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Abstract

A homogenization method for thin microstructured surfaces and films is presented. In both

cases, sound hard materials are considered, associated with Neumann boundary conditions and

the wave equation in the time domain is examined. For a structured surface, a boundary condition

is obtained on an equivalent flat wall, which links the acoustic velocity to its normal and tangential

derivatives (of the Myers type). For a structured film, jump conditions are obtained for the

acoustic pressure and the normal velocity across an equivalent interface (of the Ventcels type).

This interface homogenization is based on a matched asymptotic expansion technique, and di↵ers

slightly from the classical homogenization, which is known to fail for small structuration thicknesses.

In order to get insight into what causes this failure, a two-step homogenization is proposed, mixing

classical homogenization and matched asymptotic expansion. Results of the two homogenizations

are analyzed in light of the associated elementary problems, which correspond to problems of fluid

mechanics, namely, potential flows around rigid obstacles.
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I. INTRODUCTION

Acoustic metamaterials consisting in massive materials perforated by periodic subwave-

length holes [1–3] or more sparse structures involving a periodic arrangement of wires [4]

are able to control the wave propagation with high flexibility. In comparison, phononic

crystals have a priori higher dimensions because of their wavelength-scale period. However,

if the metamaterials have a subwavelength period, many of the observed phenomena are

attributable to Fabry-Perot type resonances, resonances in the hole or resonances of the

wires. Therefore, these structures have a limitation in their thickness, which has to be at

wavelength scale to produce such resonances (and the thickness refers to the size in the

direction perpendicular to the planes containing the periodic cells). In order to reduce the

size of the devices, structures with a subwavelength thickness have been developed. They

are known as metasurfaces and metafilms. Despite the vanishing thickness in comparison

to the incident wavelength, the capability of these ultra-thin devices to control the wave

propagation has been evidenced. This may be due to resonances which are not trivially

related to their thickness. It can be a thin elastic membrane within the unit cell [5, 6], or

resonances of labyrinthine or curled elements squeezed in the unit cell [7–9].

Because of their subwavelength periodicity, homogenization techniques are natural tools

to describe the e↵ective properties of metamaterials. The classical homogenization has

been used successfully to describe the acoustic propagation in thick metamaterial slabs; in

this case, an equivalent slab is found, with the same thickness than the original one, and

composed of an homogeneous and anisotropic medium with e↵ective bulk modulus and mass

density [10, 11]. When metafilms or metasurfaces are concerned, first attempts have been

proposed using the same e↵ective parameters as for thick slabs but attributing an ad hoc

small thickness (see e.g. the discussions § 3 in [12] and §2 in [13]). It is now admitted that

these approaches are not pertinent and rather, jumps or transition conditions for the fields

across an equivalent surface are thought. To that aim, interface homogenizations based on

matched asymptotic expansion techniques have been used in di↵erent contexts of waves [14–

18]. In [19], we presented such interface homogenization following the approach developed

in solid mechanics [20, 21]; we considered scalar waves propagating through structured rigid

films in the frequency domain and the failure in the classical homogenization was illustrated

for thicknesses of the film passing below the inverse of the wavenumber.
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The present paper extends this study in the two following senses. First, the problem

is considered in the time domain, and the case of structured surfaces is included (the two

considered geometries are shown in Fig. 1). The di�culty in considering the equations in

the time domain is rather incremental but it allows us to question the equation of energy

conservation, and this is not incidental. If we have numerical implementations in mind, for

the boundary conditions at an equivalent wall (Fig. 1(a)) or for the jump conditions at an

equivalent interface (Fig. 1(b)), these surfaces must be associated to positive energies. This

is ensured following the intuitive argument that the numerical domain has to be a truncation

of the original domain, where the microstructure has been removed. This is in fact classical

in the literature considering thin homogeneous layers [22, 23] but it has been less regarded

for thin structured layers (an exception can be found in [18] where the authors refer to non-

centered jump conditions). Next, we address the validity of the classical homogenization

in a di↵erent way than the brut comparison of results coming from a particular scattering

problem, as proposed in [19]. In classical homogenization, the bulk of the structured material

is replaced by an equivalent homogeneous anisotropic material; a layer of this equivalent

material continues to mimic the response of the real structure (and this is a good news,

otherwise, classical homogenization would be completely useless). The corresponding layer

being homogeneous, one can apply a matched asymptotic expansion technique to determine

the e↵ective conditions on a wall or across an interface for vanishing layer thicknesses. This

is very similar to the two-step homogenization proposed in [24], but in the present case, we

know that the obtained conditions will be unsatisfactory. Nevertheless, it is enlightening to

analyze what causes the failure of this (in some sense dishonest) homogenization, and we say

that it fails when it di↵ers from the interface homogenization. This is done by analyzing the

associated elementary problems, which question flows of perfect fluids around rigid obstacles.

We start with the linearized Euler equations for the acoustic pressure P (X, t) and ve-

locity U (X, t), written in the time domain, with t the time and X = (X
1

, X
2

) the spatial

coordinates

8
>><

>>:

⇢
0

@U

@t
= �rP,

�
0

@P

@t
+ divU = 0.

(1)

In Eqs. (1), ⇢
0

is the mass density and �
0

= (⇢
0

c2
0

)�1 the isentropic compressibility of the
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(a) (b)

FIG. 1. (a) Wall structured with periodic rigid roughnesses; the homogenization process gives an

equivalent flat wall associated to a boundary condition of the Myers type, Eq. (19), (b) Array of

periodic rigid inclusions; the homogenization process gives an equivalent thin interface associated

to jump conditions of the Ventcels type, Eqs. (27).

fluid (c
0

denotes the sound speed in the fluid). In a bounded domain ⌦, energy conservation

reads
d

dt
E +

Z

@⌦

dS ⇧.n = 0,

with E the acoustic energy and ⇧ the Poynting vector

E =

Z

⌦

dV
h⇢

0

2
U2 +

�
0

2
P 2

i
, ⇧ = PU .

In the time domain, we consider acoustic waves with a minimum wavelength 2⇡/k larger

than the typical periodicity of the microstructuration h, such that

" ⌘ kh ⌧ 1.

To be consistent, we will work in dimensionless coordinates. We define

x ⌘ kX, ⌧ ⌘ kc
0

t,

and

u(x, ⌧) ⌘ ⇢
0

c
0

U (X, t), p(x, ⌧) ⌘ P (X, t).

Now, the Eqs. (1) read in dimensionless form

8
>><

>>:

@u

@⌧
= �r

x

p,

@p

@⌧
+ div

x

u = 0.

(2)
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In principle, the presented homogenizations apply in three dimensions, and for any shape

of structurations, including 3D structurations. In order to get explicit conditions, we shall

restrict ourselves to the case of two dimensional layered structurations; we shall specify when

the calculations loose in generality.

II. HOMOGENIZATION OF MICRO-STRUCTURED SURFACES

We consider a rigid wall with periodic roughnesses, Fig. 1(a) (to anticipate, a layered

structuration is shown, but as previously said, more involved structurations in two and three

dimensions can be considered).

A. The matched asymptotic expansion

1. Inner and outer expansions

The idea is to expand the solutions of Eqs. (2) with respect to the small parameter ",

namely

8
><

>:

p = p0(x, ⌧) + "p1(x, ⌧) + "2p2(x, ⌧) + . . . ,

u = u0(x, ⌧) + "u1(x, ⌧) + "2u2(x, ⌧) + . . . .

(3)

In principle, this expansion can be used in the whole space (see e.g. [14]). Nevertheless,

if the spatial derivatives in Eq. (2) make " to appear, the resolution may become tricky.

Such complications are avoided if a displacement in x of order unity produces a variation in

p and u of order unity, namely @
xip ⇠ p. This is ensured in the far field, that is far enough

from the wall, where @
XiP ⇠ kP ! @

xip ⇠ p. The story is di↵erent in the near field: there,

the roughnesses generate evanescent waves whose strongest variations are associated to the

smallest scales of the microstructure, say @
XiP ⇠ P/h ! @

xip ⇠ p/". The wavefield has

also variations when moving along the interface which are associated to the typical central

wavelength. This behavior is associated to low variations of p (for which @
x2p ⇠ p). Thus,

we have to deal with di↵erent scales in the far and near fields, and with two scales in the

near field.

The presented approach uses two ingredients to account for these multiple scales: first, a

5



separation of the space into an inner and an outer regions, which correspond to the near and

far fields, respectively. In the outer region, the natural coordinate x ⌘ (x
1

, x
2

) is adapted

and the expansions in Eq. (3) applies. In the inner region, a new system of coordinates

y = x/" is used which accounts for the rapid variations of the evanescent fields (@
yip ⇠ p).

Next, the slow variations along x
2

are accounted for by keeping x
2

as additional coordinate.

Owing to these modifications, the expansions read

Outer exp.

8
><

>:

p = p0(x, ⌧) + "p1(x, ⌧) + . . . ,

u = u0(x, ⌧) + "u1(x, ⌧) + . . .

Inner exp.

8
><

>:

p = q0(y, x
2

, ⌧) + "q1(y, x
2

, ⌧) + . . . ,

u = v0(y, x
2

, ⌧) + "v1(y, x
2

, ⌧) + . . .

(4)

and the terms (qn,vn), n = 0, 1, . . . , of the inner solution are assumed to be periodic w.r.t.

y
2

. Now, Eqs. (2) can be written in the inner and in the outer regions, owing to the

expressions of the di↵erential operator

8
><

>:

r ! r
x

, in the outer problem,

r !

1

"
r

y

+
@

@x
2

e
2

, in the inner problem.

(5a)

(5b)

FIG. 2. The wall structured by periodic roughnesses in the two systems of coordinates x and y.

In y-coordinates, Y
�

and Y
m

denote the regions occupied by the rigid material and by the air

respectively (Y = lim
y

m
1 !+1 Y

m

); � is the boundary of Y
�

where Neumann boundary condition

applies. S
c

= e'/h is the dimensionless surface of air in the groove.

Thanks to the periodicity of (qn,vn) w.r.t. y
2

, we shall consider the domain Yt

m

=

(0, ym
1

) ⇥ (�1/2, 1/2) in y coordinate (Fig. 2). Y
�

is the domain occupied by the rigid
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material, and Neumann boundary conditions apply on the boundary � of Y
�

in contact with

the air. Next, we define Y
m

= Yt

m

\Y
�

and the unit cell corresponds to Y = lim
y

m
1 !1 Y

m

.

Inside Y, the air groove has a thickness e/h along y
1

and a height ' along y
2

; we denote

S

c

= e'/h the corresponding surface.

Finally, it is worth noting that, in the three dimensional case, it is su�cient to replace

x
2

by x0 = (x
2

, x
3

) and the calculations are the same than in two dimensions.

2. Equations at orders 0 and 1

We start by reporting the equations that will be needed in the following. For the outer

solution, using Eq. (5a), Eqs. (2) are at the leading order
8
>>><

>>>:

@u0

@⌧
= �r

x

p0,

@p0

@⌧
+ div

x

u0 = 0,

(6a)

(6b)

and for the inner solution, using Eq. (5b), we get

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

r
y

q0 = 0,

div
y

v0 = 0,

@v0

@⌧
+

@q0

@x
2

e
2

+r
y

q1 = 0,

@q0

@⌧
+

@v0
2

@x
2

+ div
y

v1 = 0.

(7a)

(7b)

(7c)

(7d)

Next, the equations Eqs. (6)-(7) together with the boundary conditions and the matching

conditions will be used to find the conditions to be applied on an equivalent surface.

3. Boundary conditions and matching conditions

Because of the separation of the space into two regions, something has to be said on the

boundary conditions. By construction, the rigid roughnesses are seen by the inner solution

only, and the Neumann boundary condition applies

vn.n|� = 0, n = 0, 1, . . . (8)
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The outer solution does not see the roughnesses (also by construction) but it has to match

the inner solution in some intermediate region. These matching conditions will be written

following [20] for x
1

! 0+ corresponding to y
1

! +1 (and we denote f(0) the limit value

of f for x
1

! 0+). To do so, we use Taylor expansions of p0(x
1

, x
2

, ⌧) = p0(0, x
2

, ⌧) +

x
1

@
x1p

0(0, x
2

, ⌧) + · · · = p0(0, x
2

, ⌧) + "y
1

@
x1p

0(0, x
2

, ⌧) + . . . , same for u0. Identifying the

terms in "n, n = 0, 1 in the inner and outer expansions, Eqs. (4), we get, for n = 0

8
>>><

>>>:

p0(0, x
2

, ⌧) = lim
y1!+1

q0(y, x
2

, ⌧),

u0(0, x
2

, ⌧) = lim
y1!+1

v0(y, x
2

, ⌧),

(9a)

(9b)

and for n = 1, we shall need only the matching condition for u1

u1(0, x
2

, ⌧) = lim
y1!+1


v1(y, x

2

, ⌧)� y
1

@u0

@x
1

(0, x
2

, ⌧)

�
. (10)

When not needed, the dependance of the functions on the spatial variables and on the

time are omitted for readability.

B. Determination of the equivalent boundary condition

1. Solutions at order 0

First, the Eq. (7a) tells us that q0 does not depend on y, and from the matching condition

Eq. (9a), we get

q0(x
2

, ⌧) = p0(0, x
2

, ⌧). (11)

Next, integrating the Eq. (7b) over Y gives explicitly the value of u0

1

(0, x
2

, ⌧), with

0 =

Z

Y

dy div
y

v0 =

Z
1/2

�1/2

dy
2

v0
1

(+1, y
2

, x
2

, ⌧) = u0

1

(0, x
2

, t),

where we have used the boundary condition, Eq. (8) for n = 0, and the matching condition

Eq. (9b). The normal acoustic velocity vanishes on the equivalent surface at x
1

= 0. This

means that the structuration on the wall is not visible at the leading order and the surface

behaves as a flat rigid wall; thus, to capture the e↵ect of the structuration, we need to go

at order 1, and we are looking for u1

1

(0, x
2

, t).
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2. Solutions at order 1 and elementary problems

Before going further, we have to define the elementary problem which makes equivalent

surface parameters to appear. To that aim, we inspect the Eqs. (7b)-(7c), (8) (for n = 0)

and (9b), owing to Eq. (11); we get

8
>>>>>>><

>>>>>>>:

�
y

q1 = 0,


@p0

@x
2

(0, x
2

, ⌧) e
2

+r
y

q1
�
.n|� = 0,

lim
y1!+1

r
y

q1 =
@p0

@x
1

(0, x
2

, ⌧) e
1

.

(12)

The first and second equations are simply the time derivative versions of Eqs. (7b) and

(8), using the Eqs. (7c) and (11) in both cases. The third equation is less immediate

although straightforward; consider the time derivative of Eq. (9b), with Eq. (7c)

@u0

@⌧
(0, x

2

, ⌧) = � lim
y1!+1


@p0

@x
2

(0, x
2

, ⌧) e
2

+r
y

q1
�
,

which leads to the desired equation using Eq. (6a). Now, because u0

1

(0, x
2

, ⌧) = 0, its time

derivative is zero as well and from Eq. (6a), we have

@p0

@x
1

(0, x
2

, ⌧) = 0.

The system (12) simplifies to

8
>>>>>><

>>>>>>:

�
y

q1 = 0,


@p0

@x
2

(0, x
2

, ⌧) e
2

+r
y

q1
�
.n|� = 0,

lim
y1!+1

r
y

q1 = 0,

(13)

being linear with respect to @
x2p

0(0, x
2

, ⌧). Thus, defining Q(2) such as

q1(y, x
2

, ⌧) =
@p0

@x
2

(0, x
2

, ⌧)Q(2)(y) +Q(x, ⌧), (14)

it is su�cient that Q(2) satisfies
8
>>>>>><

>>>>>>:

�Q(2) = 0,

⇥
e
2

+rQ(2)

⇤
.n|� = 0,

lim
y1!+1

rQ(2) = 0,

(15)

9



to ensure that q1 satisfies Eqs. (13). The field Q(2) is an evanescent field being excited at the

structured surface (and because Q(2) is defined up to a constant, we can set this constant

to 0 without loss of generality). Finally, note that Q(x, ⌧) is introduced since the Eqs. (13)

define q1 up to a function independent of y; we will see that the determination of Q is not

needed.

3. Boundary condition at the equivalent surface and determination of the surface parameters

To define the boundary condition, we want u1

1

(0, x
2

, ⌧) (we already know that u0

1

(0, x
2

, ⌧) =

0), and u1

1

(0, x
2

, ⌧) is given by v1
1

(+1, y
2

, x
2

, ⌧) in the matching condition, Eq. (10). The

limit of v1
1

will be obtained by integrating the Eq. (7d) over Y. But before, we inspect v0

in Eq. (7c) (because v0
2

is needed in Eq. (7d)). Using the Eq. (14) in Eq. (7c), we have

@v0

@⌧
= �

@p0

@x
2

(0, x
2

, ⌧)
⇥
e
2

+r
y

Q(2)

⇤
=

@u0

2

@⌧
(0, x

2

, ⌧)
⇥
e
2

+r
y

Q(2)

⇤
, (16)

and the latter equality is obtained using the Eq. (6a). Assuming that u0 = 0 and v0 = 0 at

⌧ = �1 (the acoustic source has been switched on at some initial time), the above identity

is valid omitting the time derivative, specifically

v0 = u0

2

(0, x
2

, ⌧)
⇥
e
2

+r
y

Q(2)

⇤
.

We can come back to the Eq. (7d), which is written using Eqs. (11)

0 =
@p

0

@⌧
(0, x

2

, ⌧)+
@u0

2

@x
2

(0, x
2

, ⌧)


1 +

@Q(2)

@y
2

�
+div

y

v1 =
@u0

2

@x
2

(0, x
2

, ⌧)
@Q(2)

@y
2

�

@u0

1

@x
1

(0, x
2

, ⌧)+div
y

v1,

and the latter equality has been obtained using Eq. (6b). It is now su�cient to integrate

the above equation over Y
m

to find

@u0

2

@x
2

(0, x
2

, ⌧)

Z

Ym

dy
@Q(2)

@y
2

+

Z
1/2

�1/2

dy
2


v1
1

(ym
1

, y
2

, x
2

, ⌧)� (ym
1

+ S

c

)
@u0

1

@x
1

(0, x
2

, ⌧)

�
= 0.

(17)

Here, it is important to stress that (ym
1

+ S

c

) is the surface of the integration domain

Y
m

. It is independent on the choice of the origine y
1

= 0, but each term ym
1

and S

c

does

depend on the origine y
1

= 0. We will come back to this point, which is not incidental,

10



later. Finally, note that, with our choice of the origine, S
c

is simply the surface of air in the

grooves in dimensionless form, and the result holds for any shape of the inclusions (it would

be a volume in three dimensions).

Taking the limit ym
1

! +1 in (17), and using the matching condition Eq. (10), we finally

get

u1

1

(0, x
2

, ⌧) = S

c

@u0

1

@x
1

(0, x
2

, ⌧) + C

@u0

2

@x
2

(0, x
2

, ⌧),

where we have defined

C ⌘ �

Z

Y

dy
@Q(2)

@y
2

. (18)

It is now time to come back to the real space. With u
1

= u0

1

+ "u1

1

+O("2), we have, up

to O("2)

u
1

(0, x
2

, ⌧) = "S
c

@u
1

@x
1

(0, x
2

, ⌧) + "C
@u

2

@x
2

(0, x
2

, ⌧),

and finally, introducing ' the filling fraction of air in the groove (whence S

c

= 'e/h), we

get

U
1

(0, X
2

, t) = e'
@U

1

@X
1

(0, X
2

, t) + hC
@U

2

@X
2

(0, X
2

, t). (19)

C. Energy conservation in the homogenized problem

The choice of the origine y
1

= 0 has conditioned the parameter S

c

in the Eq. (19). It

conditionnes as well the position of the equivalent surface where the boundary condition

(19) applies: it is at the edge of the roughnesses. In the homogenized problem, a part of the

domain ⌦ in the original problem has disappeared; let ⌦
e

being this domain (Fig. 3). In

the original problem, the acoustic energy is

E =

Z

⌦

dV
h⇢

0

2
U2 +

�
0

2
P 2

i
,

and in the homogenized problem, it is

E

h

=

Z

⌦\⌦e

dV
h⇢

0

2
U2 +

�
0

2
P 2

i
+ E

S

,

where E

S

is the energy of the equivalent surface, that we expect to account for the acoustic

energy in ⌦
e

, thus that we expect to be positive. Let us inspect the expression of E
S

. The

11



energy conservation in the homogenized problem reads

d

dt

Z

⌦\⌦e

dV
h⇢

0

2
U2 +

�
0

2
P 2

i
�

Z

X1=0

dX
2

PU
1

+

Z
dS ⇧.n = 0,

and from what has been said, I ⌘ �

R
X1=0

dX
2

PU
1

has to be the time derivative of a

positive quantity. Applying the boundary conditions, Eqs. (19), and using Eqs. (1), we get

I = �

Z

X1=0

dX
2


e' P

@U
1

@X
1

+ hC P
@U

2

@X
2

�
,

leading to I = dE
s

/dt, with

E

s

=

Z

X1=0

dX
2

h⇢
0

2
(e'� hC) U2

2

+
�
0

2
e' P 2

i
. (20)

Note that the integration by part of P@
X2U2

makes the boundary term [U
2

P ]
X2 to appear,

and something should be said at both extremities of the equivalent surface; this is disregarded

in the present paper. Obviously e' is positive and we will see that e' � hC is positive as

well (see Sec. IV and Appendix A). It follows that the energy associated to the equivalent

wall is positive, and the homogenized problem is well suited for numerical purpose.

FIG. 3. The domain ⌦ in the actual problem with the structured wall will be replaced by the

domain ⌦\⌦
e

in the homogenized problem.

III. HOMOGENIZATION OF A MICRO-STRUCTURED FILM

For the problem of a micro-structured film (or array), jump conditions are sought, and

the jump conditions will be applied to a thin interface of thickness e. To that aim, we define,

for any a > 0

JfK ⌘ f(0+)� f(�a), f ⌘

1

2

⇥
f(0+) + f(�a)

⇤
.

12



We have two systems of coordinates, X and x; to avoid heavy notations, we use JfK for

a = e in X-coordinates and for a = ke = "e/h in x-coordinates. We denote in the following

"0 ⌘ "e/h,

and assuming e/h = O(1), "0 = O(") is a small parameter. Next, following [22, 23], we

identify f(�"0) to f(0�) and, when JfK = 0, f(�"0) = f(0+) to f(0); in [22], this is done

owing to a shift in the y coordinates to restore the contact, at y
1

= 0, between the two faces

at y
1

= �"0, 0 of the thin interface, and in [23], this is done introducing generalized jump

conditions defined at the mean position between the two faces of the thin interface. Note

that an alternative derivation can be performed by 1) defining the jump conditions across

a zero thickness interface as done in [19], afterwards jump conditions across an ”enlarged”

interface are deduced, as in [18]; this is done in the Appendix B.

A. The matched asymptotic expansion

This case is more involved than the previous one but most of the work has been done

already. We start with the same ingredients as presented in Sec. II. Only the matching

conditions change, being needed at both sides of the equivalent interface of thickness e,

and they will be needed at orders 0 and 1 for p and u
1

. Next, the Taylor expansions

(omitting the variables x
2

, ⌧) read p0(x
1

> 0) = p0(0+) + "y
1

@
x1p

0(0+) and p(x
1

< 0) =

p0(0�) + "(y
1

+ e/h)@
x1p

0(0�), up to O("2). It follows that, at order 0 and similarly to Eqs.

(9), we have

8
>>><

>>>:

p0(0±, x
2

, ⌧) = lim
y1!±1

q0(y, x
2

, ⌧),

u0(0±, x
2

, ⌧) = lim
y1!±1

v0(y, x
2

, ⌧),

(21a)

(21b)

and, at order 1, we have non symmetrical matching conditions, with

8
>>>>><

>>>>>:

p1(0�, x
2

, ⌧) = lim
y1!�1


q1(y, x

2

, ⌧)�
⇣
y
1

+
e

h

⌘ @p0

@x
1

(0�, x
2

, ⌧)

�
,

u1(0�, x
2

, ⌧) = lim
y1!�1


v1(y, x

2

, ⌧)�
⇣
y
1

+
e

h

⌘ @u0

@x
1

(0�, x
2

, ⌧)

�
,

(22a)

(22b)

13



and 8
>>>>><

>>>>>:

p1(0+, x
2

, ⌧) = lim
y1!+1


q1(y, x

2

, ⌧)� y
1

@p0

@x
1

(0+, x
2

, ⌧)

�
,

u1(0+, x
2

, ⌧) = lim
y1!+1


v1(y, x

2

, ⌧)� y
1

@u0

@x
1

(0+, x
2

, ⌧)

�
.

(23a)

(23b)

Obviously, symmetrical expressions would be obtained if y
1

= 0 was chosen symmetrically,

but the same final jump conditions would be obtained.

FIG. 4. The structured array in the two systems of coordinates x and y. In y- coordinate,

Y
�

and Y
m

are the domains occupied by the rigid inclusions and by the air respectively (Y =

lim
y

m
1 !+1 Y

m

); � is the boundary of Y
�

where Neumann boundary condition applies (S
c

= e'/h

is the surface of air within the array).

We define Yt

m

= (�ym
1

, ym
1

)⇥ (�1/2, 1/2), and as previously, Y
�

and Y
m

are the domains

occupied by the rigid inclusions and by the air in Yt

m

; Neumann boundary conditions apply on

the boundary � of Y
�

in contact with the air. The unit cell corresponds to Y = lim
y

m
1 !1 Y

m

.

Inside Y, the air groove has a thickness e/h along y
1

and a height ' along y
2

; we denote

S

c

= e'/h the corresponding surface.

1. Solution at order 0

As for the structured surface, the Eq. (7a) tells us that q0 does not depend on y,

and from Eq. (21a), q0(x
2

, ⌧) = p0(0±, x
2

, ⌧). Next, Eq. (7b) is integrated in Y leading

to
R

1/2

�1/2

dy
2

[v0
1

(+1, y
2

, x
2

, ⌧)� v0
1

(�1, y
2

, x
2

, ⌧)] = 0, and from Eq. (21b), u0

1

(0±, ⌧) =
R

1/2

�1/2

dy
2

v0
1

(±1, y
2

, x
2

, ⌧). Thus, the jump conditions read

q
p0

y
= 0,

q
u0

1

y
= 0.

14



At the leading order, the film is transparent for the waves and again, we need to go at

the next order to capture the e↵ect of the microstructure. Before doing so, we have to define

the elementary problems which make the interface parameters to appear.

2. Solution at order 1and Elementary problems

To define the elementary problem, we start from the system of Eqs. (12) which is still

valid but it does not simplify since u0

1

(0, x
2

, ⌧) is unknown. The system of Eqs. (12) is now

linear with respect to both components of r
x

p0(0, x
2

, ⌧). Thus, we need two elementary

solutions Q(i)(y), i = 1, 2, with

q1 =
@p0

@x
1

(0, x
2

, ⌧)Q(1)(y) +
@p0

@x
2

(0, x
2

, ⌧)Q(2)(y) +Q(x, ⌧), (24)

and Q(i) satisfying
8
>>>>>><

>>>>>>:

�Q(1) = 0,

rQ(1).n|� = 0,

lim
y1!±1

rQ(1) = e
1

,

8
>>>>>><

>>>>>>:

�Q(2) = 0,

⇥
e
2

+rQ(2)

⇤
.n|� = 0,

lim
y1!±1

rQ(2) = 0.

(25)

Q(1) is of the form

Q(1)(y) =

8
<

:
y
1

+Qev, y
1

< 0,

y
1

+ B +Qev y
1

> 0,
(26)

with Qev an evanescent field, vanishing at ±1. Now, we use (for the first time) the symmetry

of the inclusions w.r.t. y
2

to conclude that Q(2) vanishes at y
1

! ±1. Indeed, the symmetry

imposes Q(2) to be odd w.r.t. y
2

, whence Q(2)(y
1

, 0) = 0 and Q(2)

! 0 at y
1

! ±1. Both

Q(1) and Q(2) are related to problems of fluid mechanics and this is discussed in the Appendix

A. As previously, Q(x, ⌧) has been introduced since the Eqs. (12) define q1 up to a function

independent of y, and as previously, it will not be necessary to determine it.

3. Jump condition at the equivalent interface

We can now inspect the solution at order 1. From the matching conditions, Eqs. (22a)

and (23a), we get the jump in p1 using the Eq. (24)

q
p1

y
=

⇣
B +

e

h

⌘ @p0

@x
1

(0, x
2

, ⌧).
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To get the jump condition on u1

1

, we proceed in the same way as we did to get the Eqs. (16)

- (17), with the extra term due to Q(1). It is easy to see that we get

@u0

2

@x
2

(0, x
2

, ⌧)

Z

Ym

dy
@Q(2)

@y
2

+S

@u0

1

@x
1

(0, x
2

, ⌧)+

Z
1/2

�1/2

dy
2


v1
1

(ym
1

)� v1
1

(�ym
1

)� 2ym
1

@u0

1

@x
1

(0, x
2

, ⌧)

�
= 0,

(similar to Eq. (17)). We have used that the surface of Y
m

is (2ym
1

� S), with S the surface

fraction of the inclusions (and thus S + S

c

= e/h). We have also used the symmetry of the

inclusion: with Q(1) being symmetric w.r.t. y
2

, the integral of @
y2Q

(1) vanishes. To conclude

on the jump in u1

1

, it is su�cient to recognize the matching conditions Eqs. (22b) and (23b)

in the last integral over y
2

for ym
1

! +1, namely

lim
y

m
1 !+1

Z
1/2

�1/2

dy
2


v1
1

(�ym
1

) + ym
1

@u0

1

@x
1

(0, x
2

, ⌧)

�
= u1

1

(0�, x
2

, ⌧) +
e

h

@u0

1

@x
1

(0, x
2

, ⌧),

lim
y

m
1 !+1

Z
1/2

�1/2

dy
2


v1
1

(ym
1

)� ym
1

@u0

1

@x
1

(0, x
2

, ⌧)

�
= u1

1

(0+, x
2

, ⌧).

We get the final jump conditions

q
u1

1

y
= S

c

@u0

1

@x
1

(0, x
2

, ⌧) + C

@u0

2

@x
2

(0, x
2

, ⌧),

with the same definition of C as in Eq. (18) (but not the same value, the elementary

problems on Q(2) being di↵erent). We have also used that S

c

= (e/h � S). Finally, with

JpK = " Jp1K+O("2) and p = p0+O(") (the same for u
1

), and coming back to the real space,

the jump conditions at the equivalent interface of thickness e read
8
>>><

>>>:

JP K = (e+ hB)
@P

@X
1

,

JU
1

K = e'
@U

1

@X
1

+ hC
@U

2

@X
2

,

(27)

where we used S

c

= 'e/h.

B. Energy conservation for the equivalent thin interface

It is now possible to write the equation of energy conservation in the homogenized prob-

lem. In this problem, the domain between �e and 0 is not considered. If we have numerical

implementations in mind, this domain would be not considered, and the jump conditions,

Eqs. (27), would apply between X
1

= �e and X
1

= 0 (Fig. 5). Now the boundary @⌦ of ⌦

16



includes the planes X
1

= �e and X
1

= 0. In the real problem, the acoustic energy in the

region sandwiched between these two planes reads

Z

⌦e

dV
h⇢

0

2
U2 +

�
0

2
P 2

i
,

while in the homogenized problem, it is handled by the thin interface through the last

integral in the equation of energy conservation below

d

dt
E =

d

dt

Z

⌦\⌦e

dV
h⇢

0

2
U2 +

�
0

2
P 2

i
�

Z
dX

2

JPU
1

K .

As previously, the term I ⌘ �

R
dX

2

JPU
1

K has to be the time derivative of a positive

quantity. With JPU
1

K = JP KU
1

+ P JU
1

K, and applying the jump conditions, Eqs. (27), we

get

I = �

Z
dX

2


(e+ hB)

@P

@X
1

U
1

+ hS
c

P
@U

1

@X
1

+ hC P
@U

2

@X
2

�
.

Next, we use the Eqs. (1) to get

I =
d

dt
E

s

, E

s

=

Z
dX

2

h⇢
0

2

⇣
(e+ hB) U

1

2

+ (e'� hC) U
2

2

⌘
+

�
0

2
e' P

2

i
. (28)

Here, the parameter e' (in the coe�cients associated to U2

2

and P 2) has appeared because

the interface thickness has been set equal to e. If the jump conditions at a zero thickness

interface were used, we would get a coe�cient associated to U2

2

equal to �h(C + S) < 0

(because C > 0, see Appendix B) and a coe�cient associated to P 2 equal to �S < 0, which

is not really suitable for a term of energy and not suitable at all for numerical purpose.

FIG. 5. The domain ⌦ in the actual problem with the structured film will be replaced by the

domain ⌦\⌦
e

in the homogenized problem.

17



IV. TWO -STEP HOMOGENIZATION USING CLASSICAL HOMOGENIZA-

TION OF BULK MATERIAL

As previously said, the classical homogenization has been shown to capture accurately

the behavior of micro-structured material and it is tempting to see how it compares with

the interface homogenization for surfaces or films of small thicknesses. This is not to inspect

whether or not the classical homogenization resists in this limit, since we already know that

it fails when ke < 1, see [19]. The goal in this section is rather to get insight into what

causes this failure. This is done following [24] using a two-step homogenization. We start

by recalling the derivation of the e↵ective parameters in the classical homogenization; this

is the first step homogenization, leading to an equivalent anisotropic layer, with e↵ective

mass density and bulk modulus, being explicit for rigid layers (they will be function of '

only). The second step consists in determining the equivalent boundary condition or jump

conditions when the layer thickness vanishes and this will be done by applying a matched

asymptotic expansion technique.

(a) (b)

FIG. 6. Two-step homogenization with classical homogenization in the first step, leading to an

equivalent homogeneous anisotropic layer, and in the second step, matched asymptotic expansions

leading to (a) an equivalent boundary condition at X
1

= 0, (b) equivalent jump conditions across

the equivalent thin interface bounded by X
1

= �e and X
1

= 0.
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A. First step homogenization, toward an equivalent anisotropic layer

The classical homogenization considers a structuration in the whole space. The expansion

is done owing to a two scale expansions in x and now, y = x/"

8
><

>:

p = q0(y,x, ⌧) + "q1(y,x, ⌧) + . . . ,

u = v0(y,x, ⌧) + "v1(y,x, ⌧) + . . .

where the fields (vn, qn) are assumed to be periodic with respect to y. The unit cell is now

bounded along y
1

and y
2

, of size 12, and in the unit cell, we define Y the region occupied by

the air Y = (�1/2, 1/2)⇥ (�'/2,'/2); Neumann boundary conditions apply on � between

the rigid layers and the air.

FIG. 7. In classical homogenization, the structuration occupies the whole space. The elementary

problems are defined in the unit cell of size 12 in y-coordinate and Y denotes the region occupied

by the air; � are the boundaries of the rigid layers in contact with the air.

The expansions will be used in Eq. (2) at each order using the di↵erential operator

r !

1

"
r

y

+r
x

.

The Eqs. (2) at order "�1 read (i) r
y

q0 = 0, from which q0 depends on (x, ⌧) only and (ii)

div
y

v0 = 0 that we shall use later. At order "0, the Eqs. (2) give

8
>><

>>:

@v0

@⌧
(y,x, ⌧) = �r

x

q0(x, ⌧)�r
y

q1(y,x, ⌧),

@q0

@⌧
(x, ⌧) + div

x

v0(y,x, ⌧) + div
y

v1(y,x, ⌧) = 0.

(29)
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These two equations will be averaged in Y, which will make a wave equation to appear for

the two fields
R
Y dy v0(y,x, ⌧) and q0(x, ⌧). Contrary to the interface homogenization, the

classical homogenization yields the equivalent medium at the leading order in the expansion.

As in the interface homogenization, elementary problems are needed to get the parameters

of the equivalent medium. To get them, we use the time derivative versions of div
y

v0 = 0

and of the boundary condition v0.n|� = 0. From the first equation in Eqs. (29), we find

that (q0, q1) satisfy 8
><

>:

�
y

q1(y,x, ⌧) = 0,

[r
y

q1(y,x, ⌧) +r
x

q0(x, ⌧)] .n|� = 0.

Next, by linearity of the above system, it is possible to define

q1(y,x, ⌧) =
@q0

@x
1

(x, ⌧)Q(1)(y) +
@q0

@x
2

(x, ⌧)Q(2)(y) +Q(x, ⌧), (30)

with Q(i)(y) satisfying the elementary problems
8
><

>:

�Q(i) = 0,

⇥
e
i

+rQ(i)

⇤
.n|� = 0.

(31)

Once the elementary problems are solved, it is su�cient to use Eq. (30) in Eqs. (29) being

integrated over Y. With p(x, ⌧) = q0(x, ⌧) and u(x, ⌧) =
R
Y dy v0(y,x, ⌧) at the dominant

order, we get 8
>><

>>:

@u

@⌧
= �Ar

x

p,

'
@p

@⌧
+ div

x

v = 0,

(32)

with ' the surface of Y and

A
ij

⌘

Z
dy

⇥
rQ(j) + e

j

⇤
e
i

.

We have used the periodicity of v1

w.r.t. y and the boundary conditions v1.n|� = 0 to get
R
Y dy div

y

v1(y,x, ⌧) = 0 . Coming back to the real space, we get the homogenized wave

equation 8
>><

>>:

⇢
0

@U

@t
= �ArP,

�
0

'
@P

@t
+ divU = 0,

(33)

which corresponds to an equivalent homogeneous and anisotropic medium, with an e↵ective

inverse mass density tensor ⇢�1

0

A and an e↵ective compressibility �
0

'. Again, the elementary
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problems, Eqs. (31), correspond to problems of perfect fluids flowing around obstacles, but

in the present case, the solutions are intuitively trivial (and mathematically also in fact),

leading to Q(1) = 0 and Q(2) = �y
2

(see Appendix A). The matrix A is thus reduced to

A =

0

@ ' 0

0 0

1

A . (34)

B. Second step -homogenization

We assume that the homogenization in the first step is legitimate even when the thickness

e of the equivalent layer is smaller than the typical wavelength 1/k, and we define "0 ⌘ ke ⌧

1. Then, we can determine the boundary condition (for the layer being on a rigid wall), or

the jump conditions (for the layer being placed in air), following the matched asymptotic

expansion presented in [22] and the procedure is very similar to the one developed for the

homogenization in Sec. III.

As previously, two di↵erent (outer and inner) expansions are used with respect to the

new small parameter "0; a significant simplification comes from the fact that there is no

structuration along y
2

anymore, and thus no need in the coordinate y
2

(in fact, the problem

is one -dimensional now). Thus, the inner expansions are written as

Inner exp.

8
><

>:

p = q0(y
1

, x
2

, ⌧) + "0q1(y
1

, x
2

, ⌧) + . . . ,

u = v0(y
1

, x
2

, ⌧) + "0v1(y
1

, x
2

, ⌧) + . . .

while the outer expansions remain the same as in Eq. (4). The wave propagation in the

succession of media (⌦�,⌦,⌦+) (Fig. 8), is described by
8
>><

>>:

@u

@⌧
= �arp,

b
@p

@⌧
+ divv = 0.

(35)

In the inner problem, a and b depend on y
1

. In the outer problem, they depend on x
1

being

piecewise constant in ⌦± (Fig. 8). For a structured wall, ⌦� is a rigid wall, for a structured

film, it is the air. In both cases, ⌦+ is the air. These equations will be written at each order

in the outer and inner regions owing to the expressions of the di↵erential operator
8
><

>:

r ! r
x

, in the outer problem,

r !

1

"0
@

@y
1

e
1

+
@

@x
2

e
2

, in the inner problem.

21



(a) (b)

FIG. 8. In the second step homogenization, the layer ⌦ in y coordinates occupies �1 < y
1

< 0,

(a) with ⌦� being a rigid wall and (b) with ⌦� being the air.

1. ⌦�
is a rigid wall

In the inner region, we start with the leading order of (35) in 1/"0: @
y1q

0 = @
y1v

0

1

= 0, from

which p0(0, x
2

, ⌧) = q0(x
2

, ⌧) and u0

1

(0, x
2

, ⌧) = v0
1

(x
2

, ⌧). Accounting for these relations,

Eqs. (35) at order ("0)0 read
8
>>>>>>>>>><

>>>>>>>>>>:

@u0

1

@⌧
(0, x

2

, ⌧) = �a
1

(y
1

)
@q1

@y
1

,

@v0
2

@⌧
= �a

2

(y
1

)
@p0

@x
2

(0, x
2

, ⌧),

b(y
1

)
@p

0

@⌧
(0, x

2

, ⌧) +
@v0

2

@x
2

+
@v1

1

@y
1

= 0,

(36a)

(36b)

(36c)

and when non specified, the functions have a dependence in the coordinates (y
1

, x
2

, ⌧). In

the above expressions, the coe�cients a
1

(y
1

) and a
2

(y
1

) are the diagonal terms of a(y
1

); the

generalization to a non diagonal matrix a is rather straightforward, but not very useful for

the present purpose. The coe�cients (a
1

, a
2

, b) are piecewise constant, with a
1

= ', a
2

= 0,

b = ' for �1 < y
1

< 0 (from the first step homogenization), and a
1

= a
2

= b = 1 for y
1

> 0

(being the air). Next, ⌦� is not considered, but Neumann boundary condition applies at

y
1

= �1.

As for the interface homogenization, a boundary condition on the velocity is sought, and

because v0
1

(x
2

, ⌧) does not depend on y
1

, it starts with 0 = v0
1

(x
2

, ⌧) = u0

1

(0, x
2

, ⌧), imposed

by the Neumann boundary condition at y
1

= �1 at order 0 for the inner solution. The

matching condition at order 1 is the same as Eq. (10) (with y ! y
2

in the present case); it

is written in a slightly di↵erent, but equivalent, form below

u1

1

(0, x
2

, ⌧) = lim
y1!+1

⇢Z
0

�1

dy
@v1

1

@y
(y, x

2

, ⌧) +

Z
y1

0

dy


@v1

1

@y
(y, x

2

, ⌧)�
@u0

1

@x
1

(0, x
2

)

��
, (37)
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where we have used the boundary condition v1
1

(�1, x
2

, ⌧) = 0 on the rigid wall. Next, we

shall determine @
y

v1
1

in each integral. To begin with, the time derivative of Eq. (36c), with

Eq. (36b), gives

@

@⌧

@v1
1

@y
1

= a
2

@2p0

@x2

2

(0, x
2

, ⌧)� b
@2p0

@⌧ 2
(0, x

2

, ⌧),

and the above equation is valid for y
1

> �1. From the outer region, Eqs. (35) with a = 1 and

b = 1, we have @
x2p

0(0, x
2

) = �@
⌧

u0

2

(0, x
2

) and @
⌧

p0(0, x
2

) = �div
x

u0(0, x
2

), from which

@v1
1

@y
1

= b
@u0

1

@x
1

(0, x
2

, ⌧) + (b� a
2

)
@u0

2

@x
2

(0, x
2

, ⌧), (38)

where only b and a
2

are function of y
1

in the right hand side terms of Eq. (38). The Eq.

(38) holds in ⌦ and in ⌦+ and it can be used to evaluate the two integrals in the Eq. (37):

the first integral is obtained with b = ' and a
2

= 0, and the second integral vanishes since

b = a
2

= 1. Finally, we obtain

u1

1

(0, x
2

, ⌧) = ' div
x

u0(0, x
2

, ⌧),

and coming back to the real space at dominant order (with "0 = ke)

U
1

(0, X
2

, t) = e'


@U

1

@X
1

(0, X
2

, t) +
@U

2

@X
2

(0, X
2

, t)

�
, (39)

and the above boundary condition has to be compared with Eq. (19).

2. ⌦�
is the air

The calculation for a layer (Fig. 8(b)) is straightforward thanks to the previous calcula-

tion. Here, we want to derive jump conditions, and this starts with Ju0

1

K = Jp0K = 0 because

v0
1

(x
2

, ⌧) = u0(0±, x
2

, ⌧) and q0(x
2

, ⌧) = p0(0±, x
2

, ⌧). The jump in p1 and u1

1

are obtained

following the same technique as in the preceding section. As previously, the jumps are de-

fined using the matching conditions, similar to those in Eqs. (22)-(23); but now, because

the expansions has been performed w.r.t "0 = "(e/h), the y
1

-translation for ⌦� is of unity

instead of being of e/h. Thus, the matching conditions are the same than in Eqs. (22)-(23)

setting e/h to unity (and again y ! y
2

in these expressions). They are written below in an
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equivalent form

8
>>>>><

>>>>>:

q
p1

y
= lim

y1!+1

⇢Z
0

�1

dy
@q1

@y
+

Z
y1

0

dy


@q1

@y
�

@p0

@x
1

(0+, x
2

)

�
+

Z �1

�y1

dy


@q1

@y
�

@p0

@x
1

(0�, x
2

)

��
,

q
u1

1

y
= lim

y1!+1

⇢Z
0

�1

dy
@v1

1

@y
+

Z
y1

0

dy


@v1

1

@y
�

@u0

1

@x
1

(0+, x
2

)

�
+

Z �1

�y1

dy


@v1

1

@y
�

@u0

1

@x
1

(0�, x
2

)

��
.

(40a)

(40b)

For the calculation of Ju1

1

K, almost everything has been done in the previous section; it is

su�cient to use Eq. (38) with a
2

= b = 1 for y
1

< �1 (being now the air) to find that the

last integral of Eq. (40b) vanishes (and the two first integrals are the same than previously).

To get Jp1K, we use Eq. (36a), and owing to @
⌧

u0

1

(0, x
2

, ⌧) = �@
x1p

0(0, x
2

, ⌧) from the outer

region, we have
@q1

@y
1

=
1

a
1

@p0

@x
1

(0±, x
2

, ⌧).

Again, only a
1

depends on y
1

in the right hand side term of the above equation. With a
1

= 1

for y
1

< �1 and y
1

> 0 and with a
1

= ' for �1 < y
1

< 0, only the fist integral in Eq. (40a)

has a non vanishing contribution and we get the two jump conditions, written below in the

real space 8
>>><

>>>:

JP K = e

'

@P

@X
1

,

JU
1

K = e'


@U

1

@X
1

+
@U

2

@X
2

�
.

(41)

The above jump conditions have to be compared with those in Eqs. (27).

C. Comparison of the two homogenizations – What is wrong ?

The boundary conditions in Eqs. (19) and (39) and the jump conditions in Eqs. (27)

and (41) have the same structures but they do not involve the same parameters. The case

of rectangular inclusions is enlighting for the comparison, since explicit expression of B is

available

B =
e

h

1� '

'
+ B

0

, B

0

=
2

⇡
log

⇣
sin

⇡'

2

⌘�1

,
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and the second contribution B

0

corresponds to flat rigid plates (e = 0). Let us now re-write

the boundary condition and the jump conditions coming from the interface homogenization

U
1

(0, X
2

, t) = e'
@U

1

@X
1

(0, X
2

, t) + hC
@U

2

@X
2

(0, X
2

, t). (42)

8
>>><

>>>:

JP K =
✓
e

'
+ B

0

◆
@P

@X
1

,

JU
1

K = e'
@U

1

@X
1

+ hC
@U

2

@X
2

.

(43)

By inspection of the expressions in Eqs. (39) and (41) and their comparison with the above

expressions, the questions are clear:

• is B
0

negligible compared to e'/h ?

• how close from e'/h is C ?

The first question is easy to answer, since B

0

is independent of e. Thus, increasing e makes

the first condition more and more fulfilled and reversely, vanishing thickness of the interface

produces a significant error in the two-step homogenization prediction. Classical homoge-

nization leads to a homogenized equivalent layer, and vanishing layer thickness produces a

vanishing e↵ect, by construction; this has to be contrasted with the real structuration with

vanishing thickness: flat rigid plates obviously are able to scatter waves. This has to be

related with the equivalent elementary problem appearing in the interface homogenization:

Q(1) satisfies Eqs. (25) and it is the velocity potential associated to a perfect fluid flowing

in a duct obstructed by a rigid obstacle; for vanishing thickness, the obstacle still deviates

the flow, resulting in a non vanishing Q(1), and thus a non vanishing B (see Appendix A).

The second question is more involved because an explicit expression of C is not available.

The parameter C is also related to a fluid mechanics problem. It is the mean value of the

perturbation velocity along e
2

inside the grooves, for a potential flow flowing along e
2

with

velocity unity far from the structuration (u = e
2

+rQ(2) in Eqs. (25), see also Appendix

A). Obviously, in the absence of structuration (e = 0), the velocity along e
2

equals unity

everywhere and e = hC = 0. Consider now the limit where e becomes larger than the groove

height h'. In this case, we do not expect the flow to enter deeply inside the grooves. This

is illustrated in Fig. 9(a) where we reported the fields of u.e
2

computed for e/h = 2 and 4;
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(a) (b)

FIG. 9. (a) Fields of the velocity component u.e
2

= 1+@
y2Q

(2) inside the grooves. The calculation

is done solving Eqs. (25). The reported results correspond to ' = 0.8 and e/h = 2 (upper panel)

and e/h = 4 (bottom panel); the black lines show
p
y2
1

+ y2
2

= '/2. (b) Inspection of the bounds

for C (various 0 < ' < 1 are collected).

the calculations are presented in the case of a structured array. The two flows are similar,

being essentially confined in a boundary layers near y
1

= 0, in the half disc of radius '/2.

Thus, a rough estimate can be done according to

for e/h > '/2,

Z

groove

dy u.e
2

'

1

2

Z

(y

2
1+y

2
2)<'

2
/4

dy 1 =
⇡

8
'2,

(where the mean velocity has been set to 1/2 and accounting for the two boundary layers in

the case of the array). This behavior is confirmed in Fig. 9(b), together with the condition

hC < e' (which is a good news for the surface and interface energies in Eqs. (20) and (28)).

From Fig. 9(b), we get bounds for C

e'

h
�

⇡

8
'2 < C <

e

h
', (44)

from which C ! e/h for large e/h. For small e/h values, C remains positive and vanishes

faster than e, resulting again in a failure of the two step homogenization.

Our analysis of the B- and C-parameters is restricted to the case of rectangular shape

structuration. What remains valid for any shapes is the limit for e ! 0: there, B ! B

0

will be always observed (because all the shapes end in flat plates for e = 0), and because B
0

is significant for small ', significant di↵erences can be observed [19]. What will probably

remains valid as well is the shift between C and e/h (which means that the vertical velocity
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inside the grooves is not accelerated). But as C and e/h both vanish, the di↵erences are

less impressive and this has been checked (results are not reported here). In other words,

vanishing roughnesses on a rigid wall lead to vanishing e↵ects on the waves, while a vanishing

thickness of a rigid array continues to e�ciently scatter waves.

V. CONCLUDING REMARKS

In this paper, we have presented an interface homogenization for acoustic waves in the

time domain; the case of thin periodic roughnesses on a wall and the case of a thin structured

array have been considered. We addressed the problem of the acoustic energy associated

to the equivalent wall or associated to the equivalent interface. It has been shown that

the position of this wall or the thickness of this interface are not incidental (even if the

conditions for any position or any thickness are equivalent up to the second order). If we

have in mind the numerical implementation of the homogenized problem, this is crucial since

it determines the stability of the numerical scheme. This is in fact not incidental neither

in the frequency domain where the validity of the homogenized prediction may be extended

significantly up to ke ' 1 when using the conditions presented in this paper, and this will

be exemplified elsewhere.

Next, we have examined the failure of the classical homogenization in the limit of small

thicknesses; for rigid materials, it will always fails. If the two-step homogenization theory

resists to the limit e ! 0, we can guess that no significant e↵ect will be observed. This is

because the classical homogenization predicts vanishing e↵ective parameters for vanishing

thicknesses (by construction). To anticipate if vanishing thicknesses can lead to unexpected

e↵ects (and thus possibly to ”extraordinary” propagations), the analysis of the physical

problems associated to the elementary problems is helpful (here, potential flows around

obstacles, but they are also problems of heat conduction). Specifically, if the solutions of

these problems do not involve significant boundary layer e↵ects, vanishing thicknesses of

the device will produce vanishing e↵ective parameters, and nothing fantastic will happen.

If bounds for these parameters can be found by means of mathematical considerations, our

intuition of the associated physical problems are additional tools to go toward thin devices

able to control the wave propagation in an unexpected way.
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Appendix A: The e↵ective parameters

1. Remarks on the elementary problems

We have encountered four elementary problems (Fig. 10). All of them are of the same

nature, namely, they are related to problems of perfect fluids flowing around rigid inclusions

associated to Neumann boundary condition.

(a) (b)

(c)

FIG. 10. The elementary problems appearing (a) for the structured rigid array, (b) for the struc-

tured rigid wall and (c) in the classical homogenization of rigid layers.

These are

1. Q(1) in Eqs. (26). It corresponds the potential flow past an obstacle in a channel.

In this context, as in the context of breakwaters for water waves, this problem has

been extensively studied in the literature, see e.g [14] and references herein. In these

contexts, B is called the blockage coe�cient, and its expression is known for several

obstacle geometries (in an approximate of exact form).
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2. Q(2) in Eqs. (15): it corresponds to a perfect fluid flowing along an infinite corrugated

surface, with a velocity field u = rQ(2) + u1, and u1 = e
2

. Q(2) is the perturbation

velocity potential due to the corrugation. Next, it is easy to see that the coe�cient

C = �

R
dy @

y2Q
(2) has to be evaluated for �e/h  y

1

 0 only (for y
1

> 0, Q(2)

is periodic w.r.t. y
2

and thus, the integral vanishes). Thus, C appears to be the

mean perturbation velocity along e
2

, (u1 � u).e
2

, in the grooves, but to the best of

our knowledge, no explicit expression for C is available. We expect C to be positive

(no acceleration in the grooves occurs) and smaller than unity (no reverse flow rate);

next, the qualitative discussion in the Section IV, supported by numerical results (for

a structured array), leads to the bounds, Eqs. (44). Finally, the value of C for the

structured array (Fig. 10(a)) can be simply deduced from the value of C for the

corrugated wall owing to the symmetry axis, and C

array

(2e) = 2C
wall

(e).

3. Q(1) and Q(2) in the elementary problems appearing in the classical homogenization,

Eq. (31). In the present case of rigid layers, these problems are trivial: Q(1) questions

the perturbation velocity along e
1

for a mean velocity being along e
1

; the flow is

evidently not perturbed by the rigid layers, from which Q(1) = 0. Q(2) questions the

possibility for the fluid to flow along e
2

and the answer is obviously that no flow is

allowed in this direction. The total velocity has to cancel in the grooves, from which

Q(2) = �y
2

. Also obvious is that Q(1) = 0 and Q(2) = �y
2

are exact solutions of Eqs.

(31).

2. Simple procedure to get C for rectangular inclusions

Mode matching is a simple way to get C. We consider the solution Q = Q(2)+y
2

satisfying

�Q = 0, rQ.n|� = 0 and Q ! y
2

for y
1

! 1. The field Q can be written

Q(y) =

8
>>>>><

>>>>>:

Q�(y) =
N

�X

n=1

q�
n

cosh a
n

(y
1

+ e)

cosh a
n

e
f�
n

(y
2

), 0 � y
1

� �e

Q+(y) = y
2

+
N

+X

n=�N

+
,n 6=0

q+
n

e�|bn|y1f+

n

(y
2

), y
1

� 0,

(A1)

with a
n

= n⇡/', b
n

= 2n⇡, and where

f+

n

(y
2

) = eibny2 , f�
n

(y
2

) =

s
2� �

n0

'
cos

⇣
a
n

y
2

+
n⇡

2

⌘
, (A2)
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are the transverse functions (forming a basis) adapted for solutions being respectively peri-

odic and for solutions with zero derivatives at y
2

= ±'/2.

FIG. 11. Mode matching configuration. The solution Q± is written for y
1

> �e, and the resolution

involves only matching conditions at y
1

= 0.

Now, we will ask to Q± to match (on average) their values and their first derivatives at

y
1

= 0, and this latter matching on the derivatives will be done accounting for the Neumann

boundary conditions at y
1

= 0 and |y
2

| > '/2 (note that Q� satisfies by construction the

Neumann boundary condition on at y
2

= ±'/2, because of the choice of the f�
m

). To that

aim, we use the following relations
8
>>><

>>>:

Z
'/2

�'/2

dy
2

Q�(0, y
2

)f�
m

(y
2

) =

Z
'/2

�'/2

dy
2

Q+(0, y
2

)f�
m

(y
2

),
Z

'/2

�'/2

dy
2

@Q�

@y
1

(0, y
2

)f+

m

⇤
(y

2

) =

Z
1/2

�1/2

dy
2

@Q+

@y
1

(0, y
2

)f+

m

⇤
(y

2

),

(A3)

with f+

m

⇤ the conjugate of f+

m

(f�
m

is real). The first relation is the matching of the values in

the region y
2

2 [�'/2,'/2] where Q� is defined. The second relation has more information:

we have used that the @
y1Q

+ = 0 for |y
2

| > '/2, from which

Z
1/2

�1/2

dy
2

@Q+

@y
1

(0, y
2

)f+

n

⇤
(y

2

) =

Z
'/2

�'/2

dy
2

@Q+

@y
1

(0, y
2

)f+

m

⇤
(y

2

), (A4)

afterwards we ask, on average, @
y1Q

+ = @
y1Q

� for |y
2

| < '/2. We get a matrix system for

the two vectors q� = (q�
n

)
n=0,...,N

� and q+ = (q+
n

)
n=0,...,N

+ of the form

0

@ I �

tF⇤

FA tanh(Ae) B

1

A

0

@ q�

q+

1

A =

0

@ S

0

1

A , (A5)

with I theN�
⇥N� identity matrix, A = diag(a

n

), B = diag(|b
n

|), F
mn

=
R

'/2

�'/2

dy
2

f+

n

⇤(y
2

)f�
n

(y
2

)
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and S
n

=
R
'/2

�'/2

dy
2

y
2

f�
n

(y
2

). The expressions of F
mn

and S
n

are given below
8
>>><

>>>:

F
mn

=

r
'

2

⇥
sinc((a

n

� b
m

)'/2)ein⇡/2 + sinc((a
n

+ b
m

)'/2)e�in⇡/2

⇤
,

S
n

= �2

r
2

'

1

a2
n

(A6)

The system is of the form Mq = s with the matrix M being square (this is not always the

case in systems written using mode matching). Next, M is invertible if one has taken care

to consider only the antisymmetric modes. Thus, the system can be solved to find q by

inverting M or it can be solved in the least squares sense (as done by the operation M\s in

Matlab).

Then, we want to determine

C = �

Z
dy

@Q(2)

@y
2

=

Z
0

�e

dy
1

Z
'/2

�'/2


1�

@Q�

@y
2

�
. (A7)

where we have used that Q(2)(y
1

� 0, y
2

) = Q+(y) � y
2

is periodic, thus of vanishing

contribution. It is now su�cient to write C = e'� q�
n

tanha
n

e/a
n

[f
n

]'/2�'/2

to get

C = e'+ 2

r
2

'

tanha
n

e

a
n

q�
n

. (A8)

The procedure of mode matching is longer to explain than to encode; below is a script

working with Matlab.

Appendix B: Alternative derivation of the jump conditions

In [18, 19], jump conditions are determined for a zero thickness interface. In fact, instead

of anticipating the use of a thin equivalent interface, it is possible to start from the jump

conditions established for the zero thickness interface, namely, these are
8
>>><

>>>:

JP K
0

= hB
@P

@X
1 |0

,

JU
1

K
0

= e('� 1)
@U

1

@X
1 |0

+ hC
@U

2

@X
2 |0

,

(B1)

and in the above conditions, the su�x ”0” refers to the zero thickness of the interface. To

recover the jump condition in Eqs. (27), it is su�cient to remark that

P (�e,X
2

, t) = P (0�, X
2

, t)� e
@P

@X
1

(0�, X
2

, t) +O(e2) = P (0�, X
2

, t)� e
@P

@X
1

+O(e2),
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same for U
1

, and e is small (to be more consistent, the expansion should be done in x-

coordinates, thus O("2) would appear explicitly). It follows that

JP K = JP K
0

+ e
@P

@X
1

,

same for U
1

and we indeed recover the Eqs. (27). As previously said, this is done in [18]

following this procedure. In fact, in this reference, e is let as a free parameter, and this is

meant to ensure the positivity of all the e↵ective parameters for e large enough. Our guess

is that e being the actual thickness of the interface is the best choice.
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