analysis of dynamic systems represented by
multi-model with variable parameters. Changes in these parameters are un-
known but bounded. Since it is not possible to estimate these parameters over
time, the simulation of such systems requires to consider all possible values taken
by these parameters. More precisely, the goal is to determine, at any moment,
the smallest set containing all the possible values of the state vector simulta-
neously compatible with the state equations and with a priori known bounds
of the uncertain parameters. This set will be characterized by two trajectories
corresponding to the lower and upper limits of the state at every moment. This
characterization can be realized by a direct simulation of the system, given the
bounds of its parameters. It can also be implemented with a Luenberger type
observer, fed with the system measurements.

Keywords: Interval Observers, Uncertain Systems, Bounded Uncertainties,
Multi-Model Technique

1. Introduction

As widely known, one of the main difficulties in system simulation, control or
estimation is to deal with uncertainties. These uncertainties may affect the input
or output signals of the system (e.g. unknown input, disturbance, measurement
noises, etc) as well as the system model itself (e.g. non modeled dynamics,
unknown parameter, etc). The uncertainties may also be of different natures:
total lack of information (unknown value of a parameter) or partial knowledge
(upper and lower bounds, statistical properties, etc). The proposed paper deals
with system with uncertain parameters.
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Even a low magnitude change in some parameters may have a significant
impact on the system behavior, and namely on the system state trajectory.
Uncertain parameters can be considered from two main points of view: the
stochastic and the deterministic ones. In the first approach, the uncertain pa-
rameters are assumed to be the results of random process realizations. It then
needs to chose the probability density functions and their parameters describing
the system uncertain parameters. In the deterministic approach, no statistical
models of the parameters are assumed to be available and only upper and lower
bounds of the parameter values are known. This approach, also known as the
interval approach, is adopted in the present paper.

The search for trajectories which are solutions of differential inclusions [32]
were the starting point of a large amount of works on stability, stabilization and
state estimation. In the latter topic our communication follows the pioneering
work of Gouzé [21] that proposed the synthesis of interval type observer to
reconstruct the system state from measurements of inputs and outputs. Since
then, many results were published on designing observers adapted to nonlinear
systems with uncertain but bounded parameters [11], [12], [6], [9].

The model-based state estimation techniques in the context of bounded un-
certainties can be classified into two categories. The first one is based on the
mechanism “prediction/correction” [24], [33]. Specifically, based on information
at time k, the dynamic state equation provides the possible state set at the time
k+1 through a one step prediction. At this k+1 instant, the available measures
can also be used to provide a state set by inverting the output equations. The
correction phase, which proceeds by searching for the intersection of the two sets
obtained above, then provides the estimated state compatible with the model,
its uncertainties and the measures. The second approach [7], [15], [4], [40], [36]
consists in explicitly building an interval observer from the interval model of the
system. Then, solving the interval state equations of the observer, upper and
lower bounds of the state variable estimates are provided.

Studies on systems with bounded uncertain parameters can be found in sev-
eral areas of automatic control: stability analysis [30], [18], state estimation [16]
[14] [33], synthesis of iterative learning control law [1], system diagnosis [27]
[22], components fault detection [25], [34] , data analysis [23], model sensitivity
analysis [35], regression with abnormal values [39], classification [38]. Roughly
speaking, uncertainties in the measures and in the parameters are handled in
two main ways. In the first one, under robustness constraints, aims to develop
analysis and synthesis techniques insensitive or partially immune to uncertain-
ties. This leads in most cases to minimize a criterion reflecting the impact of
these uncertainties on the objective to be pursued in terms of control or state
estimation. In the second one, the aim is to quantify the impact of the un-
certainties in the objective to pursue. The objective can be, for instance, to
quantify the influence of uncertain and bounded parameters on the estimated
system state, leading to analyze the uncertainty propagation throughout the
control and state estimation procedures.

Up to the authors’ knowledge, the use of observer adapted to real processes
with bounded uncertain parameter is barely exposed in the literature, never-
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theless, one may find some applications with only simulations or laboratory
processes. In [26], an interval observer was synthesized to estimate the water
quality in a distribution network. In [28] [31], [2] and [19] bio-processes were
considered as applications for observer design, as well as in [6] with probabilistic
uncertain parameters. In [8], a mechanical structure analysis with interval type
parameters is proposed. In the field of transport, [20] and [40] presented the
synthesis of an interval observer to estimate the vehicle position and velocity.
The socio-economic field is no exception to the use of this approach, as shown
for example in [39].

Our proposal also participates of this second approach, even if it differs
markedly from two perspectives. First, based on bounded uncertainties, a multi-
model approach provides two distinct models for the upper and lower bounds of
the system state. Then, based on these two models, an interval Luenberger-like
multi-observer is designed, to reconstruct the bounds of the system states from
measurements of its inputs and outputs. The contributions of this paper is to
develop an improved structure of an interval observer with an analytical form,
to study its stability in order to compute its gains and to take into account the
uncertainties affecting the system with the help of a polytopic representation.

The main required assumptions for the interval observer design to guarantee
error boundedness is the exclusion of the zero value from the intervals defining
the parameter uncertainties. Put in other words, it means that at least the signs
of the uncertain parameters are known even if their exact values are not known.
It can also be pointed out that our approach does not need to assume some
structural requirements on the state matrix, such as being Metzler (off diagonal
element should be positive) as often used in the literature [16], [6], [36], [40]
(and references therein).

The paper is organized as follows. Section 2 is devoted to the interval for-
mulation of a system with time varying bounded parameters. In section 3,
the stability of the proposed structure is studied. This result is then exploited
in section 4 to derive the observer synthesis. After some concluding remarks
in section 5, an appendix details the derivation of the proposed multi-model
approach.

2. Interval model of a system with uncertain bounded parameters

2.1. Structure

The discrete time representation (1) is considered, where x ∈ IRn is the state
vector, u ∈ IRm the input, y ∈ IRp the measured output, Ak and B matrices of
appropriate dimensions. Parametric variations ∆k (which are not available for
measurements) only affect the state matrix, taking into account changes in the
B and C matrices being a simple extension. xk+1 = Ak xk +B uk

Ak = A+ ∆k

yk = C xk

(1)
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Hypothesis 1. Parametric variations ∆k are bounded by

−∆ ≤ ∆k ≤ ∆ (2)

where the bound ∆ is known and the inequalities in (2) are to be understood
component-wise.

Hypothesis 2. The null matrix of the same size as those of A, does not belong
to the interval matrix [A − ∆ A + ∆]. In other words, the lower and upper
bounds of each element of this interval matrix have the same sign.

From (1), one can build the state trajectories xk and xk containing the set of
reachable states given the parametric variations ∆k. As it will be explained, the
objective is to avoid to evaluate all the possible values of the uncertainties to
determine all the possible corresponding state trajectories. What will be done
is to recursively calculate only the upper and lower extremal trajectories of the
state envelope and a proof will be provided to show that all the possible state
trajectories are included in this envelope.

2.2. Envelope of a state trajectory

Proposition 1 (Product of two interval variables). Let us consider the scalar
pk = (a + δk)xk where | δk |≤ δ and where xk is an interval variable, namely
xk ∈ [xk xk]. To determine the bounds p

k
and pk of the interval variable pk,

two cases must be distinguished whether a is positive or negative:

a > 0


p
k

= axk − δ | xk |
= xk (a− δsgn(xk))

pk = axk + δ | xk |
= xk (a+ δsgn(xk))

(3)

a < 0


p
k

= axk − δ | xk |
= xk (a− δsgn(xk))

pk = axk + δ | xk |
= xk (a+ δsgn(xk))

(4)

Having considered the two cases (3) and (4), pk is expressed in respect to its
two bounds as follows:

p
k

=
1

2
[ (a+ | a |)xk + (a− | a |)xk]

−1

2
[δ (| xk | + | xk | + sgn(a)(| xk | − | xk |)) ]

pk =
1

2
[ (a− | a |)xk + (a+ | a |)xk]

+
1

2
[δ(| xk | + | xk | − sgn(a)(| xk | − | xk |)) ]

(5)
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These results can directly be generalized to the case of matrix products as it
appears in (1), which explicitly expresses the system state in an interval form,
for any time k. The coupled recurrences are obtained and allow to recursively
express the two bounds of the state [10]:

xk+1 =
1

2
[(A+ | A |)xk + (A− | A |)xk] +Buk

−1

2
[(∆ + ∆ ∗ SA) | xk | − (∆−∆ ∗ SA) | xk |]

xk+1 =
1

2
[(A− | A |)xk + (A+ | A |)xk] +Buk

+
1

2
[(∆−∆ ∗ SA) | xk | + (∆ + ∆ ∗ SA) | xk |]

(6)

where ∗ symbolizes the Hadamard matrix product and SA = sgn(A) (where the
sign function is applied component-wise to the matrix A).

Proposition 2 (Interval trajectory of uncertain dynamic system). The system
with bounded uncertain parameters (1) is characterized by an interval-type state
which bounds are given by the following augmented system:[

xk+1

xk+1

]
= M

[
xk
xk

]
+ N

[
| xk |
| xk |

]
+ EB uk (7)

with

M =
1

2

[
A+ | A | A− | A |
A− | A | A+ | A |

]
, E =

[
In
In

]
, N =

1

2

[
−∆−∆ ∗ SA −∆ + ∆ ∗ SA

∆−∆ ∗ SA ∆ + ∆ ∗ SA

]
(8)

Remark 1 (Computation of the ith component of the interval state vector in
the input free case uk = 0). Let us detail the computation of this component
with respect to the lower bound of the system state (the calculation is similar to
the upper bound). Denoting ai,j and δi,j the respective elements of matrices A
and ∆, from (6) one gets:

xk+1,i =
1

2

n∑
j=1

(
(ai,j+ | ai,j |)xk,j + (ai,j− | ai,j |)xk,j)

−1

2

n∑
j=1

(
δi,j
(
| xk,j | + | xk,j |

)
+ sgn(ai,j)δi,j

(
| xk,j | − | xk,j |

))
(9)

Let us define the term σi,j of rank j in (9) such that xk+1,i =
∑n

j=1 σi,j.
One can then simplify the expression of the term σi,j with respect to the sign of
the matrix A coefficients:

• If ai,j > 0

σi,j = ai,jxk,j −
δi,j
2

((
| xk,j | + | xk,j |

)
+
(
| xk,j | − | xk,j |

))
= ai,jxk,j − δi,j | xk,j |

(10)
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• If ai,j < 0

σi,j = ai,jxk,j −
δi,j
2

((
| xk,j | + | xk,j |

)
−
(
| xk,j | − | xk,j |

))
= ai,jxk,j − δi,j | xk,j |

(11)

These results will be used later.

2.3. Validation of the envelope of the state trajectory

In (6) the two bounds xk and xk of the state were recursively defined and
they were claimed to define an envelope of the original system with interval
parameters (1). It still remains to prove that the envelope does contain the
actual state of the system (1). For this, the following property is proven by
induction on k:

Hk : xk ≤ xk ≤ xk (12)

By definition of x0 and x0 in (6), it holds that x0 ∈ [x0, x0], so the property
is satisfied for k = 0. Assuming that for a given positive k the property Hk is
true, then let us show that xk+1 ≤ xk+1 is true (the other inequality in (12)
is proved similarly) implying that Hk+1 is also true. Given (6) and (1), the
distance between the actual state and the lower bound is deduced:

x̃k+1 = xk+1 − xk+1

= (A+ ∆k)xk − 1
2 (A+ | A |)xk − 1

2 (A− | A |)xk
+ 1

2 (∆ + ∆ ∗ SA) | xk | − 1
2 (∆−∆ ∗ SA) | xk |

(13)

As reported in remark 1, the analysis of this difference can be made for the
ith component of x̃k+1. To do this, substitute (9) and (1) in (13) to obtain:

x̃k+1,i = xk+1,i − xk+1,i

=
∑n

j=1 ((ai,j + δk,i,j)xk,j − σi,j)
(14)

where δk,i,j denotes the (i, j) entry of the matrix ∆k. In the sum appearing in
(14), only the term σ̃i,j of rank j is explained in view of the expression (10) and
(10) of σi,j :

• If ai,j > 0

σ̃i,j = (ai,j + δk,i,j)xk,j − ai,jxk,j + δi,j | xk,j |
≥ (ai,j + δk,i,j)xk,j − ai,jxk,j + δi,j | xk,j |
≥ δk,i,j xk,j + δi,j | xk,j |
≥ 0

(15)

• If ai,j < 0

σ̃i,j = (ai,j + δk,i,j)xk,j − ai,jxk,j + δi,j | xk,j |
≥ (ai,j + δk,i,j)xk,j − ai,jxk,j + δi,j | xk,j |
≥ δk,i,j xk,j + δi,j | xk,j |
≥ 0

(16)
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Finally, according to (14), (15) and (16), x̃k+1,i is a sum of non negative
terms and thus xk+1,i ≥ xk+1,i, i.e. xk+1 ≥ xk+1. Thus, the property Hk+1

has been demonstrated and the induction principle ensures that for positive k,
xk ≥ xk. In the same way, by analyzing the quantity x̃k = xk − xk, it can be
established that xk ≤ xk. It can thus be concluded that (6) is an envelope of
the system state trajectory.

2.4. Example

The considered example is a system (1) with m = 2 inputs and n = 2
state variables, defined by the matrices A and B given in (17). The parametric
variations ∆k affecting the state matrix take values between −0.01 and 0.01 and
accordingly its bound (2) is defined by the matrix ∆ in (17). Figure 1 displays
the two inputs (top of the figure) and the two states (bottom of the figure).
For each state variable, the red line is a possible state trajectory and the two
others are the upper and lower bounds of the state trajectories according to the
considered parameter uncertainties.

A =

[
0.925 −0.05
−0.25 0.25

]
, B =

[
0.4 0
0 0.5

]
, ∆ =

[
0.01 0.01
0.01 0.01

]
(17)

0 100 200 300 400
0.2

0.25

0.3

0.35

0.4

Input 1

0 100 200 300 400
−0.3

−0.2

−0.1

0

0.1

Input 2

0 100 200 300 400
0

1

2

3

State 1

0 100 200 300 400
−1.5

−1

−0.5

0
State 2

Figure 1: Simulation of a system with interval parameters

3. Stability analysis

In this section, the stability of interval systems with bounded uncertain
parameters is studied with the second Lyapunov method, which is known to be
devoted to the analysis of internal stability of dynamic systems. The principle
of this method is to study the convergence of the system state x to the origin.
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This is achieved through a scalar positive definite function of the state, denoted
V , and called the Lyapunov candidate function.

Since no specific Lyapunov functions have already been proposed for interval
models (6) defined by a generalized state encompassing the upper and lower
bounds of the state as well as its absolute value, it is here proposed to transform
the absolute value function using a nonlinear sector bounded approach. Section
3.1 is dedicated to this approach, which then allows the stability study in section
3.2.

3.1. New structure of the system model

Defining the generalized state zk =
[
xTk xTk

]T
the system (7) becomes:

zk+1 = M zk +N | zk | +EB uk (18)

with M and N defined in (8).
As mentioned in the preamble, the stability analysis is eased by writing the

nonlinearity under a polytopic form depending on | zk |.
For any scalar α, the following decomposition holds:

| α | = µ1(α) . (α) + µ2(α) . (−α)

µ1(α) =
1 + sgn(α)

2
µ2(α) = 1− µ1(α)

(19)

which can also be written as: | α | =
∑2

i=1 µi(α)Ei α
E1 = 1
E2 = −1

(20)

As detailed in the appendix Appendix A, this writing directly extends to a
vector z ∈ IR2n (Appendix A):

| zk |=
r∑

j=1

µj(zk)Ej zk, r = 22n (21)

Finally, with (21), the interval model (18) is expressed under the polytopic
form:

zk+1 =

r∑
j=1

µj(zk)(M +N Ej)zk + EB uk (22)

where the activating functions µj satisfy the so-called convex sum property:

r∑
j=1

µj(zk) = 1, 0 ≤ µj(zk) ≤ 1,∀k ∈ N,∀j = 1, . . . , r (23)
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3.2. Stability criteria

Theorem 1. The asymptotical stability of the input free system (22) (i.e. with
uk = 0) is guaranteed if there exists matrices P = PT > 0 and G such that the
LMI (24) holds.[

−P (M +N Ej)
T G

GT (M +N Ej) P −G−GT

]
< 0, j = 1, . . . , r (24)

Proof. Defining a quadratic Lyapunov function V (zk) = zTk Pzk with P > 0, its
variation along the state trajectory of (22), defined by ∆Vk = V (zk+1)−V (zk),
is given by ∆Vk = zTkMzk, with:

M =

M +N

r∑
j=1

µj(zk)Ej

T

P

M +N

r∑
j=1

µj(zk)Ej

− P (25)

Obviously, the negativity of the variation ∆Vk is implied if there exists P =
PT > 0 satisfying M < 0. From lemma 3 of [13], it is known that finding
P = PT > 0 satisfying M < 0 is equivalent to find P = PT > 0 and G
satisfying[

−P (M +N
∑r

j=1 µj(zk)Ej)
TG

GT (M +N
∑r

j=1 µj(zk)Ej) P −G−GT

]
< 0 (26)

The positivity of the functions µj ensures that (24) are sufficient conditions
to (26) and thus to ∆Vk < 0 and to the input free asymptotical stability of
(22).

Corollary 1. The system (22) is asymptotically stable if there exists matrices
Pi = PT

i > 0 and G such that:

Mi,j +Mj,i < 0, i, j = 1, . . . , r (27)

where Mi,j is defined by:

Mi,j =

[
−Pi (M +N Ei)

T G
GT (M +N Ei) Pj −G−GT

]
(28)

Proof. The proof is similar to the one of Theorem 1, with the Lyapunov can-
didate function defined by V (zk) = zTk (

∑r
i=1 µi(zk)Pi) zk and the factorization

of [13].

4. Observer design for a system with bounded uncertain parameters

4.1. Observer structure

Before detailing the proposed observer, let us recall that the state equation
of the system (1) may also be described by its lower and upper bounds (6).
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Given the structure of (6), the proposed observer (29) is designed to provide
an interval state estimate [x̂k x̂k] which gives an envelope of the actual system
state, based only on the input and output measurements of the system (1).
Namely, it reduces to find the observer gains L1 and L2 such that xk ∈ [x̂k x̂k],
for every instant k and to impose some dynamics to the state reconstruction
error.

x̂k+1 =
1

2

[
(A+ | A |) x̂k + (A− | A |) x̂k

]
− (∆ + ∆ ∗ SA) | x̂k |

− (∆−∆ ∗ SA) | x̂k | +L1(yk − Cx̂k) +B uk

x̂k+1 =
1

2
[(A− | A |) x̂k + (A+ | A |)xk] + (∆−∆ ∗ SA) | x̂k |

+ (∆ + ∆ ∗ SA) | x̂k | +L2(yk − Cx̂k) +B uk

(29)

4.2. Rationale for observer structure

The rationale for this structure is done in two steps. First, it must be shown
that x̂k ≤ xk ≤ x̂k. Secondly, the observer gains L1 and L2 must be adjusted to
specify the temporal characteristics of state reconstruction error. Each of these
steps is addressed in Theorem 2 and 3 respectively.

Theorem 2. The system (29) is an observer for (1), i.e. the state of (1) belongs
to the envelope defined by (29).

Proof. The proof proceeds by induction. Let Hk be the following property:

Hk : x̂k ≤ xk ≤ x̂k (30)

The gaps between the state xk and the lower and upper bounds of its estimate
are defined by:

ek = xk − x̂k and ek = x̂k − xk (31)

The first one is expressed at time k + 1, from (1) and (29), by:

ek+1 = (A+ ∆k)xk −
1

2

[
(A+ | A |) x̂k + (A− | A |) x̂k

]
−L1(yk − C x̂k)− 1

2

[
(∆ + ∆ ∗ SA) | x̂k | + (∆−∆ ∗ SA) | x̂k |

]
(32)

The ith component of this difference is given by:

ek+1,i =

n∑
j=1

(ai,j + δk,i,j)xk,j − `1,i,j(xk,j − x̂k,j)

−1

2

n∑
j=1

(
(ai,j+ | ai,j |) x̂k,j + (ai,j− | ai,j |) x̂k,j

)
−1

2

n∑
j=1

(
δi,j
(
| xk,j | + | xk,j |

)
+ sgn(ai,j)δi,j

(
| x̂k,j | − | xk,j |

))
(33)

where `1,i,j are the coefficients of the L1 matrix. In the previous sum, let us
analyse the jth term whether ai,j, is positive or negative:
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• If ai,j > 0

ek+1,i,j = (ai,j + δk,i,j)xk,j − ai,j x̂k,j + δi,j | x̂k,j | −`1,i,j(xk,j − x̂k,j)
= (ai,j + δk,i,j − `1,i,j)xk,j − ai,j x̂k,j + δi,j | x̂k,j | +`1,i,j x̂k,j
≥ (ai,j + δk,i,j − `1,i,j) x̂k,j − ai,j x̂k,j + δi,j | x̂k,j | +`1,i,j x̂k,j
≥ δk,i,j x̂k,j + δi,j | x̂k,j |
≥ 0

(34)

• If ai,j < 0

ek+1,i,j = (ai,j + δk,i,j)xk,j − ai,j x̂k,jδi,j | x̂k,j | −`1,i,j(xk,j − x̂k,j)
= (ai,j + δk,i,j − `1,i,j)xk,j − ai,j x̂k,j + δi,j | x̂k,j | +`1,i,j x̂k,j
≥ (ai,j + δk,i,j − `1,i,j) x̂k,j − ai,j x̂k,j + δi,j | x̂k,j | +`1,i,j x̂k,j
≥ δk,i,j x̂k,j + δi,j | x̂k,j |
≥ 0

(35)

This shows that ek+1,i is a sum of non negative terms and then xk+1,i ≥
x̂k+1,i, i.e. xk+1 ≥ x̂k+1. A similar calculus leads to the result xk ≤ x̂k. There-
fore, the property Hk+1 is demonstrated and the induction principle ensures
that for all k > 0, we have x̂k ≤ xk ≤ x̂k which achieves the proof.

In the following, the state observer equations are denoted:

x̂k+1 = H11 x̂k +H12 x̂k +H13 | x̂k | +H14 | x̂k | +L1(yk − Cx̂k) +B uk
x̂k+1 = H21 x̂k +H22 x̂k +H23 | x̂k | +H24 | x̂k | +L2(yk − Cx̂k) +B uk

(36)
with:

H11 =
1

2
(A+ | A |), H12 =

1

2
(A− | A |), H13 =

−1

2
(∆ + ∆ ∗ SA),

H14 =
1

2
(−∆ + ∆ ∗ SA) H21 =

1

2
(A− | A |), H22 =

1

2
(A+ | A |),

H23 =
1

2
(∆−∆ ∗ SA), H24 =

1

2
(∆ + ∆ ∗ SA)

To characterize the observer’s performance, let rewrite the deviations (31)
as:

ek+1 = (A+ ∆k)xk −H11 x̂k −H12 x̂k −H13 | x̂k | −H14 | x̂k | −L1(yk − Cx̂k)

= (H11 − L1C)ek −H12ek −∆k xk −H13 | x̂k | −H14 | x̂k |
ek+1 = H21 x̂k +H22 x̂k − (A+ ∆k)xk +H23 | x̂k | +H23 | x̂k | +L2(yk − Cx̂k)

= −H21ek + (H22 − L2C) ek −∆k xk −H23 | x̂k | −H24 | x̂k |
(37)

The two deviations defined in (37) are gathered in the following augmented
state estimation error: eTk = [eTk eTk ] and ruled by the following discrete time
system:

ek+1 = (A0 − LC0) ek +B0 ωk (38)
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where the matrices A0, L, C0 and B0 and the input signal ωk are defined by

A0 =

[
H11 −H12

−H21 H22

]
, B0 =

[
In −H13 −H14

−In −H23 −H24

]
, L =

[
L1 0
0 L2

]
,

C0 =

[
C 0
0 C

]
ωk =

[
(∆k xk)T | x̂k |T | x̂k |T

]T
(39)

It is then necessary to analyze the dynamics of the deviations in (38) to
adjust the gains L1 and L2 in L to ensure the boundedness and the positivity
of ek and ek. This can be done as the result of an LMI optimisation procedure,
as stated in the following theorem.

Theorem 3. Given a scalar γ > 0, the system (29) is an observer of system (1),
if there exists a matrix P = PT > 0 ∈ IR2n×2n, matrices K1 and K2 ∈ IRn×p

and invertible matrices G1 and G2 ∈ IRn×n, such that the following LMI holds I2n − P 0 AT
0G− CT

0 K
T

0 −γ2Im BT
0 G

GTA0 −KC0 GTB0 P −GT −G

 < 0 (40)

where G0 and K0 are the block diagonal matrices defined by:

G =

[
G1 0
0 G2

]
K =

[
K1 0
0 K2

]
(41)

After solving the LMI (40), the observer gain is defined by:

L = (GT )−1K (42)

Proof. The evolution of the deviations is governed by (38), depending on the
gains L1 and L2. The objective of the synthesis of the parameters L1 and L2 is
twofold: ensure the stability of the matrix A0 − LC0 and reduce the influence
of the disturbance-like term ω on the error e. This is translated as follows:

limk→∞ ek = 0 if ωk = 0
‖ ek ‖2
‖ ωk ‖2

< γ if ωk 6= 0
(43)

Let V (ek) = eTk Pek be a Lyapunov candidate function. The state estimation
error convergence is guaranteed and the gain L2 of the transfer from ωk to ek
is bounded by γ if:

V (ek+1)− V (ek) + eTk ek − γ2ωT
k ωk < 0 (44)

Defining Ψ = A0 − LC0 and using (38), one obtains:

V (ek+1)−V (ek) = eTk ΨTPΨek+2eTk ΨT P B0 ωk+ωT
k B

T
0 P B0 ωk−eTk Pex (45)

and, with (45), (44) becomes:

eTk (ΨTPΨ− P + I)ek + 2eTk ΨT P B0 ωk + ωT
k B

T
0 PB0ωk − γ2ωT

k ωk < 0 (46)
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The constraint (46) is ensured if there exists matrices P and L satisfying:[
I − P 0

0 −γ2Im

]
+

[
ΨT

BT
0

]
P
[
Ψ B0

]
< 0 (47)

From lemma 3 of [13], searching P and L satisfying (47) is known to be
equivalent to searching P , G and L satisfyingI − P 0 ΨTG

0 −γ2Im BT
0 G

GT Ψ GTB0 P −G−GT

 < 0 (48)

which is the LMI (40), up to the variable change GTL = K.

The Theorem 3 provides an observer design fulfilling the constraints (43).
However, this approach suffers from a certain conservatism mainly due to the
structure of the equations (36) expressing the evolution of reconstruction errors.
Indeed, in (36), and thus in (38), the dependence between the variables xk and
| xk | is not taken into account. Accordingly to (21), the magnitude of the lower
and upper bounds of the state estimate can be expressed as a multi-model based
on

| x̂k | =
∑r

i=1 µ
1
i (x̂k)Ei x̂k

| x̂k | =
∑r

j=1 µ
2
j (x̂k)Ej x̂k

(49)

where the activating functions µ1
i and µ2

j satisfy the convex sum property (23)
and r = 2n. Using this multi-model expression of the magnitude of the lower
and upper bounds of the state estimation error (37), these equations become

ek+1 = (H11 − L1C)ek −H12ek −∆xk −H13

r∑
i=1

µ1
i (x̂)Ei x̂−H14

r∑
j=1

µ2
j (x̂)Ej x̂

ek+1 = −H21ek + (H22 − L2C) ek −∆k xk −H23

r∑
i=1

µ1
i (x̂)Ei x̂−H24

r∑
j=1

µ2
j (x̂)Ei x̂

(50)
Since the functions µ1

i and µ2
j satisfy (23), these two equations can be written

as

ek+1 =

r∑
i=1

r∑
j=1

µ1
i (x̂)µ2

j (x̂) ((H11 − L1C +H13Ei)ek

−(H12 +H14Ej)ek − (∆ +H13Ei +H14Ej)xk)

ek+1 =

r∑
i=1

r∑
j=1

µ1
i (x̂)µ2

j (x̂) (−(H21 −H23Ei)ek

+(H22 − L2C −H24Ej)ek − (∆ +H23Ei +H24Ej)xk)

(51)

With (51), the augmented system (38) becomes

ek+1 =

r∑
i=1

r∑
j=1

µ1
i (x̂)µ2

j (x̂) ((Ai,j − LC0) ek +Bi,j xk) (52)
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where L and C0 are already defined in (39) and Aij and Bij are given by

Ai,j =

[
H11 +H13Ei −(H12 +H14Ej)
−(H21 −H23Ei) H22 −H24Ej

]
Bi,j = −

[
∆ +H13Ei +H14Ej

∆ +H23Ei +H24Ej

] (53)

This leads to the following theorem.

Theorem 4. Given a scalar γ > 0, the system (29) is an observer of system (1),
if there exists a matrix P = PT > 0 ∈ IR2n×2n, matrices K1 and K2 ∈ IRn×p

and invertible matrices G1 and G2 ∈ IRn×n, such that

Mij +Mji < 0, i, j = 1, . . . , r (54)

where Mij is defined by

Mij =

 I2n − P 0 AT
ijG− CT

0 K
T

0 −γ2In BT
ijG

GTAij −KC0 GTBij P −GT −G


and where G0 and K0 are the block diagonal matrices defined in (41). After
solving the LMI (54), the observer gain is defined by (42).

Proof. The proof follows the same lines of the one of Theorem 3: firstly the
quadratic Lyapunov function V (ek) = eTk Pek is defined and then its decreasing
along the trajectory of (52) is studied, taking benefits of the positiveness of the
activating functions satisfying (23).

Remark 2. In Theorems 3 and 4, the attenuation level γ can be minimized, by
considering the classical variable change γ̄ = γ2 and by minimizing γ̄ under the
LMI constraints of Theorems 3 or 4.

Remark 3. The corollary 1 can be used to introduce some additional degrees
of freedom in the LMI optimization and thus reduce the conservatism implied by
a simple quadratic Lyapunov function. Nevertheless a trade-off should thus be
made between relaxing the conservatism and limiting the computational burden
of seeking numerous LMI variables.

4.3. Example

The example 2.4 is continued with the same system matrices (17) and an
output defined by C = [1 0]. Figure 2 depicts the evolution of the two inputs
and the two states. As in example 2.4, the red plot is a possible state trajectory
given the parameter uncertainty and the green and blue ones are the upper and
lower bounds of each state trajectory. Solving the LMI conditions (54), the
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following solutions are obtained

P =


3.011 0.328 1.724 0.636
0.328 12.266 0.636 0.727
1.724 0.636 3.011 0.328
0.636 0.727 0.328 12.266

 ,

G1 =

(
2.766 .424
0.424 18.359

)
, G2 =

(
2.766 0.424
0.424 18.359

)
K1 =

(
2.522 −3.168

)T
, K2 =

(
2.522 −3.168

)T
resulting in the observer gains (42)

L1 =
[
0.942 −0.194

]T
, L2 =

[
0.942 −0.194

]T
With these gains, the observer can be simulated with (29) and one can

see, on the figure 3, that the actual system state (red plot) appears to be in
the envelope provided by the interval observer (green and red lines). It can
also be pointed out that the envelope provided by the interval observer gives a
thinner estimate of the actual state of the system. The comparison of figures 2
and 3 clearly shows the interest of the interval observer: firstly it reconstructs
the interval system state from the measured inputs and outputs, secondly the
obtained radius of the envelope is smaller than the one provided by the direct
simulation of the state equation interval.

0 50 100 150 200 250
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0.25

0.3

0.35

0.4

Input 1

0 50 100 150 200 250
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−0.2
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0
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Input 2

0 50 100 150 200 250
−1

0

1

2

3

4

State 1

0 50 100 150 200 250
−1.5

−1

−0.5

0

0.5

State 2

Figure 2: Simulation of a system with interval parameters

Remark 4. Following [5], additional degrees of freedom can be introduced in
the observer design by tuning an extra parameter, denoted F , in the following
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Figure 3: State reconstruction of a system with interval parameters

observer definition:
x̂k+1 =

1

2

[
(A+ | A |) x̂k + (A− | A |) x̂k − (∆ + ∆ ∗ SA) | xk |

− (∆−∆ ∗ SA) | x̂k |
]

+ L1(yk − Cx̂k)− F (x̂k − x̂k) +B uk

x̂k+1 =
1

2
[(A− | A |) x̂k + (A+ | A |)xk + (∆−∆ ∗ SA) | x̂k |

+ (∆ + ∆ ∗ SA) | x̂k |
]

+ L2(yk − Cx̂k) + F (x̂k − x̂k) +B uk
(55)

5. Conclusion

The proposed approach provides a systematic state estimation for a system
with uncertain but bounded parameters. It significantly differs from earlier work
in showing that the system model can be used to simultaneously model the lower
and upper bounds of the system state trajectory. Both models are structured
in a polytopic form and allow to synthesize an interval observer. This approach
can easily be extended to other situations. On the one hand, the inclusion of
uncertainty affecting all system state matrices appears as a direct extension. On
the other hand, one can consider changing the observer interval to encompass
the case of interval measures of the inputs and outputs.

Appendix A. Some details on the multi-model form of the absolute
value function

The simulation of the interval model (18) does not pose any particular dif-
ficulty, except the fact that the equation number is twice the one of the initial
system. However, the presence of the absolute value operator can make tedious
the stability analysis and the observer design. For this reason, it is proposed
to reformulate the interval model by replacing the absolute value operator by a
polytopic model that is more easily handled.
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To begin with, let us consider a two component vector z = [z1 z2]T . Its
component wise absolute value is then defined by |z| = [|z1| |z2|]T and it can
be expressed by:

| zi |= µi1(zi) . (zi) + µi2(zi) . (−zi)

µi1(zi) =
1 + sgn(zi)

2
µi2(zi) = 1− µi1(zi)

, i = 1, 2 (A.1)

Each scalar | zi | is expressed in terms of both its own weight functions µi1

and µi2. In order to express all of these scalars with the same weight function
set, they can be equivalently written as:

| zi |= (µi1 + µi2) (µi1 . (zi) + µi2 . (−zi)) , i = 1, 2 (A.2)

Defining µ1 = µ11µ21, µ2 = µ11µ22, µ3 = µ12µ21, µ4 = µ12µ22 and

E1 =

[
1 0
0 1

]
E2 =

[
1 0
0 −1

]
E3 =

[
−1 0
0 1

]
E4 =

[
−1 0
0 −1

]
(A.3)

the absolute values | z1 | and | z2 | are expressed under a polytopic form which
depends on the same weight function set, as follows :

| z | =

4∑
i=1

µiEiz (A.4)

Based on the previous developments in the two dimensional case, the poly-
topic writing can easily be generalized to any vector z ∈ IRr, as described in
[37] or [29]. The common weighting functions µi(z) are defined by products of
the weighting functions depending on each vector component (namely µi1(zi)
and µi2(zi)) and the matrices Ei are diagonal matrices which entries are equal
to the extremal values of µi1(zi) and µi2(zi), i.e. 1 or −1.
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