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Applications with Security Needs

Applications: smart cards, computers, Internet, telecommunications,
set-top boxes, data storage, RFID tags, WSN, smart grids. . .
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Cryptographic Features

Objectives:

• Confidentiality

• Integrity

• Authenticity

• Non-repudiation

• . . .

Cryptographic primitives:

• Encryption

• Digital signature

• Hash function

• Random numbers generation

• . . .

Implementation issues in hardware:

• Performances: speed, delay, throughput, latency

• Cost: device (memory, size, weight), low power/energy consumption,
design

• Security: protection against physical attacks
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Square and Multiply Algorithm for RSA

input : a , b , n where b = (bt−1bt−2 . . . b1b0)2

output : ab mod n

r = 1
f o r i from 0 to t − 1 do

i f bi = 1 then
r = r · a mod n

e n d i f
a = a2 mod n

endfor
return r

This is the right to left version (there exists a left to right one)

Arnaud Tisserand. CNRS – Lab-STICC. Power Consumption Analysis and Hardware Security 4/26



Attacks

attack

observation

perturbation

invasive

timing analysis power analysis

EMR analysis

fault injection

probing reverse engineering

theoretical

advanced algorithms

optimized programming

EMR = Electromagnetic radiation
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Side Channel Attacks (SCAs) (1/2)

Attack: attempt to find, without any knowledge about the secret:

• the message (or parts of the message)

• informations on the message

• the secret (or parts of the secret)

“Old style” side channel attacks:

+

clic

clac

good value

bad value
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Side Channel Attacks (SCAs) (2/2)

A B

E D

M

k

Ek (M)

k

Dk (Ek (M)) =M

E

measure

k , M???
attack

General principle: measure external parameter(s) on running device in
order to deduce internal informations
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What Should be Measured?

Answer: everything that can “enter” and/or “get out” in/from the device

• power consumption

• electromagnetic radiation

• temperature

• sound

• computation time

• number of cache misses

• number and type of error messages

• ...

The measured parameters may provide informations on:

• global behavior (temperature, power, sound...)

• local behavior (EMR, # cache misses...)
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Power Consumption Analysis

General principle:

1. measure the current i(t) in the cryptosystem

2. use those measurements to “deduce” secret informations

VDD

i(t)

crypto.

R

traces

secret key = 962571. . .
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Simple Power Analysis (SPA)

Source: [4]
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Limits of the SPA

Example of behavior difference: (activity into a register)

t

t + 1

0000000000000000 0000000000000000

1111111111111111 0000000000000001

Important: a small difference may be evaluated has a noise during the
measurement traces cannot be distinguished

Question: what can be done when differences are too small?

Answer: use statistics over several traces
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Differential Power Analysis (DPA)

cryptosystem

internal state

select bit b to attack

b = 1

b = 0

implementation

power model

power(Hb=1)

power(Hb=0)

measures

comparison

correct hypothesis
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Side Channel Attack on ECC

encryption

signature

etc

p
ro

to
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l
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ve
l

[k]P

ADD(P,Q) DBL(P)

cu
rv
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ve
l

x±y x×y . . .

fi
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d
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l

Scalar multiplication operation
for i from 0 to t − 1 do

if ki = 1 then Q = ADD(P,Q)
P = DBL(P)

• simple power analysis (& variants)

• differential power analysis (& variants)

• horizontal/vertical/templates/. . . attacks
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Countermeasures

Principles for preventing attacks:

• embed additional protection blocks

• modify the original circuit into a secured version

• application levels: circuit, architecture, algorithm, protocol. . .

Countermeasures:

• electrical shielding

• detectors, estimators, decoupling

• use uniform computation durations and power consumption

• use detection/correction codes (for fault injection attacks)

• provide a random behavior (algorithms, representation, operations. . . )

• add noise (e.g. masking, useless instructions/computations)

• circuit reconfiguration (algorithms, block location, representation of
values. . . )
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Low-Level Coding and Circuit Activity
Assumptions:
• b is a bit (i.e. b ∈ {0, 1}, logical or mathematical value)
• electrical states for a wire : VDD (logical 1) or GND (logical 0)

Low-level codings of a bit:

b = 0 b = 1

standard GND VDD

dual rail
r0 =VDD
r1 =GND

(1, 0)DR
r0 =GND
r1 =VDD

(0, 1)DR

cycles

b

r0

r1
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Circuit Logic Styles
Countermeasure principles: uniformize circuit activity and exclusive
coding

Solution based on precharge logic and dual-rail coding:

cycles

pc

r0

r1

evaluation

b = 0

precharge

invalid

evaluation

b = 0

precharge

invalid

evaluation

b = 1

precharge

invalid

Solution based on validity line and dual-rail coding:

r1
r0

valid

Important overhead: silicon area and local storage (registers)
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Circuit-Level Protections for Arithmetic Operators

References: [2] and [3]
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Protected Multipliers
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References:
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Articles: [8], [7], [6]
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Protected ECC Accelerator
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Double-Base Number System
Standard radix-2 representation:

k =
t−1∑
i=0

ki 2
i = kt−1 kt−2

. . . k2 k1 k0 t explicit digits

Digits: ki ∈ {0, 1}, typical size: t ∈ {160, . . . , 600}

Double-Base Number System (DBNS):

k =
n−1∑
j=0

kj 2
aj 3bj =

aj , bj ∈ N, kj ∈ {1} or kj ∈ {−1, 1}, size n ≈ log t

DBNS is a very redundant and sparse representation: 1701 = (11010100101)2

1701 = 243 + 1458 = 2035 + 2136 = (1, 0, 5), (1, 1, 6)
= 1728− 27 = 2633 − 2033 = (1, 6, 3), (−1, 0, 3)
= 729 + 972 = 2036 + 2235 = (1, 0, 6), (1, 2, 5)
. . .
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aj , bj ∈ N, kj ∈ {1} or kj ∈ {−1, 1}, size n ≈ log t

DBNS is a very redundant and sparse representation: 1701 = (11010100101)2

1701 = 243 + 1458 = 2035 + 2136 = (1, 0, 5), (1, 1, 6)
= 1728− 27 = 2633 − 2033 = (1, 6, 3), (−1, 0, 3)
= 729 + 972 = 2036 + 2235 = (1, 0, 6), (1, 2, 5)
. . .
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Randomized DBNS Recoding of the Scalar k

encryption

signature

etc

p
ro

to
co

l
le

ve
l

[k]P

ADD(P,Q) DBL(P) TPL(P)

cu
rv

e
le

ve
l

x±y x×y . . .

fi
el

d
le

ve
l

On-the-fly DBNS random recoding for the scalar k
randomly recode windows of the scalar k on-the-fly:
1 + 2 � 3 1 + 3 � 22 1 + 23 � 32 . . .
control number of reductions (←) and expansions (→)

Point tripling operation
Q = TPL(P) = P + P + P

k ki

block time

recoding rulespossible rules
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On-the-fly DBNS random recoding for the scalar k
randomly recode windows of the scalar k on-the-fly:
1 + 2 � 3 1 + 3 � 22 1 + 23 � 32 . . .
control number of reductions (←) and expansions (→)

Point tripling operation
Q = TPL(P) = P + P + P

k ki

block time

recoding rulespossible rules

recoded ki (,ki+1)random choice

DBNS is redundant ⇒ security ↗
DBNS is sparse ⇒ 20–30 % speed ↗

Ref: [1] Chabrier, Pamula & Tisserand.
Asilomar 2009
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ANR PAVOIS Integrated Circuit

ECC 256 bits
65 nm CMOS
1.5 mm2
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Conclusion

• Side channel and fault attacks are serious threats

• Attacks are more and more efficient (many variants)

• Security analysis is mandatory at all levels (specification, algorithm,
operation, implementation)

• Security = trade-off between performances, robustness and cost

• Security = func( secret value, attacker capabilities )

• security = computer science + microelectronics + mathematics

Current works examples:

• Methods/tools for automating security analysis

• Circuit reconfiguration (representations, algorithms)

• Circuits with reduced activity variations

• Representation of numbers with error detection/correction “codes”

• Design space exploration

• CAD tools with security improvement capabilities
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The end, questions ?

Contact:

• mailto:arnaud.tisserand@univ-ubs.fr

• http://www-labsticc.univ-ubs.fr/~tisseran

• CNRS, Lab-STICC Laboratory
University South Brittany (UBS),
Centre de recherche C. Huygens, rue St Maudé, BP 92116,
56321 Lorient cedex, France

Thank you
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