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Abstract

The wave propagation in structures involving metamaterials can be described owing to
homogenization approaches which allow to replace the material structured at the
subwavelength scale by an equivalent and simpler, effective medium. In its simplest
form, homogenization predicts that the equivalent medium is homogeneous and aniso-
tropic and it is associated to the usual relations of continuity for the electric and mag-
netic fields at the boundaries of the metamaterial structure. However, such prediction
has a range of validity which remains limited to relatively thick devices and it is not
adapted to more involved geometries (notably three-dimensional). The following two
aspects are considered: (i) we study how the homogenization at the leading order can be
improved when the thickness of the device becomes small and (ii) we propose a heuris-
tic extension of the solution given by the leading order homogenization in order to deal
with a complex geometry; in the latter case, an application to a demultiplexer device is
proposed.

Keywords: metamaterial, homogenization, surface waves, spoof plasmons, guided
waves, multiplexing, subwavelength devices

1. Introduction

Metamaterials are artificial materials composed by the periodic arrangement of a unit cell;
among the different materials in the unit cell, stratified or layered media involving metallic
layers have been extensively studied and throughout this chapter, metallic material is thought
in the far infrared, thus in a frequency range where metal behaves as an opaque medium, at
the boundaries of which Neumann boundary condition applies. Such metallic arrays enter in
the design of metallo-dielectric structures, as the artificial magnetic conductors used in the
design of antenna and there is currently renewed interest in such array since they are the key
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piece of so-called metasurfaces (with a typical resonant behavior as in the mushroom structure
of Sievenpiper [1]). In addition to be able to produce unexpected scattering of electromagnetic
waves, these structures can support guided waves and it is for this property that they have
been proposed by Pendry et al. [2]. In this context, these guided waves have been called “spoof
plasmons” since they mimic, in the far infrared regime, the behavior of plasmons observed in
the visible range (plasmons are the wave guided at the flat interface between air and metal and
this requires a negative permittivity).

Because of their periodic subwavelength structuration, homogenization approaches are ideal
tools to predict within a rigorous mathematical framework the scattering properties of these
devices. In this chapter, we will present results coming from homogenization techniques. Our
starting point is the simplest homogenization; owing to the small parameter η = kh, with k the
wavenumber and h the typical spacing of the periodic structuration, we call simplest homogeni-
zation the homogenization performed at the leading order in η, which is the 0 order. Such
homogenization predicts that a stratified medium can be replaced by an equivalent homoge-
neous and anisotropic medium associated to the usual conditions of continuity of the electro-
magnetic fields at the boundaries between two media; it has been used for the practical
realization of several metamaterial devices, notably in the context of cloaking [3, 4]. Starting from
this classical homogenization, which regards the effect of wave propagation in the bulk of the
stratified medium, we will focus on two refinements that may be needed to get accurate results:
(i) the case of a metallic array of small thickness for which boundary layer effects can become
significant or even dominant when compared to the effect of propagation in the bulk; this case
requires to conduce the homogenization up to order 1, which does not affect the equation of
propagation in the bulk but makes new conditions at the boundaries to appear (these new
conditions are called jump conditions), (ii) the case where the metamaterial device is composed
of a succession of metallic elements arranged in a three-dimensional geometry. Although homog-
enization techniques could be used considering the whole device, the resolution may become
tricky. Rather, a heuristic extension of the result coming from the classical homogenization is
proposed, based on the analysis of the dispersion relations in each part of the whole device.

These two aspects are presented theoretically and the main theoretical results (in terms of the
scattering properties or in terms of the dispersion relations of guided waves) are supported by
experimental results. As a practical application, the realization of a demultiplexer is proposed,
allowing for the frequency selection of an incoming large band signal into different “colored”
channels.

2. The starting point: homogenization of metallic arrays at the leading
order (order 0)

The present derivation considers first a stratified medium, with the layers made of a transpar-
ent media, afterwards the limiting case of metallic arrays in the far infrared is considered (thus,
with metallic layers being associated to Neumann boundary conditions at its boundaries).
Also, we restrict ourselves to polarized TM waves, for which the transverse magnetic field
HðxÞ (x ¼ ðx1;x2Þ) is polarized along e3 and the whole system is invariant by translation along
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x3 (thus, ∂x3 ¼ 0). In the harmonic regime, the time dependence of H is e−iωt and it is omitted in
the following.

For a succession of layers made of transparent media, the wave equation reads

div
1
ϵ
∇H

! "
þ k2μH ¼ 0; (1)

with k ¼ ffiffiffiffiffiffiffiffiffi
ϵ0μ0

p ω the wavenumber in the air (ðϵ0;μ0Þ are the permeability and permittivity of
the air and ω the frequency). In Eq. (1), ðϵ;μÞ denote the relative permeability and permittivity
and they are spatially dependent. At each boundary between two layers, the continuities of H
and of 1=ϵ ∂nH apply (with ∂n the normal derivative).

Next, Eq. (1) can be written in an equivalent form, introducing the field C

divCþ k2μH ¼ 0; C ≡
1
ϵ
∇H; (2)

with boundary conditions being the continuity of H and of C.n at the boundaries between two
layers (note that the field C is linked to the electric field, see [5]).

2.1. The asymptotic analysis

The idea is to define three regions where different asymptotic expansions will be used, Eq. (3),
with respect to the small parameter η ¼ kh (with h the periodic spacing of the layers). The inner
region contains the boundary between the stratified medium and the air. The two outer
regions for x1 > 0 and x1 < 0 are the regions far enough the interface, where the evanescent
field can be neglected, while the inner region contains the evanescent field. Next, the inner
region and the outer regions are connected using so-called matching conditions, which will
constitute the boundary conditions for the outer solutions (see Figure 1).

2.1.1. The outer and inner expansions

The asymptotic expansions are thought with spatial dependences on amacroscopic coordinate x
associated with low variations of the fields (with the typical scale 1/k of the wave) and a

Figure 1. On the left, configuration in the real space with x ¼ ðx1;x2Þ coordinate; the periodicity along x2 is h; the inner
region corresponds to the neighborhood of the boundary between the stratified medium (which occupies the half-space x1
< 0) and the substrate, being the air (x1 > 0). On the right, the unit cell (inner region) in y ¼ ðy1;y2Þ coordinate, with
y ¼ x=η. The size of the unit cell along y2 is h=η with η ≡ kh.

Homogenization of Thin and Thick Metamaterials and Applications
http://dx.doi.org/10.5772/66035

151



microscopic coordinate y associated with rapid variations (with the typical scale h of the layers)
and in each region, we keep the coordinates that are relevant to describe the variations of the
field. To do so and with η ≡ kh ≪ 1, we define y ≡ x=η and we assume that (H, C) can be
expanded by using the following asymptotic expansions

outer region x1 > 0; H ¼ H0ðxÞ þ ηH1ðxÞ þ…;

C ¼ C0ðxÞ þ ηC1ðxÞ þ…;

outer region x1 < 0; H ¼ H0ðx;y2Þ þ ηH1ðx;y2Þ þ…;

C ¼ C0ðx;y2Þ þ ηC1ðx;y2Þ þ…;

inner region; H ¼ h0ðx2;yÞ þ ηh1ðx2;yÞ þ…;

C ¼ c0ðx2;yÞ þ ηc1ðx2;yÞ þ…;

8
>>>>>>>>>>><

>>>>>>>>>>>:

(3)

with the outer terms (Hn, Cn) for x1 < 0 and the inner terms (hn, cn) being periodic w.r.t. y2. The
differential operator reads, in the different regions, as

x1 > 0; ∇ ! ∇x;

x1 < 0; ∇ ! ∇x þ
1
η

∂
∂y2

e2;

inner region; ∇ ! ∂
∂x2

e2 þ
1
η
∇y:

8
>>>>><

>>>>>:

(4)

2.1.2. The matching conditions

The inner and outer problems have to be associated with boundary conditions or radiation
conditions which ensure that the problems are well-posed. Since the outer expansions hold
true only far away from the interface, the outer terms do not have to satisfy the continuity
conditions at x1 = 0. Reversely, the conditions at infinity satisfied by the inner terms are
unknown a priori. These missing conditions are provided by the matching conditions, which
read at leading order

H0ð0þ;x2Þ ¼ lim
y1!þ∞

h0ðx2;yÞ, (5a)

H0ð0−;x2;y2Þ ¼ lim
y1!−∞

h0ðx2;yÞ, (5b)

C0ð0þ;x2Þ ¼ lim
y1!þ∞

c0ðx2;yÞ; (5c)

C0ð0−;x2;y2Þ ¼ lim
y1!−∞

c0ðx2;yÞ: (5d)

2.2. The homogenized wave equation at the leading order

We want to establish the wave equation satisfied by the mean fields 〈H0〉ðxÞ and 〈C0〉 ðxÞ for
x1 < 0, where we have defined the average over y2∈Y ¼ ð−1=2; 1=2Þ. The homogenized wave
equation is sought for x1 < 0, only. For x1 > 0, the wave equation is obviously
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divxC
0 þH0 ¼ 0; C0 ¼ ∇xH0; for x1 > 0; (6)

being the same at each order and the fields equal their averages. Eq. (2), at leading order (1/η),
read ∂y2C

0
2 ¼ 0 ¼ ∂y2H

0, whence

〈H0〉ðxÞ ¼ H0ðxÞ; 〈C0
2〉 ðxÞ ¼ C0

2ðxÞ: (7)

Now, we establish the relation between 〈C0〉 and H0 (this latter being equal to its average).
Eq. (2) at order η0 in the outer problems x1 < 0 give

C0ðx;y2Þ ¼
1

ϵðy2Þ
∇xH0ðxÞ þ ∂H1

∂y2
ðx;y2Þe2

! "
; (8)

and

divxC
0ðx;y2Þ þ

∂C1
2

∂y2
ðx;y2Þ þ μðy2ÞH

0ðxÞ ¼ 0: (9)

Averaging both equations, with C0ðx;y2Þ ¼ C0
1ðx;y2Þe1 þ C0

2ðxÞe2 and owing to the periodicity
of H1 and of C1

2 w.r.t. y2 (thus, 〈∂y2H
1〉 ¼ 0 ¼ 〈∂y2C

1
2〉), we easily get the homogenized wave

equation at the first order

〈C0〉 ðxÞ ¼ 1
ϵ

# $
∂H0

∂x1
ðxÞe1 þ 〈ϵ〉−1

∂H0

∂x2
ðxÞe2;

divx〈C0〉 þ 〈μ〉H0 ¼ 0:

8
><

>:
(10)

2.3. The continuity relations at the leading order

To the homogenized wave equation (10), we have to associate continuity (or discontinuity)
conditions at the interface x1 = 0. To that aim, we have to consider the inner solution and its
matching with the two outer solutions. We are looking for the quantities ⟦H0⟧ and ⟦〈C0

1〉⟧.
Eq. (2) for the inner problem tell us, at the leading order (in 1/η), that ∇yh0 ¼ 0 from which h0

does not depend on y. From the previous section, we already know that H0(x) does not depend
on y2, from which the matching conditions, Eqs. (5a) and (5b), give

H0ð0þ;x2Þ ¼ H0ð0−;x2Þ ¼ h0ðx2Þ; and ⟦H0⟧ ¼ 0: (11)

Next, Eq. (2) in the inner region gives also, at the leading order, divyc0 ¼ 0; by integrating this
equation on Y × %−∞;þ ∞½, we get

ð

Y
dy2½c

0
1ðx2;þ ∞;y2Þ−c

0
1ðx2;−∞;y2Þ% ¼ 0; (12)

(we have used the periodicity of c0 w.r.t. y2). From the matching conditions Eqs. (5c) and (5d)
integrated over Y, we get
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C0
1ð0

þ;x2Þ ¼ 〈C0
1〉 ð0

−;x2Þ; and ⟦〈C0
1〉⟧ ¼ 0: (13)

At the first order, the usual continuities of the electromagnetic fields are found.

2.4. The homogenized problem for metallic layers in the far infra red

For rigid layers in the air and denoting ϕ the filling fraction of air within the stratified medium,
we have: in the air ϵ ¼ 1 ¼ μ; the metal in the far infrared regime can be considered as an
opaque medium at the boundaries of which Neumann boundary condition applies; this is
correctly accounted for by considering the limiting values 1=ϵ ¼ 0 ¼ μ (see e.g., [6]). Thus, the
homogenized problem reads

Homogenization at order 0

divCþ k2ϕH ¼ 0; C ¼ ϕ 0
0 0

! "
∇H;

H and C:n continuous at the boundary of the metallic array:

8
<

:
(14)

It is worth noting that the above continuity relation means notably that (i) at the interface with
the air, ϕ∇H:njarray ¼ ∇H:njair while (ii) at the boundary with a ground plane, the usual
Neumann boundary condition applies ∇H:njarray ¼ 0.

3. Weakness of the first-order homogenization for small thickness devices

In this section, we inspect the validity of the homogenized problem, Eq. (14). This is done in the
configuration of Figure 2, where a metallic array is placed in the air and illuminated by a plane
wave at oblique incidence θ. We measured experimentally the transmission coefficient Texp for
the array of thickness e (and the array structuration is characterized by ϕ and h) and compared
Texp to the transmission coefficient T obtained in the homogenized problem. To anticipate, we

Figure 2. Scattering of an incident plane wave on a slab of stratified medium (the layers are metallic); the homogenization
process produces an equivalent slab, described by Eqs. (14) and (18) at order 0 and at order 1, respectively.
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shall see that the leading order homogenization may become unsatisfactory for small thick-
nesses of the array and going up to the homogenization at order 1 is necessary. Thus, the
derivation of the scattering coefficients in these homogenized problems is presented first,
afterwards comparisons with those measured experimentally are presented.

3.1. The scattering coefficients in the homogenized problems

Let us start with the first-order homogenization, for which the explicit solution of Eq. (14) read

x1 < −e=2; HðxÞ ¼ eik cos θðx1þe=2Þ þ Re−ik cos θðx1þe=2Þ! "
eik sinθx2 ;

jx1j < e=2; HðxÞ ¼ aeikx1 þ be−ikx1
! "

eik sinθx2 ;

x1 > e=2; HðxÞ ¼ Teik cos θðx1−e=2Þþik sinθx2 :

8
><

>:
(15)

We used the dispersion relations coming from the wave equations ΔH þ k2H ¼ 0 in the air and
∂2x21

H þ k2H in the homogenized stratified slab. Next, applying the relations of continuity

applying at x1 ¼ %e=2, we get the scattering coefficients

R ¼ −
z1z&2e

ike−z1z2e−ike

z21eike−z
2
2e−ike

;

T ¼ jz1j2−jz2j2

z&12eike−z
2
2e−ike

;

8
>>>><

>>>>:

(16)

where z&i denotes the complex conjugate of zi, i ¼ 1; 2. In fact, for the leading order homogeni-
zation, ðz1;z2Þ are real with

z1 ≡ 1−
cosθ
ϕ

# $
; z2 ≡ 1þ cosθ

ϕ

# $
; (17)

and cosθ=ϕ is the effective impedance mismatch between the two media. As previously said,
the leading order homogenization will fail and the next order homogenization is required. This
homogenization at order 1 has been considered in [7] and it has been shown that the same
equation in the bulk (see Eq. (14)) is obtained, but instead of the continuities of H and C.n as
boundaries conditions, jump conditions are obtained. Specifically, the homogenization at order
1 read

Homogenization at order 1

divCþ k2ϕH ¼ 0; C ¼ ϕ 0
0 0

# $
∇H;

⟦H⟧ ¼ hB
2

ðC− þ CþÞ:n and ⟦C⟧:n ¼ hC
2

∂2H−

∂x22
þ ∂2Hþ

∂x22

# $
:

8
>><

>>:

(18)

In the above equations, it appears that both H and C.n are now discontinuous (the obtained
conditions are jump conditions at the boundaries of the stratified medium). This is why H±

(same for C) are defined, as the limit values of H at the boundary. In this case, the expressions
of (R, T) in Eq. (16) are still valid, but we get
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z1≡ 1−
cosθ
ϕ

! "
þ ikh B cosθþ C

sin 2 θ
ϕ

! "
−ðkhÞ2 sin 2θ

BC
4

1þ cosθ
ϕ

! "
;

z2≡ 1þ cosθ
ϕ

! "
−ikh B cosθ−C

sin 2 θ
ϕ

! "
þ ðkhÞ2 sin 2θ

BC
4

1þ cosθ
ϕ

! "
:

8
>>>><

>>>>:

(19)

The parameters B and C, that we could call boundary parameters, depend only on the filling
fraction of air in the layered medium and they are given by

B ¼ −
1
π

log sin
πϕ
2

# $
; C ≃

π
16

ϕ2: (20)

In principle, (H, C) in the homogenization at order 0, Eq. (14), approximate the solution of
the actual problem up to O(η) and (H, C) in the homogenization at order 1, Eq. (18), approx-
imate the solution of the actual problem up to O(η2). Thus, we could expect that the differ-
ence between both remains incidental. We will see that it is not the case. The reason is that
the jump conditions obtained at order 1 encapsulate the effect of the boundary layers at the
entrance and at the exit of the stratified slab and these effects may become dominant
compared to the effect of the propagation in the bulk of the slab. This is what we inspect
below.

3.2. Experimental measurements of the scattering coefficients for varying slab thicknesses e

To test the ability of the leading order homogenization to capture the scattering properties of a
metallic array, we realized six arrays of different thicknesses e = 30 μm and 0.25, 1, 4, 14 and 20
mm. Otherwise, h = 6 mm and ‘ ¼ 5 mm for the six arrays. We performed the measurements of
the transmission coefficients Texp using two X-band frequency horn antennas at both extremi-
ties of an electromagnetic chamber (Figure 3). The arrays were amounted on a plate able to
rotate in order to realize varying incidence angles θ (and the incidence wave is polarized in TM
polarization).

We start by reporting in Figure 4 the spectra jTexpj2 measured for the two arrays of thickness
e = 30 μm and e = 20 mm (right panels). For frequencies in the range [8,12] GHz, the thinnest
array realizes ke ∈ ½5; 7:5& ' 10−3 and the thickest array ke ∈ ½3; 5&. On the two left panels, the
corresponding spectra jTj2 given by Eq. (16) using the leading order homogenization (ðz1;z2Þ
given by Eq. (17)) and using the homogenization at order 1 (ðz1;z2Þ given by Eq. (19)) are
reported for comparison. For e = 30 μm, the leading order homogenization predict jTj≃1 in
the whole ranges of frequencies and incidence angles. This is clearly not the case for |T|
given by the homogenization at order 1 and this latter appears to be in good agreement with
jTexpj (we get jT−Texpj=jTexpj~3% averaged over all f and θ).

For the thicker array, the transmission predicted by the homogenization at order 0 is closer to
the measured transmission; in this case, although the spectra obtained using the homogeniza-
tion at order 1 reproduces better the form of the measured spectra, the relative errors are in
both cases about 15% (these highest discrepancies are due to highest relative errors for trans-
missions close to 0).
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Figure 3. On the top, examples of two metallic arrays; on the bottom, schema of the measurement technique (see text).

Figure 4. Spectra of transmission as a function of the frequency f∈½8; 12" GHz and the incidence angle θ. The left and
central panels refer to the results coming from the homogenizations at the order 0 and at the order 1, to be compared with
the measured transmission jTexpj2 (right panel). Spectra are given for the thinner and thicker slabs (see text).

Homogenization of Thin and Thick Metamaterials and Applications
http://dx.doi.org/10.5772/66035

157



Next, we inspect the variations of the transmission coefficient as a function of ke for the six
arrays, Figure 5. Each plot corresponds to a fixed frequency (f = 8, 10 and 12 GHz) and we
reported jTexpj2 in blue symbols (each blue point corresponds to one of the six arrays) and jTj2

coming from the homogenization at order 0 (dotted gray lines) and coming from homogeniza-
tion at order 1 (plain gray lines).

It is visible that thin arrays are not correctly described by the homogenization at order 0. More
specifically, it largely underestimates the scattering strength of thin arrays (small e produces
systematic large errors in the prediction) and it becomes accurate only when ke > 1. To the
contrary, the homogenization at order 1 is able to describe the scattering strength of thin and
thick arrays.

In conclusion, the homogenization at leading order is valid for ke < 1 and kh < 1 and thus
helpful to predict the behavior of metallic arrays as used in the design of many metamaterial
devices (see also [6]). However, care has been taken when using arrays with vanishing thick-
nesses, typically ke < 1. In such cases, the homogenization at order 1 has to be considered. As
previously said, this is because the leading order homogenization does not account for the
scattering effects of the wave at the entrance and at the exit of the array (these are boundary
layer effects) which are correctly accounted for in the homogenization at order 1 through the—
boundary—parameters ðB;CÞ. For even thinner array, the boundary layer effects at both
extremities of the array may interact and another homogenization strategy has to be

Figure 5. Transmission coefficients as a function of e; jTexpj2 measured for the six arrays (blue symbols), jTj2 coming from
the homogenization at order 0 (dotted gray lines) and coming from the homogenization at order 1 (plain gray lines),
(a) f ¼ 8 GHz, (b) f ¼ 10 GHz and (c) f ¼ 12 GHz.
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considered; it is called interface homogenization [7] and a practical application of this interface
homogenization has been proposed for metallo-dielectric device [5].

4. Use of the results coming for the first-order homogenization for
metamaterials with complex geometry

In this section, we investigate another configuration of wave propagation where predictions
provided by the homogenization are useful. We consider the ability of periodic structures to
present a band structure, with frequency ranges where the wave propagation is forbidden
(band gaps) and frequency ranges where the propagation of guided waves is allowed (pass-
bands). We study a structure based on such principle. First, the dispersion relation of guided
waves within a periodic media (made of metallic plates or metallic rods) is discussed and it is
shown that the leading order homogenization is able to reproduce the real dispersion relation.
Next, a system of waveguides is thought, based on the band structures of the periodic media,
in the waveguide and in the surrounding medium. The application of demultiplexing RF
signals is proposed and experimentally validated.

4.1. Dispersion relation of waves guided in a periodic medium

Let us start with the derivation of the wave guided in a 2D stratified medium (the famous
“spoof plasmon,” Figure 6a). In the homogenized problem, Eq. (14), this wave corresponds to
the solution of the homogeneous problem (solution in the absence of source), for which the
solution reads

0 < x1 < e; HðxÞ ¼ cos kx1
cos ke

eiβx2 ;

x1 > e; HðxÞ ¼ e−
ffiffiffiffiffiffiffiffi
β2−k2

p
ðx1−eÞ eiβx2 :

8
><

>:
(21)

Figure 6. (a) 2D geometry of metallic layers between a ground plane and the air, spoof plasmons can propagate according
to Eq. (22), (b) 3D geometry of a structured waveguide of width w, guided modes can propagate according to Eq. (27).
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In the above expression, the field H for 0 < x1 < e has been written in order to satisfy the
Neumann boundary condition on the ground plane (∂x1Hð0;x2Þ ¼ 0) and the continuity of
Hðe;x2Þ. It is easy to see that applying the second relation of continuity, namely
ϕ∂x1Hðe−;x2Þ ¼ ∂x1Hðeþ;x2Þ coming from Eq. (14), we obtain the dispersion relation of the
guided waves

β2 ¼ k2 1þ ϕ2 tan 2ke
! "

; tan ke > 0; (22)

with ϕ the filling fraction of air and e the length of the layers in the stratified medium. This
dispersion relation has been established previously using approximate modal method [2] and
it is easily obtained by considering the equivalent homogenized problem.

It is worth noting that such guided wave propagates in the homogenized medium described
by the wave equation

∂2H
∂x21

þ k2H ¼ 0; (23)

(according to Eq. (14)) and basically, the wave equation (23) tells us that the wave inside the
grooves can only propagate along one direction (the x1-direction). While in principle the upper
frequency fþc of the band gap is obtained for ke ¼ π=2, from Eq. (22), it is in practice limited by
the first Brillouin zone β ¼ π=h, whence

fþc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ϕ2 tan 2 2πe f
þ
c

c

s

¼ c
2h

; fþc <
c
4e

: (24)

Now, we want to go toward a 3D structuration (Figure 6b), where rods are considered, with
radius r, periodic spacing h along x2 and x3 and height e. The extension of the homogenization
results (Eq. (14)) to three dimensions is easy and we find that a periodic structuration of rods
produce an equivalent transverse isotropic medium, with the axis of anisotropy along e1 (the
two other directions are equivalent, now ϕ the volume fraction of air in the rods, whence
ϕ ¼ 1−πr2=a2). Let us consider that these rods forms a waveguide surrounded by a set of
higher rods with height es (the surrounding rods form the surrounding medium SM) and
imagine that we work in a frequency range such that

f >
c
4es

; (25)

that is in the band gap of the surrounding medium, from which H≃0 (for x3 < 0 and x3 > w).
Thus, it sounds reasonable to impose H = 0 at x3 ¼ 0;w; as boundary conditions for the field in
the waveguide with the rods of height e. Looking for the existence of guided wave in the
waveguide, we extend the homogenization result to this 3D configuration assuming a solution
of the form
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0 < x1 < e; HðxÞ ¼ cos kx1
cos ke

eiβx2 sin
πx3
w

! "
;

x1 > e; HðxÞ ¼ e−
ffiffiffiffiffiffiffiffi
β2−k2

p
ðx1−eÞ eiβx2 sin

πx3
w

! "
:

8
>><

>>:
(26)

In the simple form thought above, we added heuristically dependence in the x3 direction
which accounts for Dirichlet boundary conditions at x3 ¼ 0;w; when working in the band gap
of the surrounding medium.

Otherwise, Eq. (26) accounts for the continuity of H at the interface with the air and for the
Neumann boundary condition at the ground plane; as previously, the additional condition
ϕ∂zHðL−Þ ¼ ∂zHðLþÞ yields the new dispersion relation

β2 ¼ k2 1þ ϕ2 tan 2 ke
$ %

−
π
w

! "2
: (27)

In Eq. (27), the band gap above fþc still exists and it does not significantly differ from Eq. (24) (it

is sufficient to replace c=ð2hÞ in the right-hand side term of Eq. (24) by c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðh=wÞ2

q
=ð2hÞ); but

now, a new band gap has appeared below the cut-off frequency f −c (given from Eq. (27) for
k tan ke ¼ π=ðwϕÞ), whence

f −c tan
2πf −c
c

¼ c
2wϕ

: (28)

The existence of the resulting finite pass band operating in the frequency range ½f −c ;f
þ
c & is the

key to realize filtering; in the following, we denote

FRð waveguideÞ ¼ ½f −c ;f
þ
c &

this frequency range and we refer to wn, with n an integer, a waveguide obtained when n lines
of rods have been shortened (with resulting height e) with respect to the rods of height es
forming the surrounding medium (SM); the wn waveguide has a width w ¼ ðnþ 1Þh.

4.2. Experimental validation of the homogenized dispersion relation

To begin with, we validate experimentally the existence of the pass band and check the validity
of our predictions of the FR with bounds fþc , f

−
c in Eqs. (24) and (28) and of the associated

wavenumbers Eq. (27). Structures containing a waveguide w1 (w ¼ 2h) and a waveguide w3

(w ¼ 4h) have been realized. The surrounding medium is in both cases made of rods with h = 7
mm, r = 3 mm and es = 30 mm. The shortened rods have e = 17 mm.

First, we report measurements of the electric field in the range [2.1– 4] GHz (Figure 7 for w1).
This has been done in a semianechoic chamber using an Agilent 8722ES network analyzer; an
S-band coaxial-to-waveguide transition has been used as an excitation source and an electric
near-field probe mounted on a motorized two-dimensional scanning system has been used to
measure the field distribution at a distance of about 1 mm above the structure. The wave
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guided within the waveguide w1 is visible at f = 3.7, 3.8 and 3.9 GHz, as expected from the
frequency range FR(w1) = [3.6–4] GHz (see Table 1).

To go further, we report the transmission in the w1 and w3 waveguides as a function of the
frequency (Figure 8). This has been done by placing a second coaxial-to-waveguide transi-
tion at the end of the waveguide and by implementing a normalization to the free air
transmission between the emitter and the receptor. In both cases, the existence of a finite
pass band is confirmed (the waveguide is called colored) and the observed bounds of the FR
are in good agreement with our predictions (the theoretical dispersion relations are reported,
with FR(w3) = [3.1–4]). One can notice here the importance of the attenuation for the spoof-
plasmon modes providing the smallest wavelengths. These wavelengths correspond to the
highest frequencies in the transmission bands. This phenomenon, known in plasmonics,
happens due to intrinsic losses in the considered materials for the high-wave-vector compo-
nents.

4.3. Application to the design of a demultiplexer

This validation being performed, a multichannel demultiplexer is easy to design; the principle
of the demultiplexing is shown in Figure 5. A main waveguide, called white guide, is built
in order that the FR(white) covers the working frequency range; this is done by choosing:
(i) w large enough to produce a small enough f −c (see Eq. (28)) and (ii) e small enough to
produce a large enough fþc (see Eq. (24)). By setting w ¼ 10h ¼ 70 mm and e = 15 mm, we
expect FR(white) [2.5–4.5] GHz.

Figure 7. Wavefields of the guided wave in the w1 waveguide at f = 3.7, 3.8 and 3.9 GHz.

f (GHz) 3.7 3.8 3.9

measured λGW (mm) 42 30 21
λGW ¼ 2π=β from Eq. (26) 43 28 20

Table 1. Wavelength λGW of the guided wave in the w1 waveguide, measured experimentally and given by Eq. (27).
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Next, three-colored waveguides (red, green and blue) are thought in order to support guided
mode propagation in three different frequency ranges with no overlapping (see Figure 9).
Again from Eqs. (23) and (27), thin FR are obtained for small w and we set w ¼ 2h ¼ 14 mm.
By choosing L = 17, 19 and 21 mm, we expect this condition to be fulfilled with

FRð red Þ ¼ ½3 − 3:3% FRð green Þ ¼ ½3:3 − 3:6%
FRð blue Þ ¼ ½3:6 − 4:0%:

!
(29)

The efficiency of the demultiplexer has been tested experimentally and it is illustrated in
Figure 10. The frequency selection of the colored channel are visible, with the red channel

Figure 8. Theoretical dispersion relations of the guided wave in the w1 (left panel) and w3 (center panel), given by the
plain blue curves, given by Eq. (27). The dispersion relation of the surrounding medium is indicated in plain gray lines,
defining a band gap for f > 2.35 GHz. Dotted blue lines show the usual dispersion relations of spoof plasmons, Eq. (22), for
the periodic array of rods alone (with e = 17 mm). Right panel: experimental measurement of the transmission for the w1

and w3 waveguides in the range [2.1–4] GHz.

Figure 9. (a) Design of the demultiplexer, the large channel supports guided waves in the whole working frequency range
[2.5–4.5] GHz, while each colored channel supports guided waves in a limited frequency range, with no overlapping of
the three ranges. (b) Corresponding dispersion relations given by the homogenization, Eq. (27). The gray line shows the
dispersion relation of the surrounding medium (all channels work in the band gap of the surrounding medium); the
dotted black line shows the light line.

Homogenization of Thin and Thick Metamaterials and Applications
http://dx.doi.org/10.5772/66035

163



being active for f ¼ 3:1 GHz, the green channel for f ¼ 3:4 GHz and the blue channel for
f ¼ 3:8. Also as expected, the white channel is active for the three considered frequencies.

5. Conclusion

The design of devices made of subwavelength periodic structure can be helped using the
various theoretical predictions provided by homogenization approaches. Among the different
homogenization technique, the one presented in this chapter has the advantage to be devel-
oped within a rigorous mathematical framework and it yields predictions in a deductive way,
that is without any adjustable parameters. We illustrate the ability of such techniques for the
scattering properties of metamaterial devices (underlying the limit of the simplest homogeni-
zation) and for the ability of certain metamaterial devices to support guided waves of “spoof
plasmon” type.

As indicated throughout this chapter, alternative forms of homogenizations can be used,
which are more adapted to thin devices. These theoretical tools can be used in order to realize
the control of light propagation in a desired way.

Figure 10. Electric fields scanned above the structure at 3 frequencies chosen respectively in the red (f = 3.1 GHz), in the
green (f = 3.4 GHz) and in the blue (f = 3.8 GHz) frequency range ½f c−; f cþ$.
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