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Abstract In this paper a new strategy for modeling uncertainties @ ghbstructures and interfaces of a
dynamical system is presented. This strategy is based ahd&Xeduction of the dynamical model of each
substructure using the Craig-Bampton method and (2) theofifee nonparametric probabilistic approach
for the global modeling of uncertainties in each substmects an improvement with respect to existing
nonparametric methods, the methodology proposed heré¢raotssseparated models of uncertainties for the
inner and interface degrees of freedom, which allows torobstparately the levels of fluctuation induced
by these two sources of uncertainties. This methodologppdied for the analysis of the random vibration
of a drill-string. Three strategies are compared: (1) a fislhparametric probabilistic approach on all the
system, (2) the existing nonparametric probabilistic apph together with the Craig-Bampton substructuring
method, and (3) the new nonparametric probabilistic apgrgeoposed here with the separation of the inner
and interface degrees of freedom uncertainties. It turhghad, for the same level of uncertainty, the three
approaches give similar results but the new approach giees fiexibility for the control of the probabilistic
model.

Keywords structural dynamicsstochastic dynamicssubstructuring Craig-Bampton Methoduncertainty
guantification

1 Introduction

In the presence of uncertainties in a dynamical system,ribtegpilistic methods allow the assessment of the
safety region for the quantities of interest. In this cohtarcertainties in the parameters of the system can be
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taken into account using a classical parametric probaibibpproach [8; 23; 24], which consists in replacing
the uncertain parameters by random variables. This methwedry efficient if the computational model is
a good representation of the dynamical systems. Howeueasitsome limitations: (1) in case of numerous
uncertain parameters, the identification of the hyperpatara related to the joint distribution of the random
variable induces an intractable stochastic inverse pnop(2) by definition, this method is not capable to take
into account uncertainties induced by modeling choicesgtitutive laws, boundary conditions, etc).

The nonparametric probabilistic approach [25] is an atteimmvercome these limitations of the para-
metric probabilistic approach. In the nonparametric pbiisic approach, the uncertainties are taken into
account globally at the operator level, by modeling the ceddorder matrices of a dynamical system as
random matrices. The constructed stochastic model isatedrby a few number of dispersion parameters
which make their experimental identification feasible [1526; 7; 28]. Furthermore, by randomizing the
reduced-order operators, this approach allows to extemdatnge of prediction of the computational model
without modifying the reduced displacement subspace.

The Craig-Bampton substructuring method [4; 14] is a papuiathod used to develop a reduced-order
model from a full finite element model by decomposing it intbstructures. Soize and Chebli [26] combined
the nonparameric probabilistic approach with the Craigapton substructuring method and, for each sub-
structure, a nonparametric model of uncertainties waedlnited. The present paper extends the development
of [26] proposing a new strategy, which combines (1) the maoametric probabilistic approach, (2) the Craig-
Bampton substructuring method, and (3) the separationedfitier and interface degrees of freedom (DOFs)
uncertainties. The idea of separating the interface DOIlesvalmore flexibility for the stochastic model,
which means that there is a specific parameter to control icertainties in the interface. An alternative
approach has been addressed in [13], where the authors addedra fictitious random coupling stiffness
matrix. The approach proposed in the present paper usesrteginterface DOFs decomposition introduced
in the Craig-Bampton method directly.

This new method is applied to the linear torsional drilirgjrproblem. The purpose of this application
is that the drill-string is composed by (1) drillpipes (DR)da(2) the Bottom-Hole-Assembly (BHA). This
two substructures might have different levels of uncetiaén The drill-string dynamics might be complex
[9; 11; 22; 30; 31; 15] and there are many sources of unceéytainthis problem. For instance, Spanos
et al. [29] considered uncertainties in the lateral forgegliad at the drill-bit. Ritto et al. [15] developed
a nonparametric probabilistic approach to take into accoawdel uncertainties in the bit-rock non-linear
interaction model of a drill-string. In [16] the nonparametprobabilistic approach is employed to model
uncertainties in the coupled axial-torsional drill-stridynamics. Other uncertainties aspects of the the drill-
string problem were tackled in [17; 18; 19; 20].

In this paper three nonparametric probabilistic strategie presented and compared to: (1) a full non-
parametric probabilistic approach on all the system [Z5]tl{e existing nonparametric probabilistic approach
together with the Craig-Bampton substructuring method, [@éd (3) the new nonparametric probabilistic ap-
proach proposed here with the separation of the inner ardace DOFs uncertainties.

The paper is organized as follows. In section 2, the detasturfinite element model and the Craig-
Bampton substructuring method are presented. In sectitirehree strategies to model uncertainties are
developed. The numerical results are presented in secti@mddthe concluding remarks are made in section
5.

2 Deterministic M odel
2.1 Full finite element model

As mentioned before, drill-strings are composed mainly g substructures: DP and BHA. The DP are
slender tubes that can reach kilometres, while the BHA ispmmad by thicker tubes (drill collars) together
with the drill bit at the bottom and its length can reach tlemds meters. Figure 1 shows a general scheme
of a drill-string. In this paper, we are only interested ie 8teady-state small torsional vibration of the drill-
string due to a torque applied at the bottom-end of the BH/A iflertial effects due to the global rotation of
the drill-string and the gyroscopic effects induced by ta@sverse displacements (see [3]) are not taken into
account here. The linear undamped torsional dynamics dfiastting is descriped by the equation
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Fig. 1 General scheme of a drill-string.
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where 6, is the angular rotation about thxeaxis (longitudinal axis)| is the cross sectional polar moment
of inertia, G is the shear modulug, is the imposed torque per unit length. The above equatiois@seatized

by means of the finite element method. After assembling thiee felement matrices and adding a damping
model, the vectou of the rotational DOFs is the solution in the frequency don@dithe matrix equation

(~@?[M] +jw[C] + [K])u(w) = f(w), )

wherew is the angular frequencyis the external force vectdris the imaginary unit, whilgM], [C], and[K]
are then x nmass, damping, and stiffness matrices, respectively.

2.2 Reduced-order modeling using elastic modes

In this section the full finite element model is reduced usirggclassical elastic modes. Timdirst eigenvalues
0 < A1 <Az <... < Ay associated with the elastic modég,, @,,..., @} are solutions of the following
generalized eigenvalue problem

Klo=A[M]g. (3)

The reduced-order model is obtained by projecting the futhputational model on the subspace spanned by
themfirst elastic modes calculated using Eq. (3). [®f be then x m matrix whose columns are thmefirst
elastic modes. We then introduce the approximation

U(w) = [@]q(w), (4)

in which q(w) is the vector of then generalized coordinates obtained from the following redumatrix
equation

(M) + j[C] + [K]) a(w) = f(w), (5)
in which [M] = [®]T [M][®], [C] = [®]" [C][®] and [K] = [®]T [K] [®] are them x m mass, damping and

stiffness generalized matrices, and whigke) = [®@]T f(w) € R" is the vector of the generalized forces.

2.3 Craig-Bampton substructuring method

It is assumed that the structure is decomposedngBubstructure$;, S, . . ., Sy. For instance, for the drill-
string shown in the figure 1, there are two substructures (BPMA). Fork=1,...,ns, the displacemeniy



of S consists im;  inner DOFsu}, and innr i interface DOFst, i.e.,

Uy
Uk = . (6)
U

ForA=M,CorK, let[A] be the mass, damping or stiffness matrix of substrucisend letf, be the force
vector of substructur&.. We then have

([Aﬂ] [A'{]) (f'k)
A = and fg= , (7)
(AL [ALT] fe

in whichfl is the inner force antf is the coupling force at the interface. In Eq. (5), it is asedrthat there is
no external force applied on the interfaces. The Craig-Bamgubstructuring method [4] consists in reducing
the number of inner DOFs by using fixed-interface elasticgiatic modes such that

(u'k) ([cv'k] [R] ) (qL)
= ®
uf 0] Mo d ) \uf

where[®}] is the matrix of themy fixed-interface elastic modeR}, are the matrix of the static modes described

such thaR, = —[KJ'|"Y[K/[] and(ln. ] is the (nrx x nr k) identity matrix. In Eq.(8)g}, is the vector of the
my generalized coordinates related to the fixed-interfacgtielemmodes. The Eq. (9) can be rewritten as
U = [H] gk )
with
[#] [R] i
W] = and gy = : (10)
(O] [Mnr,l Ug
Letng = mg+nr . ForA= M, C or K, let[A] be (n, x ng) such that
3 . (A TA]
Ad=[H A = : (11)
[ATIAT

Let [Rl] = ([Im ] [0]) and[R! ] = ([0] [In- ) be the projection matrices on the inner and interface coatds,
respectively. We then have

A= RITAJRY, AT =RITAJR], AT =R AR, (12)

For the stiffness matrices, the coupling blocks are algealis equal to zero. For readability, let assume that
there are onlys = 2 substructures. Taking into account the continuity of tispldcement at the interface, the
force equilibrium at the interface and the relation Eq. (@)dach substructure, the dynamical matrix equation
of the assembled structure for the substructuring Craigy8an method are written with lower subscript CB
as follow

(—w?[Mcs] +jw|[Cca] + [Kca))dcs = fes, (13)
in which
q; AR
dee=| Gy | » fee= (W], : (14)

u [RTFL+HR] 1



and where foA = M,C orK,
Al 0] [Af]
Acel= | [01 [AS]  [A]] (15)
(AU [AD] [ATT]+AD]
The displacement vectai(w) is finally calculated as
u(w) = [¥)des(w), (16)

where[W] is constructed by assembling matri¢es|, . .., [%h,].

3 Contruction of the Stochastic M odels
3.1 Brief overview of the nonparametric probabilistic fardation for random matrices

The nonparametric probabilistic approach [25] is basedhemandom matrix theory [12]. It consists in replac-

ing the deterministic reduced-order matrices of the detastic computational model by random matrices.

Thus, it acts directly at the reduced operator level. It suased that there are no rigid body modes and
consequently the deterministic reduced matrices are syritnpmsitive-definite. This approach consists in

replacing any deterministic matrjA] of the computational model by a random mafi} which is written as

[A] = [La][Gal[LA] ", (17)

where [Gp] is a normalized random matrix antls] is a lower triangular matrix related to the Cholesky
factorization of matrixA|, i.e.,

(A = [La][La]"- (18)
The probability density function of random matfi®a] is constructed using the maximum entropy principle

[10] and depends on a dispersion paraméggmwhich controls the level of the statistical fluctuationgtod
random matri{Ga] around its mean value that is the unit mafti]. We then have

 (E{/l[GAl - [l B}\ Y2
&( T=IE ) ’ (19)

where|| - ||r is the Frobenius norm an{-} is the mathematical expectation. A generator of independen
realizations of random matrica] has been proposed in [25].

3.2 Stochastic model Siyl : Nonparametric probabilistic approach for the reduce@oodmputational
model without substructuring method

The stochastic model S| is constructed in replacing each deterministic matrjités|C] and[K] in Eq. (5)
by random matricepM ], [C] and[K]. We then have

(~@*M] +jw[C]+[K)Q=F. (20)
For A = M, C or K, the probabilistic model of the random reduced-order ma#q| is constructed by using

the nonparametric probabilistic approach that is briefgspnted in section 3.1. Hence, the stochastic model
SMy is completely defined by three dispersion coefficieqtsdc, k.



3.3 Stochastic model Sph1: Nonparametric formulation of uncertainties for each suwlasure

In [26], a probabilistic model for taking into account difémt levels of uncertainties in each substructure
has been proposed. For each substruc8irethe reduced random mass, damping, and stiffness matrices
were replaced by random matrices whose probabilistic nsodete constructed by using the nonparametric
probabilistic approach that has been bnefy presenteddtiose3.1. Hence, foA = M,C or K and for each
substructure,, deterministic matrice@\'], [Al'], [Al"] introduced in section 2.3 and involved in the assem-
bling of the deterministic matrifAcg], are replaced by the random matridég |, [Al'] and[A["] defined
as

Al = RITIAKIR],  [AT]=[RITIAIR],  [ALT] = [RCTTIAWIR, (21)
where[A,] is a random matrix that statistical fluctuation due to theeutainties related té4,] (see sec-
tion 2.3), and whose probabilistic model is constructed $ingi the nonparametric approach that is briefly
presented in section 3.1. The assembling of those randonicemyield a random matripAcg1] that models
the statistical fluctuation related to uncertainties&gg]. For instance, fons = 2, and forA =M, C or K,
we obtain

A1l [0]  [A]]
[Aced =| [0] [AS] [A5] (22)
(A1 (AL (AL 1+1AST]

The stochastic model Spd; allows different levels of uncertainties to be modeled inresubstructure and
here are 3 ns parameters which control the uncertainties of the sysgm; dc,1, .1, - -, M ns: O ng OK ng-

3.4 New stochastic model Si»: Nonparametric formulation of uncertainties for each suwlzsure with
separation of the statistical fluctuations related to timeirand interface DOFs

In stochastic model Sik1, for each substructure, every components of a given randatrimj,&k] with

A =M,C orK is related to the same dispersion coefficient. Neverthgéesh component of random matrice
[Ay] is involved in a linear system of stochastic second ordemargt differential equations in terms of
random generalized coordinates and random displacemeite dnterfaces between two substructures. The
stochastic model Sik; does not allow to take into account different levels of statal fluctuation on those
coefficients. In order to circumvent such a limitation, a n&echastic model Siky is proposed in the
present paper. For each substructirand forA = M, C or K, two statistically independent random matrices
[A'] and [A"} are introduced to model the statistical fluctuations thatrafated to each matripd}]. Their
probabilistic model is constructed using the nonparamenobabilistic approach that is briefly presented in
section (3.1) and for two different dispersion cofficiedts x andda r . The Cholesky factorisation of these

random matrices yields two random lower triangular magrjté ] and[LRk] such that

A= [LadlLad " A= [LAdILA " (23)

Hence, forA = M, C or K and for each substructu&, deterministic matricefll], [A%'], [AL"] introduced
in section 2.3 and involved in the assembling of the deteistinmatrix [Acg], are replaced by the random
matricegAll], [A]'] and[AL"] defined as

A= RITIARY, (A ] = RITIEAJILAKT[RE], and  [AL"] = [RETTIAK](RC]. (24)

The assembling of those random matrices yields a randonxf@tts,] that models the statistical fluctuation
related to uncertainties dAcgy|. For instance, fons = 2, and forA = M, C or K, we have

[AY] (0] [A]
[Acez = | [0 [A3]  [AJ] (25)

[AT'] [AS'] [ALM1+[AST]



For A = M, C or K, the levels of the statistical fluctuations of random mathixgy] is controlled by two
dispersion coefficientda | x anddar k, Which are related to the nonparametric model@(}(ﬂ and [AE}, re-
spectively. Then, for each substructure, the probahilistbdel of uncertainties is controlled by six dispersion
coefficients, that allow controlling the level of statistidluctuations of the inner and interface coordinates
separately for each random matrices, giving more flexjbilin the stochastic model Sh.

Finally, for the full structure, the probabilistic model vficertainties is controlled by 6 ns dispersion

Coeﬁ:ICIentS'6M|17 6M,I',1, &:,|,17 6C,F,1, 6K,|,17 6K,F,1, RS 6M,|,n57 6!\/I,F,n57 6C,I,n5, 5C,I',n57 6K,I,ns7 6K,I',ns-

3.5 Presence of floating substructures

Some of the substructures of the systems may not be attaglaefixed frame. This is the case, for instance,
for the BHA of the drill-string shown in figure 1. These floagisubstructures present rigid body modes
yielding a positive semi-definite stiffness matfk] and then the nonparametric construction presented in
the previous section cannot be applied directly. To circemthis difficulty, the projection of the stiffness
matrix into the rigid body subspace is kept equal to zero atreorely while the projection into the subspace
of the flexible displacements are randomized. Such a cargirumakes sense since the rigid body subspace
is not perturbed by the presence of uncertainties. The eangin proposed here corresponds to the ensemble
of random matrices SE introduced in [27]. LefPy, ] be the matrix whose columns are vectors that span the
null space oi[Kk] and let[Pex ] be the matrix whose columns are vectors that spans the rpage sf[Kk].

It is assumed that the columns B, k] and [Piexk] are normalized. We then ha{@b,kf [Preci] = [1]. Let
[pK] = ([Prb.,k][Pﬂex,k]), then

[0] [0]

(0] [D]

(26)

in which [Dy] is the diagonal matrix of the nonzero eigenvalue§@i. The stochastic models S and
SMceg; are then constructed by replacing the deterministic mavix by the random matrifDy ] for which
the probabilistic model is constructed by using the nonpatac approach presented in section 3.1. Finally,
for [K\] = [Ky] (for the stochastic model Sid), [K'] and[Kr] (for Stochastic Model Skky), we have

k= ([oF 5 )i @7)

4 Application

There are many sources of uncertainties related to the datiqrual model of the drill-string presented in
section 2. First, concerning each substructure, some gaeassuch as the material properties, the geometry
and not perfectly known or present some variabilities altregaxial axis. Then, the linear torsional model
used for each substructure is a very simple representdtibie torsional vibration of the drill-string yielding
some model-form uncertainties in the model. Finally, thedelimg of the interfaces for the present model
is very simple compared to complex mechanical real link leetwthe DP and the BHA. For this reasons,
a probabilistic model of uncertainties is implemented idesrto quantify the sensitivity of the outputs with
respect to these uncertainties. The new probabilistic tquésented in the previous section allows to study
this sensitivity efficiently.

In this section, the three stochastic models;@§MSMcg1 and SMeg2, presented in section 3, are imple-
mented in order to take into account the uncertaintieseéltd the computational model of the drill-string
presented in section 2.

First, the stochastic model S, is compared with the stochastic models {gMand SMeg1. Then, the
stochastic model Sik> is analyzed in order to evaluate the impact of the differentces of uncertainties:
DP versus BHA, mass versus damping versus stiffness, aedwansus interface DOFs.



4.1 Parameters of the model

Concerning the DP, the shear modulus is 70 GPa, the massydsng850 kg/m, the length is 1800 m, the
inner radius is M475 m and the outer radius i9B0 m. The mass and stiffness matrices for this substructure
are constructed using 100 elements with linear shape fumtiThe top-end of the DP is clamped.

Concerning the BHA, the shear modulus is 70 GPa, the mas#yleng850 kg/n?, the length is 200 m,
the inner radius is.0475 m and the outer radius i€X45 m. The mass and stiffness matrices for this substruc-
ture are constructed using 100 elements with linear shayifuns. A unit torque is applied to the bottom-end
of the BHA for all the frequency range of analysis. The topg-ehthe BHA is coupled with the bottom-end
of the DP. Therefore, there is only one interface DOF. It &hdoe noted that the applied torque here is
not representative of the real bit-rock interaction tordlige objective here is just to validate and illustrate
the proposed methodology using a simple torque model whiotvsito perform a comparison between the
stochastic models.

The response (random rotation) is observed at three pdpisi, which corresponds to the first non-
clamped node at the top of the DRpE», which corresponds to the interface node, aggif which corre-
sponds to the bottom node of the BHA. The statistical enveleiph probability level 5 is estimated using
2500 Monte Carlo simulations.

As stated before, onIy two substructures are considerdebiarialyses: DP and BHA. The Craig-Bampton
projection matrice$®}] and [®}] are both constructed using the number of modes obtainedaattenver-
gence analysism = mp = 25 fixed-interface elastic modes. The reduced damping ms(@ll and| Cz} are
both constructed using a Rayleigh model, i{€;] = a;[My] + by [K1] and[Cy] = az[My] + ba[K2] whereay,
by, a; andb, are calculated such that the damping ratios a08& @nd 001 at frequencies 1 Hz and 10 Hz for
each substructure, respectively.

4.2 Comparison of the three stochastic models

In this first analysis, ald’s are set equal to 0.1. For the full model, §M o = &c = & = 0.1. For model
SMca1, w1 =02 = &1 = &2 = & 1 = d 2 = 0.1. Finally, for model SMg2, dm,1.1 = dm,r1= 0w, 2=
omr2=0&i1=&r1=0&ji2=38&r2=0,11=0%r1=0,2=0%r2=0.1.

Figures 2, 3 and 4 show the comparison of the statisticallepgs at the three observed points, of each
stochastic model. The continuous lines representgShkhe dashed lines Spa1, and the dotted lines Sih..

—_Stochastic model SMI I
-..Stochastic model SMsr
- Stochastic model SMsz

5 6 7

Acceleration (dB)

3 4
Frequency (Hz)

Fig. 2 Comparison of three stochastic models: Frequency respor&eeleration for point Bs1.
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Fig. 3 Comparison of three stochastic models: Frequency respor&eeleration for point Rso.
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Fig. 4 Comparison of three stochastic models: Frequency resporseeleration for point §ss.

It can be observed that the statistical envelopes get wisléheafrequency increases, especially for the
response in the interface node, Fig. 3. The three figure®presmilar results, except for a region around
3.7Hz, where Fig. 3 presents a small statistical envelope.

The bottom line is that the Spk, behavior is very similar to Sl and SMg1, using the same values for
dispersion parameter. This result indicates that theegtyaproposed in the present paper is consistent with
the other strategies. However, the new strategy allows par@meters to control uncertainties.

Next section will explore the results of the new stochastided for different levels of uncertainties, which
allows the control of uncertainties for each operator, eadistructure and each inner or interface DOF.

4.3 Random response of stochastic modeLgM
4.3.1 Mass versus damping versus stiffness

i- Case study 1: mass uncertainty, Table 1.
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DP-inner | DP-interface| BHA-inner | BHA-interface
Mass oMi11=01] Our1=01] di2=01] our2=01
Damping | &1=0 ocr1=0 oci2=0 &rpo=0
Stiffness | ok,1,1=0 kr1=0 ,i2=0 xr2=0
Table 1 Case study 1: Values of the dispersion parameters.
ii- Case study 2: damping uncertainty, Table 2.
DP-inner | DP-interface| BHA-inner | BHA-interface
Mass om)1=0 omr1=0 omi2=0 omr2=0
Damplng 6C,I,l =01 &7r11 =01 6C,I,2 =01 &7r12 =01
Stiffness | &, 1=0 o ri1=0 O12=0 K ro2=0
Table 2 Case study 2: Values of the dispersion parameters.
iii- Case study 3: stiffness uncertainty, Table 3.
DP-inner | DP-interface| BHA-inner | BHA-interface
Mass Mmia=0 | Omrai=0 | dwmi2=0 Mmr2=0
Damping | oc 1=0 ocra=0 oci2=0 ocr2=0
Stiffness 5|<.|<1 =01 5r<4l'.l =01 5|<_|<2 =01 5|<_r‘2 =01

Table 3 Case study 3: Values of the dispersion parameters.

Figures 5, 6 and 7 show the random responses comparing aimtiexs in the mass, damping and stiffness
matrices. The results are very similar for uncertain massstiffness matrices, except at very low frequen-
cies, where stiffness uncertainties are predominant.,Algerall, the statistical envelopes increase with the

frequency.

On the other hand, the cited figures show that the sensitfithe response for an uncertain damping
model is very low (very thin statistical envelopes). In otherds, the system is robust to damping model

uncertainties, considering the dispersion parameters use

Acceleration (dB)

—Uncertain mass model
---Uncertain damping model
- Un‘certain‘ stiffness mod

el

3 4
Frequency (Hz)

Fig. 5 Case study 1, 2 and 3: Frequency response in acceleratipoifurPypg;.
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Fig. 6 Case study 1, 2 and 3: Frequency response in acceleratipoiftrP,pso.
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Fig. 7 Case study 1, 2 and 3: Frequency response in acceleratipoiftrPypg3.

4.3.2 DP versus BHA

i- Case study 4: DP uncertainty, Table 4.

DP-inner | DP-interface| BHA-inner | BHA-interface
Mass oM11=01] our1=01] Omi2=0 omro=0
Damping | &1=01 | &r1=01 ] &i2=0 ocrz2=0
Stiffness 5}(‘|71 =0.1 6|(7r‘1 =0.1 6}(7|‘2 =0 d(\r_]z =0

Table 4 Case study 4: Values of the dispersion parameters.

ii- Case study 5: BHA uncertainty, Table 5.
Figures 8, 9 and 10 show the random responses comparingainties in the DP and in the BHA. The
statistical envelopes for uncertain DP increase signifigavhen frequency increases, except around 3.7 Hz,

where they become thinner.
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DP-inner | DP-interface| BHA-inner | BHA-interface
Mass Om11=0] Oomr1=0 | Owi2=01] dur>=01
Damping | &c11=0] d&r1=0 | &,2=01 ocre=01
Stiffness 5K,I41 =0 5r<4l',l =0 5K,I42 =01 5K,F42 =01

Table5 Case study 5: Values of the dispersion parameters.
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Fig. 8 Case study 4 and 5: Frequency response in accelerationifarfygs; .
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Fig. 9 Case study 4 and 5: Frequency response in accelerationifarfags.

For uncertain BHA, the envelopes increase more signifigdrgin 5 Hz until 7 Hz, but they are much
thinner than the response of the system for an uncertaint@anl be concluded that the DP uncertainties
affects more the response of the system for the frequenggramalyzed. This is due to the DP high structural
flexibility, or low stiffness, compared to BHA stifiness.

4.3.3 Inner DOFs versusinterface DOFS

i- Case study 6: Inner DOFs uncertainty, Table 6.
ii- Case study 7: Interface DOFs uncertainty, Table 7.
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Fig. 10 Case study 4 and 5: Frequency response in accelerationifarfygss.

DP-inner | DP-interface] BHA-inner | BHA-interface
Mass oMi1=01] Our1=0 | v 2=01 omr2=0
Damping | &i1=01] d&r1=0 | &,2=01 ocrz2=0
Stiffness 5}(‘|71:0.1 &7r‘1:0 6}(7|‘2:0.1 d(‘r72:O

Table 6 Case study 6: Values of the dispersion parameters.

DP-inner | DP-interface| BHA-inner | BHA-interface
Mass oMi1=0] dwmr1=01] Omi2=0 ovmr2=0.1
Damping | cj1=0 ] dra1=01 | &,2=0 ocr2=01
Stiffness | d1=0] &r1=01] & 2=0 oxre2=01

Table 7 Case study 7: Values of the dispersion parameters.
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Fig. 11 Case study 6 and 7: Frequency response in accelerationifarfygs; .

Figures 11, 12 and 13 show the random responses comparieg ama interface uncertainties. Both
statistical envelopes increase when frequency increasespt in the region around 3.7Hz fasg». However,
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Fig. 12 Case study 6 and 7: Frequency response in accelerationifarRygs.
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Fig. 13 Case study 6 and 7: Frequency response in accelerationifariygss.

the statistical envelopes for uncertain interface DOFsrareh thinner comparing to the statistical envelopes
for uncertain inner DOFs. In the present analysis there g DrDOF in the interface, and the response is
robust to uncertainties in this interface DOF, althoughais la clear impact in the random response of the

system.

5 Concluding Remarks

This paper dealt with modeling uncertainties in the sulostmes and interfaces of a dynamical system. The
strategy proposed was based on the Craig-Bampton suhstngctmethod and the use of the nonparametric
probabilistic approach for the global modeling of uncertiais in each substructures. The random vibrations
of the torsional drill-string were analyzed, where the owmfuis divided in two substructures (1) Drill-Pipe
(DP) and (2)Bottom-Hole-Assembly (BHA).

It was reported that (1) the full nonparametric probahdiapproach, (2) the existing nonparametric prob-
abilistic approach together with the Craig-Bampton swlzstiring method, and (3) the new strategy proposed
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in this paper give similar results for the same level of utaiaty. Therefore, these approaches are consistent,
and the new strategy allows, for each substructure, to n@isteparated models of uncertainties for the inner
and the interface DOFs. Thus, it permits to control sepbrée levels of fluctuation induced by these two
sources of uncertainties. From experimental data, it isiptesto identify the dispersion parameters according
to the operators level and according to the inner or interfa®Fs.

Concerning the response of the system analyzed, it can hidtited that the random torsional vibration
of the drill-string is (1) little affected by uncertainti@s the damping operator, (2) more affected by uncer-
tainties in the DP substructure, compared to uncertaiitilee BHA, (3) similarly affected by uncertainties
in the mass and the stiffness operators, and (4) little efteloy uncertainties in the interface DOF.
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