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METHODOLOGY

PYM: a new, affordable, image-based 
method using a Raspberry Pi to phenotype 
plant leaf area in a wide diversity 
of environments
Benoît Valle1,2*, Thierry Simonneau1, Romain Boulord1, Francis Sourd3, Thibault Frisson2, Maxime Ryckewaert2, 
Philippe Hamard1, Nicolas Brichet1, Myriam Dauzat1 and Angélique Christophe1* 

Abstract 

Background: Plant science uses increasing amounts of phenotypic data to unravel the complex interactions 
between biological systems and their variable environments. Originally, phenotyping approaches were limited by 
manual, often destructive operations, causing large errors. Plant imaging emerged as a viable alternative allowing 
non-invasive and automated data acquisition. Several procedures based on image analysis were developed to moni-
tor leaf growth as a major phenotyping target. However, in most proposals, a time-consuming parameterization of 
the analysis pipeline is required to handle variable conditions between images, particularly in the field due to unsta-
ble light and interferences with soil surface or weeds. To cope with these difficulties, we developed a low-cost, 2D 
imaging method, hereafter called PYM. The method is based on plant leaf ability to absorb blue light while reflecting 
infrared wavelengths. PYM consists of a Raspberry Pi computer equipped with an infrared camera and a blue filter and 
is associated with scripts that compute projected leaf area. This new method was tested on diverse species placed in 
contrasting conditions. Application to field conditions was evaluated on lettuces grown under photovoltaic panels. 
The objective was to look for possible acclimation of leaf expansion under photovoltaic panels to optimise the use of 
solar radiation per unit soil area.

Results: The new PYM device proved to be efficient and accurate for screening leaf area of various species in wide 
ranges of environments. In the most challenging conditions that we tested, error on plant leaf area was reduced to 
5% using PYM compared to 100% when using a recently published method. A high-throughput phenotyping cart, 
holding 6 chained PYM devices, was designed to capture up to 2000 pictures of field-grown lettuce plants in less than 
2 h. Automated analysis of image stacks of individual plants over their growth cycles revealed unexpected differences 
in leaf expansion rate between lettuces rows depending on their position below or between the photovoltaic panels.

Conclusions: The imaging device described here has several benefits, such as affordability, low cost, reliability and 
flexibility for online analysis and storage. It should be easily appropriated and customized to meet the needs of vari-
ous users.

Keywords: Image analysis, Leaf area measurement, Low cost phenotyping, PYM (raspberry Pi pYthon iMaging), Field 
phenotyping, Raspberry Pi, Infra-red camera
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Background
Crop breeding is considered as a major workaround to 
feed the growing world population, with a 9–10 billion 
people forecast by 2050 [1]. Researchers and breeders 
therefore looked after relevant plant traits to improve 
crop yield [2]. Plant biomass logically predominated as 
a target trait directly related to net primary production. 
Several techniques have been developed to phenotype 
plant biomass with variable accuracy, easiness of use and 
cost [3, 4]. The most straightforward method remains 
plant harvesting and weighing. However, besides its time 
and labour cost, this procedure is destructive and not 
compatible with analysis of growth dynamics on indi-
vidual plants. Yet, sequential monitoring of individual 
plants proved to be efficient to unravel complex interac-
tions between genotype and environment and to deci-
pher genetic determinism of plant growth submitted to 
environmental constraints [5, 6]. Non-destructive meth-
ods for automated plant phenotyping (http://www.plant-
image-analysis.org) therefore received growing interest 
[7–17].

Plant imaging allows fast, non-invasive phenotyping to 
dynamically infer plant growth at high throughput [18]. It 
has benefited from recent advances in navigation, indus-
trial automation and medical diagnostic techniques [4]. 
Several methods combining image capture and analysis 
have been proposed with successful applications [19–
28] but most were developed for specific environments. 
Since none of them elicited unanimity, their use in broad 
ranges of environmental conditions can be questioned. 
Most often manual and time-consuming parameteriza-
tion of the image analysis process is required to correctly 
discriminate the plant from its background when leaf 
colour, light environment and background conditions 
are not stable [12]. In some cases, re-parameterization is 
even not affordable since analysis has been implemented 
in non-publicly available software [6, 8, 27].

Rather than looking for sophisticated analysis of stand-
ard images, stepping back and adapting the hardware to 
capture more suitable images can simplify the analysis 
and extend the domain of application. Usual detection 
of plant leaves on standard images relies on the abil-
ity of photosynthetic tissues to reemit visible light (VIS; 
400–700  nm wavelengths) in specific, mostly green 
wavelengths which are not absorbed by leaf pigments 
[29]. Imaging plants in an extended spectrum, includ-
ing wavelengths where leaves exhibit specific spectral 
properties, could open new perspectives. In particular, 
leaf tissues re-emit solar radiation in the near infrared 
wavelengths (NIR; 700–1100 nm) [29]. These properties 
gave rise to the development of the Normalized Differ-
ence Vegetation Index (NDVI, [30]), initially based on 
images collected by the satellite Landsat 1 equipped with 

a multispectral scanner. NDVI compares red and NIR 
reflectances and ranges from negative values correspond-
ing to non-vegetative soils to positive values, comprised 
between 0.1 and 0.7 and typical of plant covers [31]. It 
has been correlated with several traits such as vegetation 
coverage [32], green biomass [33], nitrogen content [34, 
35] and grain yield [36]. NDVI has been implemented 
in portable commercial solutions for field phenotyping 
(for example Greenseeker™, [37]) but can also be derived 
from any camera able to detect signals in infrared (IR) or 
NIR wavelengths. High resolution, hyperspectral cam-
eras are the most flexible ones as regards separation of 
specific wavelengths enabling to detect plant stress [11, 
13], but they remain quite expensive. By contrast, stand-
ard cameras are now available at very low cost but are 
equipped with infrared blocking filters to limit image 
capture in the VIS range.

Here we examined how the spectral characteristics of 
plant leaves could be included in a low cost, portable and 
automated imaging system to determine isolated plant 
leaf area in a wide range of conditions. We describe such 
an efficient solution using the widely spread Raspberry Pi 
[38] computer with a modified version of a standard cam-
era module (Pi NoIR) where the IR filter was removed to 
extend light capture beyond the VIS range. A blue filter 
(provided by the manufacturer) was also added. Scripts 
were developed for the resulting images to determine the 
projected leaf area of plants. We demonstrate that plant 
segmentation with this new device is efficient for vari-
ous species and background environments, while stand-
ard methods often fail to correctly estimate plant leaf 
area. Reliability in field conditions is illustrated by data 
obtained on lettuce plants grown below different con-
figurations of photovoltaic panels (PVPs). The concept of 
growing plants in the partial shade of PVPs emerged in 
1982 [39] to cope with the detrimental impacts of climate 
change on plants and increase global land productivity 
[40]. At first glance, shading crops with photovoltaic pan-
els is thought to severely hamper plant growth. However, 
an increase in plant efficiency to intercept radiation (radi-
ation interception efficiency, RIE) has been reported for 
lettuce grown below PVPs due to the acclimation of leaf 
expansion to shade and resulting in growth maintenance 
[41]. To get insights into these acclimation processes, we 
developed a field-phenotyping cart where several Rasp-
berry Pi devices were chained to monitor leaf area for 
hundreds of lettuce plants grown below different config-
urations of PVPs. Compared to full sun conditions, let-
tuces grown at the vertical of free spaces separating PVPs 
had enhanced expansion rate of their projected surface 
and thus increased RIE. However, this acclimation of 
plants to shading conditions was not sufficient to main-
tain biomass at harvest. By contrast, plant biomass was 

http://www.plant-image-analysis.org
http://www.plant-image-analysis.org
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closer to that observed in full sun conditions when let-
tuces were grown at the right vertical below PVPs, where 
expansion rate of plant surface and thus radiation inter-
ception was not significantly altered.

Methods (can also be placed after Conclusions)
Image acquisition system
A fully programmable, infrared camera system was built 
assembling a compact, single-board computer (Rasp-
berry Pi 2 model B) and an infrared camera (Raspberry Pi 
NoIR V1). The computer was run under Raspbian GNU/
Linux operating system and scripts were developed in 
Python language to facilitate image capture automation 
and analysis. The camera was a regular module (Omni-
Vision OV5647) where the infrared filter was removed, 
allowing for the capture of NIR wavelengths in addi-
tion to standard VIS light. A blue filter (Roscolux #2007 
Storaro Blue) was also set in front of the camera lens to 
exclude green and red wavelengths and to transmit blue 
and NIR wavelengths higher than 700 nm (Fig. 1). Over-
all, the light incoming to the camera lens was mainly 
composed of VIS light filtered for blue and NIR wave-
lengths which were recorded in the BLUE and RED chan-
nels, respectively.

A standard camera module (Raspberry Pi) equipped 
with its original infrared filter was also used to compare 
with other methods in controlled conditions. Source 
images were designed as VIS images when captured with 
this standard camera or (VIS + NIR)BF images when cap-
tured with the modified one as described above.

Image capture and analysis
Overall description
Software for the automation of image capture, segmen-
tation and analysis was developed in Python 2.7 (http://
www.python.org).

A first python script was developed and uploaded in 
each Raspberry Pi to control image capture and storage 
in USB flash disks. Image analysis was performed with 
another, specifically developed python script based on 
Numpy (http://www.numpy.org) and OpenCV2 (http://
opencv.org) libraries. This step could be performed 
in Windows operating systems via an executable pro-
gramme using py2exe (http://www.py2exe.org). The 
script can batch process thousands of pictures in a few 
minutes on a standard personal computer, including stor-
age of final images for rapid control of the procedure and 
saving the end results (leaf area) directly into a spread-
sheet-ready CSV file.

Segmentation method
The first step of image analysis was the transformation 
of the original picture into a new one using selected 

wavelengths specific to leaves. Leaf emission spectrum 
is largely determined by the photosynthetic pigments, 
mainly chlorophylls and carotenoids. As a consequence, 
most species exhibit green leaves, due to pigments 
absorbing blue and red regions in the VIS [42]. However, 
these properties do not discriminate efficiently against 
many backgrounds. By contrast, the internal cellular 
structure of leaf cells is more specifically responsible for 
a high reflectivity of near-infrared light [43]. Using the 
plant ability to absorb blue light and reflect near-infrared 
light, we developed a method able to extract leaf surface 
from its background. The source image needs to be taken 
with the camera system described above, associating the 
infrared-transformed camera and a blue filter. Colour 
image recording is usually split into BLUE, GREEN and 
RED channels corresponding to the output format of 
the camera (raw RGB). RED (mainly encompassing NIR 
wavelengths) and BLUE channels were sufficient to seg-
ment the plant from its background in our procedure. 
High intensity in the RED channel and low intensity in 
the BLUE one coincided with the presence of vegeta-
tion reflecting near-infrared wavelengths whereas near-
infrared reflection was negligible for most other material 
around plants. By subtracting pixel values of BLUE chan-
nel to that of the RED one, non-vegetative pixel values 
were further attenuated, increasing the contrast between 
plant and background. A new image was thus created by 
subtracting the BLUE to RED channel intensity at each 
pixel according to Eq. (1).
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Fig. 1 Spectral properties of the blue filter and transmitted wave-
lengths to the camera sensor. Roscolux #2007 Storaro Blue transmis-
sion spectrum. Blue filter stops green and red wavelengths, while 
blue and infrared are transmitted to the camera sensor
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k is a fixed parameter whose value was optimized empiri-
cally. Higher values (closer to 1) resulted in low intensity 
images with substantial segmentation errors while lower 
values (closer to 0) hindered the discrimination when 
background areas were detected in the RED channel. 
Pixel intensities in the different channels were coded as 
unsigned 8-bit integers, assigning to zero any negative 
value of NEW CHANNEL which corresponded to non-
vegetative pixels with high intensity of BLUE. Intensity of 
pixels was rescaled after NEW CHANNEL computation.

Application of Eq.  (1) resulted in a narrow range 
of variations in pixel intensity for this NEW CHAN-
NEL (Fig.  2b). The distribution of pixel intensity in this 
new channel is bimodal with each mode associated 

(1)
NEW CHANNEL = RED− k × BULE (with k = 0.5) with either the plant or the background prefiguring the 

segmentation.
A false 2 colour image based on this NEW CHANNEL 

image can be created at this stage (included in our script 
but may be skipped) to better visualize the segmenta-
tion between plant and background (Fig. 2c). An adaptive 
thresholding based on Otsu’s binarization [44] was then 
processed on the NEW CHANNEL image (Fig. 2b).

Standard procedures for erosion, opening and clos-
ing were then applied in that order to remove noise and 
closing small holes inside objects using OpenCV library. 
Contour of each object in the scene was then drawn and 
individual areas calculated. When plants were isolated, 
only one object was detected. In some cases, small addi-
tional objects like weeds were counted and were auto-
matically disregarded by assigning the highest area in the 
picture to the plant surface (Fig. 2d). In the case of meas-
ures in controlled conditions and for plants with no con-
tiguous contour, plant leaf area was computed as the sum 
of all white pixels. The result was stored as pixel number 
and converted into  cm2, using a conversion ratio meas-
ured with a calibration standard placed at the soil level in 
the field of view using PYM cameras.

Segmentation performance assessment
We compared our proposed PYM (raspberry Pi pYthon 
iMaging) procedure with Rosette Tracker, a state-of-the-
art, recently published method. Rosette Tracker emerged as 
the only published method able to estimate plant leaf area, 
freely available as an ImageJ plugin with minimal param-
eterization of the analysis software, thereby sharing similar 
objective as PYM, although working on VIS images [12]. 
We therefore retained two different versions of the same 
camera, either standard for imaging in VIS wavelengths or 
transformed for (VIS + NIR)BF imaging as above described. 
Paired pictures were obtained with both cameras from 
various scenes combining leaves or whole plants of various 
species over different backgrounds. Automated segmenta-
tion of VIS and (VIS + NIR)BF images were performed with 
their respective method (Rosette Tracker or PYM).

As a reference, manual segmentation of both origi-
nal images (VIS and (VIS +  NIR)BF) was operated with 
ImageJ, drawing precise contours of each leaf or plant 
to determine their areas with maximal accuracy using a 
high resolution tablet (2560 × 1440 pixels, Wacom, Ger-
many). First, each object was drawn and filled using the 
Brush tool in ImageJ. The VIS and (VIS + NIR)BF images 
were then transformed to 8 bit (greyscale) and then 
thresholded to produce binary images.

For the 4 types of segmented images (on (VIS + NIR)BF 
images using PYM or manual segmentations and on 
VIS images using Rosette Tracker or manual segmen-
tation), the Measure tool in ImageJ provided the object 

Fig. 2 Details of image analysis process used in the PYM procedure, 
from source to segmented image (a–d). a Source image taken with 
the infrared camera and the blue filter. b Grey image based on NEW 
CHANNEL values (after a crop of a image). c False 2 colour image for 
visual assessment of segmentation between plant and background. 
d Final image after segmentation, erosion, opening and closing pro-
cedures. White pixels are counted and summed to estimate projected 
leaf area
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area as a number of pixels. For each scene, the refer-
ence leaf or plant area was computed as the mean of 
the 2 areas determined by manual segmentation of VIS 
and (VIS + NIR)BF images. The performance of the two 
segmentation methods (Rosette tracker and PYM) was 
evaluated by comparing leaf area generated by each auto-
mated method to this reference area.

To compare methods in standard conditions for 
Rosette Tracker, 149 pre-bolting Arabidopsis thaliana 
plants (several genotypes) were photographed in the 
PHENOPSIS high-throughput phenotyping platform 
[45]. Two successive sequences of photographs were shot 
with the two types of camera VIS and (VIS + NIR)BF.

To compare methods in various, challenging situations, 
dark soil, clear sand and a combination of both substrates 
were associated with two lettuce varieties: a green one 
(frilly lettuce) and a red one (red oak leaf lettuce), bought 
in retail and placed over different backgrounds under 
artificial light (Figs. 3, 4).

Application to field experiment
In summer 2015, an experiment was carried out with let-
tuces (Kiribati variety, Oakleaf, Lactuca sativa acephala 

sp.) grown in a field at Montpellier, France (43°6N, 3°8E). 
Lettuces were planted in boards of 6 rows, with 30  cm 
distance between rows and between plants within a row. 
Irrigation was provided by drip lines so as to ensure 
absence of water stress. Macronutrient fertilization was 
applied the day before planting and nitrogen status was 
then weekly controlled with a chlorophyllmeter (SPAD-
502, Konica Minolta Inc., Japan) to verify that nitrogen 
was not limiting.

Growth of individual plants was followed in different 
light conditions imposed by photovoltaic panels (PVPs) 
installed over the crop in addition to full sun conditions 
as a control. A similar experiment was previously carried 
out with fixed PVPs [41]. In the present study, we ana-
lysed a new system equipped with solar trackers which 
could move around North–South horizontal axes to track 
the daily course of the sun with technical limits of − 50 
and + 50 degree angles with horizontal. They were pro-
grammed to adjust their position every time a 1 degree 
offset was detected between sun azimuth and the direc-
tion normal to panels so as to maximize interception of 
solar radiation. Photovoltaic panels were joined into 2 m 
wide and 19  m long, North–South strips and placed 5 

Fig. 3 Performance of the PYM segmentation method with contrasted background conditions. The same lettuce was photographed with three 
different soil backgrounds. The PYM method was compared to Rosette Tracker developed on VIS images [12]. a1–c1 VIS image. a2–c2: (VIS + NIR)BF 
image. a3–c3 Segmented image after Rosette Tracker procedure. a4–c4 Segmented image after PYM procedure. a5–c5 Error (%) made on plant 
leaf area using automated procedures relative to the reference area determined on manually contoured plant on original images
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meters above ground. PVP density was adapted to crop 
needs by leaving 4.4 m wide [40], free spaces separating 
each PVPs strips (with horizontal panel orientation). The 
whole system generated strips of shade and sun at soil 
level moving from West to East throughout the day.

Lettuces were planted on 21th of July 2015. Two plots 
were cropped under photovoltaic panels. The first one 
was located at the vertical below the PVPs (Below_PVPs 
treatment) and the second one below the free space 
leaved between two strips of PVPs (Between_PVPs treat-
ment). As a consequence, plants of the two treatments 
were shaded at different periods of the day although they 
received quite similar levels of radiation over the whole 
day (see “Results”). The control (full sun) plot, where 
plants received much higher radiation, was positioned 
at the South of the two PVP treatments to prevent unde-
sired shading by the panels.

In order to characterise time changes of projected 
leaf area of plants at high-throughput, a set of 6 modi-
fied PYM devices was mounted onto a phenotyping cart 
(see Additional file  1). To fit the plantation design, the 
cart consisted of a light, metallic structure equipped with 
wheels so that it could be translated spanning over the 6 

rows of the plantation boards. A camera was associated 
with each row, resulting in 6 cameras spaced by 30 cm as 
were the rows of lettuces. Cameras were fixed to a hori-
zontal rod stepping at 1 m above the crop. Raspberry Pi 
computers (one per camera) were connected through 
GPIO pins to a single contactor triggering the 6 cam-
eras simultaneously (see Additional file 2). Pictures were 
directly stored into an USB flash disk. Portable power 
banks supplied power to the computers. Vertical align-
ment of the cameras over each line of 6 lettuces normal 
to planting rows was ensured by positioning the wheels 
of the cart on the same line as the imaged plants. On 
sunny days, a tissue shelter was installed on the cart over 
the cameras to project a uniform shade on the whole field 
of view of each camera. Throughout the growing period, 
30–50 plants per treatment were photographed twice a 
week resulting in 9 pictures per plant recorded from 6 to 
37  days after plantation. All pictures (78 per plot) were 
taken within 20 min starting at 10:00 a.m. For late devel-
opmental stages, overlapping between plants was occa-
sionally detected on some images which required manual 
contour of individual plant leaf area including estimation 
of covered leaf surfaces when appropriate.

Fig. 4 Performance of the PYM segmentation method with contrasted varieties of lettuce (light green in A or dark red in B and C). Comparison with 
Rosette Tracker [12]. a1–c1 VIS image. a2–c2 (VIS + NIR)BF image. a3–c3 Segmented image after Rosette Tracker procedure. a4–c4 Segmented 
image after PYM procedure. a5–c5 Error (%) made on plant leaf area using automated procedures relative to the reference area determined on 
manually contoured plant on original images. Panel a is a duplicate of Fig. 4 for comparison purposes
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Plants were harvested 37  days after plantation, at the 
same date for all treatments, corresponding to the com-
mercial maturity stage for the full sun conditions (i.e. 
about 400 g fresh weight per plant). For each treatment, 
18 plants were collected and rapidly washed to remove 
soil particles, then oven dried for 72 h at 60 °C to deter-
mine individual dry weights of whole plants.

Microclimate in the field experiment
A temperature and humidity probe (HMP45 AC; Camp-
bell Scientific Inc., UK) and a radiation sensor (BF5; 
Delta-T Devices, UK) connected to a data logger were 
positioned in the control plot to monitor air temperature 
and global and diffuse radiations (400–700  nm). Global 
and diffuse radiations were used to compute radiative 
balance at the plant level for the different locations under 
the PVPs by applying a ray tracing algorithm [46] to a 
three-dimensional numerical representation of the whole 
photovoltaic system. Instantaneous, global incident radi-
ation transmitted at plant level  (Radiationinc) was thus 
computed every 3 min taking into account actual changes 
in sun position and orientation of the photovoltaic track-
ers. Cumulated, global radiation over the whole growing 
period was then calculated by integrating these instanta-
neous values.

Plant leaf expansion rate and intercepted radiation in the 
field experiment
The Relative Expansion Rate (RER, [27, 47, 48]) was 
determined for the projected leaf area of each plant 
(Plant Leaf Area) at each time interval between two con-
secutive dates of image capture. Thermal time (TT) was 
preferred to legal time to remove the effects of tempera-
ture variations between days and treatments. TT was cal-
culated as the daily cumulated difference between mean 
air temperature and a minimal of 3.5 °C required for let-
tuce growth [49, 50]. RER was thus determined as follows 
(Eq. 2):

where i and i  +  1 represent two consecutive imaging 
dates.

Intercepted radiation  (Radiationint) was estimated for 
each plant as the product of Plant leaf area with global 
incident radiation  (Radiationinc) determined at plant level 
as above described. Plant leaf area, i.e. the projected leaf 
area of the plant determined with PYM was considered 
as a relevant proxy for the surface intercepting solar 
radiation at the whole day scale due to the hemispherical 
shape of the lettuces. During most of the growth cycle, 

(2)

RERi =

[

ln
[

(Plant leaf area)i+1

]

− ln[(Plant leaf area)i]

TTi+1 − TTi

]

plants did not overlap. For late developmental stages, 
when Plant leaf area exceeded the 30 by 30  cm square 
dedicated to each lettuce at plantation, a correction was 
applied to remove overlapping leaf areas between neigh-
bouring plants. The correction consisted in consider-
ing the plant surface as a disk of equivalent area to that 
determined with PYM, from which all surfaces outside 
a concentric, 30 × 30 cm square were subtracted, which 
occurred when the radius r of the disk equivalent to the 
plant exceeded 15 cm. The Plant Leaf Area of such plants 
was therefore corrected as follows (Eq. 3).

To cumulate the intercepted radiation throughout the 
growth cycle, the mean Plant Leaf Area for each period 
between two consecutive imaging dates was multiplied 
by the incident radiation cumulated during the corre-
sponding period (Eq. 4).

where i represents each imaging date. Plant leaf area at 
planting (i =  0) was estimated at 10  cm2 as an average 
determined with the PYM method on a subset of plants 
from all treatments.

Mean efficiency for radiation interception by plants 
over their whole growth period (RIE) was simply calcu-
lated as the ratio of cumulated intercepted radiation to 
cumulated incident radiation. RIE mainly depended on 
the dynamics of plant leaf expansion and spatial arrange-
ment of the leaves.

Finally, mean radiation use efficiency by the plant over 
the whole growth period (RUE) was then deduced as the 
ratio of accumulated dry mass (determined at harvest 
date) to cumulated, intercepted radiation (derived from 
Eq.  4). RUE integrates all the physiological mechanisms 
involved in the transformation of the radiation inter-
cepted by the plant into harvested biomass.

Statistical analyses
Light treatment effects on plant traits were analysed 
through analyses of variance (ANOVAs) and Kruskall-
Wallis tests for multiple comparisons. Light treat-
ment effects on RER modelling were assessed using a 

(3)
Plant leaf area = 8×
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Radiationint =
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likelihood ratio test. All statistical tests were performed 
using R 3.3.1 (R Core Team (2016)).

Results
Assessment of PYM segmentation performance
Image segmentation with contrasted backgrounds
Efficiency of the PYM method was first assessed by 
comparison with Rosette Tracker, a recently published 
method for estimating plant leaf area from VIS images. 
Since Rosette Tracker operates with a regular version 
of the camera while PYM operates with a modified one, 
able to sense (VIS + NIR)BF wavelengths, paired, VIS and 
(VIS + NIR)BF images were captured for different plants 
using both configurations of the camera. Methods were 
tested with images of one same lettuce plant placed over 
three contrasted backgrounds (Fig. 3) and segmentation 
was run using scripts developed in Rosette Tracker and 
PYM respectively. Both segmentation methods correctly 
estimated the projected plant surface area on a dark 
background with only a 1% deviation compared to the 
reference area estimated by manual contour of the plant 
on original, VIS and (VIS + NIR)BF images (Fig. 3a1–a5). 
Automated segmentation of the plant (light green) placed 
over a clear background (Fig.  3b1–b5) generated maxi-
mal error when using Rosette Tracker on VIS image, due 
to a general confusion between the plant and the back-
ground. By contrast, our method was able to detect the 
plant surface area with a deviation limited to 5% when 
compared to the reference area. When both substrates 
were mixed (Fig.  3c1–c5), error in estimating leaf area 
was strongly reduced with Rosette Tracker (2%) but was 
still higher than with our PYM method (less than 0.5%). 
Overall, Rosette Tracker performed successful segmenta-
tion as long as contrasts between plant and background 
were present in the VIS image. However, when brightness 
of the background was close to that of the plant, confu-
sion between the two could be total. Conversely, our 
PYM method could detect the plant in all, tested condi-
tions with a maximal 5% error on leaf area.

Image segmentation with contrasted plant pigmentations
To go further in challenging situations, we picked a dark 
coloured, red lettuce variety (Fig.  4). As previously out-
lined with light plant and background, when both soil 
and plant have a dark colour, methods based on VIS 
images, largely fail to determine which pixel belongs to 
whom resulting in errors as large as 68% for plant leaf 
area (Fig.  4b5). For some VIS images (Fig.  4b1), it can 
even become tricky to trace the plant contour manually. 
Intermediary results were obtained on VIS images when 
the plant (and the background) consisted of a mix of clear 
and dark areas which generally resulted in underesti-
mation of plant leaf area (by 39% in Fig. 4c5). Our PYM 

procedure performed much better in all these situations 
with less than 1% error on plant leaf area.

Image segmentation in PHENOPSIS high‑throughput 
phenotyping platform
Both segmentation methods were tested in growth cham-
bers conditions in PHENOPSIS, a phenotyping platform 
for which Rosette Tracker was initially conceived. Differ-
ent genotypes of Arabidopsis thaliana plants were pho-
tographed and estimations of plant leaf area with both 
methods were compared to the manual segmentation of 
the plant (Fig. 5).

Estimated leaf area tightly correlated with manu-
ally determined area when using the PYM method 
 (R2  =  0.997). The correlation was much looser 
 (R2 = 0.773) with Rosette Tracker working on VIS images 
with plant leaf area being either over or under estimated. 
The mean error relative to manually determined leaf 
areas for all the situations tested was much lower with 
the PYM method (6.7%) in comparison with the VIS 
based method Rosette Tracker (34.1%).
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PYM and Rosette Tracker procedures on 149 Arabidopsis thaliana 
plants from different genotypes in the PHENOPSIS platform [45]. 
Comparison with a reference area determined by manual contour of 
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149 photographs
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Extension of the PYM method to various species 
and conditions
Our PYM segmentation method was also tested on dif-
ferent species placed in different growth conditions 
(Fig.  6). Either Rosette Tracker or PYM well performed 
when the plant coloration was uniform (Fig.  6b and, to 
a lesser extent, 6d and f ). However, when several leaves 
of one same plant or several plants in the same image 
exhibited contrasted colours (Fig. 6a, c, e), only the PYM 
method was able to retrieve the entirety of the leaf area. 
Interestingly, all images in Fig. 6 were captured and pro-
cessed with PYM using a unique device and a stationary 
script. This opens interesting applications for detecting 
leaf area of plants with optical variations such as chloro-
tic or necrotic surfaces (Fig. 6e).

Application of PYM method to a field experiment
Dynamics of leaf area expansion in a field experiment 
with lettuce plants
Three plots of lettuces receiving standard irrigation and 
fertilization but different light treatments were com-
pared in field conditions. A first plot was submitted to 

full sun conditions and was considered as the control. 
A second plot was aligned at the right vertical below a 
strip of joining, photovoltaic panels (Below_PVPs treat-
ment) and a third plot was placed between two strips of 
PVPs (Between_PVPs treatment). Dynamics of projected 
leaf area was determined for 30–51 plants per treatment 
with a phenotyping cart equipped with 6 PYM devices. 
Imaging was repeated on the same plants at 9 dates from 
plantation to harvest. The automated PYM procedure 
provided enough resolution to monitor small increments 
in projected leaf area between two consecutive images 
captures regardless of changes in soil surface and light 
conditions (Fig. 7).

Overall, individual plants had very scattered evolu-
tions of their projected leaf area, including within each 
light treatment (Fig.  8a). However, by repeating leaf 
area determination with the phenotyping cart on large 
sets of plants, a significant difference (p value  <  10−3) 
in leaf expansion was evidenced across light treat-
ments (Fig.  8b). Projected leaf area was significantly 
higher for plants grown between PVPs than for the 
plants placed below PVPs or in full sun conditions. Yet, 

Fig. 6 Exploration of the performance of the PYM segmentation procedure with various species in different environments. Comparison with 
Rosette Tracker [12]. a Red and green leaf lettuce placed over plastic cover and analysed together in one same image. b Potted maize plant in 
greenhouse with concrete soil. c Several grapevine leaves placed over white table. d Arabidopsis thaliana grown in soil with well-watered condi-
tions. e Arabidopsis thaliana inoculated with Turnip Mosaic Virus (TuMV). f Arabidopsis thaliana grown in soil under water deficit conditions. a1–f1 
VIS image. a2–f2 (VIS + NIR)BF image. a3–f3 Segmented image after Rosette Tracker procedure. a4–f4 Segmented image after PYM procedure
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Between_PVPs and Below_PVPs treatments exposed 
the plants to quite similar levels of radiation at the whole 
day scale, although with a different timing for shade and 

sunlit periods throughout the day. Mean daily radiation 
at plant level over the whole growth period amounted 
to 29 and 31  mol  m−2  day−1 for these treatments 

Fig. 7 Growth of lettuces cultivated in field conditions. a An example of image stack of projected leaf area for a lettuce plant photographed with 
a phenotyping cart at 9 dates from plantation to harvest in a field experiment performed in summer 2015. Numbers above pictures are Days After 
Plantation (DAP). b Superposition of the processed images of the projected leaf area for one plant (same as in A) with the youngest stage forefront. 
From the forefront centre to background: orange = 6 DAP, green = 10 DAP, blue = 15 DAP, red = 17 DAP, cyan = 21 DAP, orange = 24 DAP, 
green = 28 DAP, blue = 31 DAP, red = 37 DAP. The proportions of image sizes are preserved. c Evolution of the projected leaf area of the selected 
plant from plantation to harvest
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Fig. 8 Projected leaf area dynamics for 124 lettuce plants submitted to three different light treatments due to shading by photovoltaic panels 
(PVPs) placed at 5 m above plants. Control corresponds to full sun condition. In other treatments, plants were grown at the right vertical below a 
strip of joining photovoltaic panels (Below_PVPs treatment) or between two strips of PVPs (Between_PVPs treatment). a Each curve represents the 
evolution of projected leaf area for one same plant measured at 9 dates from 6 to 37 days after plantation. b Same as A except that projected leaf 
area was averaged for all plants of each treatment on each date. Error bars indicate standard deviation for a minimum of 30 plants
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(Below_PVPs and Between_PVPs respectively) compared 
to 44 mol m−2 day−1 for full sun conditions.

Relative Expansion Rate in the field experiment
For each plant, relative expansion rate (RER) of individ-
ual plants was computed for the 8 periods separating 2 
consecutive image captures. A general decline was evi-
denced for RER when related to the projected leaf area 
considered as the mean of initial and final values for 
each time interval (Fig. 9a). This indicated that RER was 
largely determined by the plant surface able to intercept 
light at each time interval, although with a tendency to 
decline with plant development for all three treatments. 
This corresponded to a sub exponential growth pattern 
as already depicted in other rosette species [6]. Fitting an 
exponential model to this data revealed a similar behav-
iour for the Control and Below_PVPs treatments, with 
very close parameter values, whereas RER was signifi-
cantly higher for plants grown between PVPs, specifically 
at early stages of development (Table 1 and Fig. 9b). Such 
an advantage, at early growing stages, for lettuces planted 
between two rows of PVPs was amplified until harvest 
due to the sub exponential growth model, resulting in the 
large differences observed in final leaf area. 

Relative Expansion rate (RER) was related to Plant leaf 
area with the following equation: RER = exp(α + β * Plant 
leaf area). Fitted lines are plotted in Fig. 9b. Different let-
ters indicate significant differences between treatments 
(likelihood ratio test, α = 0.01).

Radiation Interception and Radiation Use Efficiencies in the 
field experiment
The last images were captured at final harvest. As shown 
before throughout plant growth (Fig.  8b), final leaf area 
was significantly higher for plants grown between PVP 
strips compared to the other light treatments (Fig. 10a). 
Surprisingly, the plants grown between PVPs displayed 
the lowest dry mass (Fig. 10b).

Radiation interception efficiency (RIE) and radia-
tion use efficiency (RUE) were computed as the means 
for the whole growth cycle. As typically observed for 
shaded plants, RIE of plants grown in the two PVP treat-
ments tended to be higher than Control plants. However, 
this gain in RIE was more marked and significant for 
Between_PVPs than Below_PVPs treatment (Fig.  11a) 
resulting from higher values of Plant Leaf Area. The 3 
light treatments also induced significant differences in 
RUE (Fig. 11b), with the lowest values of RUE for plants 
of Between_PVPs treatment (Fig. 11b). On the opposite, 
Below_PVPs plants showed the highest values of RUE. 
This indicated that plants from this latter treatment, 

Fig. 9 Evolution of Relative Expansion Rate (RER) of lettuce plants grown in field conditions with different light treatments as a function of pro-
jected leaf area. RER was calculated for individual plants and each time interval between two consecutive dates of image capture. Same notation as 
in Fig. 10. Control corresponds to full sun condition. In other treatments, plants were grown at the right vertical below a strip of joining photovoltaic 
panels (Below_PVPs) or between two strips of PVPs (Between_PVPs). Black arrows correspond to leaves number (approx.). a RER was computed as 
the local slope of the relationship between the natural logarithm of projected leaf area and thermal time. X axis represents the mean projected leaf 
area between 2 image captures. b Same as A with lines corresponding to the following equation: y = exp(α + β * x)

Table 1 Parameters of  the exponential growth model fit-
ted for the 3 light treatments

Controla Below_PVPsa Between_PVPsb

α − 4.55 − 4.60 − 4.37

β − 2.127 × 10−3 − 2.094 × 10−3 − 2.415 × 10−3
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although with similar leaf area to control plants, tended 
to better convert intercepted radiation into biomass.

Discussion
A low‑cost, flexible method for high throughput 
phenotyping of plant leaf area
The method presented herein to monitor projected, leaf 
area complies with a series of objectives aimed at facili-
tating high throughput applications in unstable environ-
ments. It is affordable, flexible, accurate and stable across 
variable light and background conditions.

Accuracy and stability of the method rest on 3 key 
developments. First, rather than focusing on image anal-
ysis, spectral specificities of the plant and background 
have been considered to adapt a low cost, standard cam-
era where the infrared filter was removed and another 
one was added, transmitting only blue and near-infra-
red wavelengths. The resulting, new source image was 
much more appropriate for plant segmentation from the 
background since only plants have the ability to absorb 
blue and reflect infrared wavelengths. Inclusion of NIR 
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wavelengths to detect leaf area was inspired by the widely 
used index NDVI [30] and is available or can be adapted 
with a large range of cameras. Contrary to analyses based 
on green detection in VIS images, emission of NIR wave-
lengths by leaves makes the method much less sensitive 
to different hues of green which may be due to nutrient 
status or genetic characteristics. Chlorotic spots in the 
vegetative area or even changes in leaf pigments with 
senescence or stress conditions could be detected in the 
NIR with our method. By contrast, green emission is 
typically dominated by other wavelengths in senescent 
leaves which preferentially degrade chlorophyll over 
carotenoids [51]. Analysis of VIS images in such cases 
typically requires adjustment by the user [52]. It is also 
possible to detect a mixture of leaves or plants within 
a unique image even with spectral variability in green 
wavelengths emission.

A second originality holds in the addition of the blue 
filter to better discriminate between plant and back-
ground which remains a major challenge [53, 54]. Most 
backgrounds reflect more blue light than do the plants. 
This specificity was implemented in our software analysis 
where, for each pixel, BLUE channel intensity was partly 
subtracted from RED channel one (mainly composed of 
NIR and IR wavelengths). As a result, a contrast could be 
found between plants and background in a large range of 
conditions using a unique script with stationary param-
eters for all image analyses. The value of “k” used in this 
manuscript to weigh BLUE values relative to RED ones 
was empirically optimized as a first approach, showing 
good correlation between manually and automatically 
estimation of plant leaf area. This correlation was hardly 
sensitive to variations of k between 0.4 and 0.6 when 
using our set of images. Mathematically optimizing the 
value of “k” by using a much larger set of images from dif-
ferent users could probably improve the method.

Last, the hardware that we proposed is based on light, 
small sized and affordable (low cost and widely spread) 
materials. We used a Raspberry Pi computer for its small 
size, low power demand and very low cost (5$–25$). As a 
computer, it is fully programmable so that image capture 
can be controlled in multiple, flexible ways, for example 
with different time lapses. The camera (Pi NoIR camera) 
is also very cheap (25$) with a relatively high resolution 
sensor (5–8 Mega Pixels), bringing to 50$–75$ the total 
cost of the imaging including cabling and storage. The 
whole device can be easily replicated to increase pheno-
typing throughput when plants are not potted or cannot 
be moved to the sensor. It can be adapted to multiple 
types of crops or canopies provided that specific hold-
ers are developed, going from simple terrestrial tripods 
to drones. For field application on medium sized plants, 
we have adapted a phenotyping cart (approximately 

200$) where several “infrared” cameras were paired. 
About 2000 pictures of lettuce plants could be captured 
in about 2  h. Image analysis was then batch processed 
and took only a few minutes to obtain segmented images 
and estimation of plant area in pixels and  cm2. With 6 
cameras running in parallel, the phenotyping cart drasti-
cally reduced the time needed for image capture and per-
mitted to estimate leaf area of plants difficult to access, 
with minimal disturbance of soil surface. The distance 
between the ground and the cell of the camera remained 
constant during the different experiments allowing for 
stable calibration of the cameras although a graduated 
gauge could also be incorporated in the field of view. 
Moreover, by using accessible and adaptable codes in the 
PYM method, we provided future users with enough flex-
ibility to customize image capture and storage depend-
ing on their specific experimental design. For example, 
the PYM method already proved itself in PHENOPSIS 
platform.

The PYM method was developed to segment the plant 
from its background in challenging situations (field 
experiments). The only one trait we were interested in for 
lettuce was the projected area. But the method can now 
be plugged to another algorithms able to measure addi-
tional growth features, bases on high quality segmented 
pictures.

Benefits of the method for field experiments
Devices able to monitor dynamics of plant leaf growth 
at high throughput are critically needed for agronomi-
cal or breeding purpose. This derives from the widely 
used approach of Monteith [55] which places leaf surface 
as limiting for light capture at the centre of the analysis 
when exploring differences between species or growing 
conditions.

We used this approach to explore the possible ben-
efits of agrivoltaic systems where photovoltaic panels are 
combined with crops on the same land surface. Although 
the panels reduce the available light at the plant level, 
plant acclimation to shade can partly compensate for 
this limitation [41]. This point was confirmed for the 
Below_PVPs treatment in our experiment where plant 
biomass was much less reduced (by about 15% compared 
to control) than mean daily radiation available at plant 
level under the PVPs (reduced by 34%). This indicates 
that plants acclimated to conditions below PVPs to make 
a better use of available radiation than control plants. 
Acclimation of shaded plants was even more marked 
for leaf area which was enhanced for the Between PVP 
treatment (by 14%) while mean daily radiation available 
at plant level was reduced by 30%. Shaded plants are able 
to intercept more light with more elongated and thin-
ner leaves, thereby counterbalancing the reduction in 



Page 14 of 17Valle et al. Plant Methods  (2017) 13:98 

available radiation [56]. A previous study also reported 
higher RIE for plants shaded by PVPs compared to full 
sun conditions while RUE remained similar for all con-
ditions [41]. However, this absence of significant dif-
ference in RUE was mainly due to a large heterogeneity 
between plants that was also observed in our experiment. 
We solve this difficulty by developing a phenotyping cart 
allowing for high throughput imaging which increased 
the power of statistical tests. Thus, significant differ-
ences between light treatments were not only detected 
for projected leaf area and RIE, but also in RUE contrary 
to the previous study [41]. Specifically, RUE was higher 
for lettuces grown below PVPs compared to full sun con-
ditions, while RUE was lower for plants grown between 
panels. As a result of these differences in RIE and RUE, 
Below_PVPs plants were the most efficient as regards 
radiation use for biomass production, displaying inter-
mediate plant dry mass at harvest compared to control 
and Between_PVPs plants. This conclusion could guide 
future developments of agrivoltaic systems.

The difference which was revealed between lettuces 
grown below the vertical projection of PVPs and under 
free spaces separating strips of PVPs was not expected 
since lettuces received quite similar levels of cumulated 
radiation at the whole day scale in both positions. Rather, 
we expected plants from Between_PVPs treatment to 
have accumulated more biomass due to their higher 
intercepting leaf area compared to plants grown at the 
vertical below PVPs. Furthermore, a slightly higher inci-
dent radiation at plant level for Between_PVPs treatment 
should have resulted in even higher biomass accumula-
tion compared to Below_PVPs treatment. The lower dry 
mass at harvest for plants grown between PVPs more 
likely resulted from their lower RUE. In both treatments 
under PVPs, due to the South to North orientation of 
the plantation rows and the PVP strips, each lettuce was 
submitted to alternation of shade and full sun conditions 
with a different timing depending on the distance sepa-
rating the plant from the vertical of the PVP strip axis. 
In our experiment, up to 1 h offset separated shading of 
the different rows depending on their position respec-
tive to PVPs. As a result, some rows may have been 
shaded when evaporative demand was maximal, notably 
those located below PVPs while Between_PVPs plants 
were exposed to full sun radiation and high evaporative 
demand which may have transiently limited growth and 
reduced RUE in this treatment.

Higher RIE and RUE in shaded plants was critical for 
maintaining production below PVPs. Increase of RIE 
in shaded conditions has been reported as the result of 
a higher intercepting leaf area [41]. In our experiments, 
striking differences in final plant leaf area were obtained 
between light treatments although with only slight 

differences in relative expansion rate at the beginning of 
plant development. This is typical of processes that fol-
low exponential or even sub-exponential increase [48]. 
It has to be noticed that estimation of leaf area was only 
based on horizontal photographs, and it is not known 
whether vertical development of plants was also modi-
fied under PVPs to help maximising light interception 
[55]. Leaves typically get erected upon shading in most 
species but this probably has lower impact on light inter-
ception in oak leaf lettuce which exhibits very tortuous 
leaves, evenly oriented in all directions. An alternative 
explanation for the observed rise of RIE in plants shaded 
between PVPs is a possible increase of their specific leaf 
area, another typical response to shade in most species 
which reduce their leaf thickness to maximise leaf area 
per unit biomass. This may occur at the expense of RUE 
when the photosynthetic components per unit leaf area 
become limiting. This is a possible cause for the reduc-
tion in RUE observed in plants grown between PVPs 
which also exhibited the highest RIE in our experiment. 
Finally, it remains intriguing how plants grown below 
PVPs displayed higher RUE although higher photosyn-
thesis efficiency has already been reported in shaded 
plants to better value intercepted radiation into biomass 
increase [56].

Perspectives
Being based on spectral properties of leaf pigments and 
leaf cell structure, the presented method is relevant to all 
the plant species that we tested. Like for all other meth-
ods, weed control is very important to ensure that infra-
red reflection is only associated to the plant of interest. 
However, a combination of the PYM method with a more 
classical analysis of VIS images could possibly help dis-
criminating between undesirable and targeted plants. 
Whenever possible, any undesirable materials (pots, 
sensors etc.…) in the field of view should preferably be 
selected as non-reflecting for NIR. Imaging environments 
are sometimes depleted in IR source light which can also 
be circumvented by adding an artificial source of IR light 
like LEDs illuminator (at a fixed wavelength, for example 
at 750 nm). Although not presented here, the procedure 
should be easily extrapolated to side-view images.

Finally, Raspberry Pi computers offer enough flexibility 
to fit scripts to multiple applications. For example, the 
system can be used for remote sensing of plant growth 
even during the night, using infrared LEDs programmed 
to light up during image capture. To save memory dur-
ing image capture, the script developed for image anal-
ysis could be uploaded in the Raspberry Pi so that leaf 
area only could be stored. Segmented images could also 
be easily controlled by adding a portable display. The 
PYM method could thereby be appropriate for very large 
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applications or drone assisted ones were the weight of the 
whole device should be minimized. However, high stor-
age capacity devices are now available at low prices and 
low weight and are more flexible for further analysis.

Geopositioning of recorded pictures clearly extends the 
possibilities of plant phenotypic analyses. This is exem-
plified in the field experiment reported herein where 
moving the phenotyping cart along a predefined pathway 
and following a sequential naming of the pictures, made 
possible to automatically locate each recorded image 
with respect to PVP shading. Spatial effects could thus 
be tested and a difference was revealed between lettuces 
grown below the vertical projection of PVPs and below 
free spaces separating strips of PVPs. Similar procedure 
could apply to the analysis of any spatial structure that 
could have influenced crop growth like soil heterogene-
ity, distance from neighbouring trees in agroforestry or 
distance to drippers or sprinklers in irrigated systems.

Conclusions
We elaborated a new imaging device associated with a 
robust image analysis routine to estimate plant leaf area 
in a large diversity of environments. The method took 
advantage of the spectral properties of leaves emitting 
in infrared wavelengths. The hardware was developed 
around the widely used Raspberry Pi computer and cam-
era, resulting in a very low-cost device. Pairing several 
devices together, high throughput could be reached to 
reveal subtle differences in leaf growth when conditions 
induce scattering in plant growth. An application is pre-
sented in field conditions where the method revealed 
acclimation of lettuces plants to shading by photovol-
taic panels via modifications in RIE and RUE. Low-cost, 
light maintenance and flexibility of the method can meet 
a growing demand for plant phenotyping with multiple 
purpose.

Additional files

Additional file 1. Photograph of the phenotyping cart operating on field 
grown lettuces. Plantation boards were composed of 6 rows. Each row 
was associated with a single camera, resulting in 6 cameras mounted on 
Raspberry Pi and attached to the cart at 1 m height above soil level. Two 
operators, one on each side of the crop plot, moved the cart row after 
row, one operator triggered the image capture. A, B and C: side views of 
the phenotyping cart. D: Wiring between contactor and one Raspberry Pi. 
E: Contactor triggering the image capture on each camera. F: Wiring at the 
1st Raspberry Pi level, supplying power for image capture triggering. G: 
Detail of wiring at the pin levels for the 1st Raspberry Pi. H: Detail of wiring 
at the pin levels for all others Raspberry Pi. I: Blue filter glued to a camera.

Additional file 2. Detailed wiring between the contactor and Raspberry 
Pi computers. By default, GPIO18 is connected to Ground, when the 
contactor is pushed, electric power is transferred to GPIO18, launching a 
script in the Raspberry Pi, triggering the image capture on all connected 
devices. A 470 k Ω resistor was attached to the GPIO18 entry at the con-
tactor level to reduce. The cameras are not shown in this view.
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