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Introduction

In this paper we use ideas from computer algebra to prove what we call Local Bézout Theorem (Theorem 3.7). It is a formal abstract algebraic version, in the frame of Henselian rings and m-adic topology, of a well known theorem in the analytic complex case. This classical theorem says that, given an isolated point of multiplicity r as a zero of a local complete intersection, after deforming the coefficients of these equations we find in a sufficiently small neighborhood of this point exactly r isolated zeroes counted with multiplicities.

As far as we know the proofs of this classical result in the literature are essentially: by Arnold using powerfully the topological degree and Weierstrass theorems [4, section I-4.3], and another one that can be deduced from Griffiths-Harris [9, Residue Theorem, p. 656] using the theory of residues and its relationship with multiplicity.

Here we state and prove an algebraic version of this theorem in the setting of arbitrary Henselian rings and m-adic topology. We are somehow inspired by Arnold in [4, section I-4.3], exploiting an abstract version of Weierstrass division (in a Henselian ring) and introducing also an abstract version of which he called the "multilocal ring". Roughly speaking we consider a finitely presented A-algebra, where (A, m, k) is a local Henselian ring such that the special point is a k-algebra with an isolated zero of multiplicity r and we prove that the "multilocal ring" determined by this point is a free A-module of rank r.

Our main tools are, first the border bases [START_REF] Mourrain | A new criterion for normal form algorithms[END_REF], which turned out to be an efficient computational tool to deal with deformations of algebras. Second we use an important result of de Smit and Lenstra [START_REF] Smit | Finite complete intersection algebras and the completeness radical[END_REF], for which there exists a constructive proof in [START_REF] Quitté | Le théorème de de Smit et Lenstra, démonstration élémentaire[END_REF].

In Section 2.2 we recall the definition and main properties of border bases.

We point out that, to obtain a fully algorithmic proof of our results, we rely on the constructive proof of the Multivariate Hensel Lemma (MHL for short) given in [START_REF] Emilia | Revisiting Zariski main theorem from a constructive point of view[END_REF]. Also, in order to get true algorithms, fields are assumed to be discrete and local rings to be residually discrete.

The pure abstract algebraic form of Local Bézout Theorem is given in Theorems 3.3 and 3.7.

Going futher into details let us explain the form of Local Bézout Theorem we are interested in.

Assume (A, m, k) is a local normal domain, f 1 , . . . , f n ∈ A[X 1 , . . . , X n ] and let B := A[X 1 , . . . , X n ]/ f 1 , . . . , f n and C = B m+ x = A[x 1 , . . . , x n ] m+ x ,
where x = x 1 , . . . , x n , x i is X i mod f 1 , . . . , f n , and f i (0) ∈ m for i = 1, . . . , n. We denote by K the quotient field of A. We assume K to be an algebraically closed field and therefore A to be a Henselian ring.

We assume that the k-algebra

C := (k[X 1 , . . . , X n ]/ f 1 , . . . , f n ) x1,...,xn = k[x 1 , . . . , x n ] x1,...,xn is zero-dimensional, where f i (resp. x i ) is the image of f i (resp. x i ) by ⊗ A k.
Since K is algebraically closed it is plausible to speak about the continuity of the roots. The algebraic form of Local Bézout Theorem (Theorem 3.7) says that there are finitely many zeroes of (f 1 , . . . , f n ) above the residual zero (0, . . . , 0) (i.e., with coordinates in m), and the sum of their multiplicities equals the dimension r of C as k-vector space, i.e., the multiplicity of the residual zero. This implies also that the K-algebra C ⊗ A K is finite free of rank r.

As application of the precedent sections, in section 4, we obtain, from the abstract theorem, the classical one. Here the characterization of border bases introduced by Bernard Mourrain in [START_REF] Mourrain | A new criterion for normal form algorithms[END_REF] reveals to be a crucial tool.

2 Useful tools 2.1 Theorem of de Smit and Lenstra Theorem 2.1. (Theorem of de Smit & Lenstra, flatness, [START_REF] Smit | Finite complete intersection algebras and the completeness radical[END_REF]) Let A be an arbitrary commutative ring. If an A-algebra

B = A[X 1 , . . . , X n ]/ f 1 , . . . , f n is finite, then it is flat (so, it is free if A is local).
A constructive proof due to Claude Quitté is explained in [START_REF] Quitté | Le théorème de de Smit et Lenstra, démonstration élémentaire[END_REF].

Border bases

In this subsection, A is an arbitrary commutative ring.

(2.2.1) In the sequel we shall identify the semi-groups

X N 1 • • • X N n and N n . A nonempty finite subset B ⊂ N n is called closed by division if for every X γ , X γ , if X γ ∈ B and X γ | X γ then X γ ∈ B.
In the sequel any finite subset N n denoted by B will be assumed nonempty and closed by division. We call border of B the following finite subset of N n ,

∂B := (X 1 B ∪ • • • ∪ X n B) \ B (2.2.2) Let A be a ring, I a finitely generated ideal of A[X 1 , . . . , X n ] = A[X] and B := A[X]/I = A [x 1 , . . . , x n ]
(x i the image of X i in B and A the image of A). Given a finite subset B ⊂ N n as above, we call rewriting rules for B w.r.t. B a set of equalities in B as follows,

x β = α∈B h β,α x α : β ∈ ∂B where h β,α ∈ A (1)
Formally, we define the rewriting rules as being the polynomials h β (X) = X β -α∈B h β,α x α . The equalities (1) mean precisely that the h β (X)'s belong to the ideal I.

If B defined as above has rewriting rules w.r.t. to B, then the set { x α : α ∈ B } generate B as A-module.

In particular B is a finite A-module.

( 

: Span A (B) → Span A (B)
the linear map given by

µ Xi (X α ) = X i X α if X i X α ∈ B, α∈B h β,α X α if X i X α = X β ∈ ∂B.
Now let Λ i denote the matrix of µ Xi w.r.t. the basis B of the free A-module Span A (B), then, see [6] and [START_REF] Mourrain | A new criterion for normal form algorithms[END_REF] Theorem 2.2. B is a free A-module with basis {x α : α ∈ B} iff

Λ i Λ j = Λ j Λ i for i, j = 1, . . . , n.
(2.2.5) In the particular case in which A is a discrete field k and B is an Artinian k-algebra, the Gröbner basis algorithm provides a border basis of B. Indeed, it is well known that, w.r.t. to an admissible monomial ordering, the monomials "under the staircase" form a k-basis B of B, and the rewriting rules are given by computing the remainder of the division of X β by the Gröbner basis (for β ∈ ∂B). Mourrain in [START_REF] Mourrain | A new criterion for normal form algorithms[END_REF] introduced an algorithm to compute a border basis of an Artinian k-algebra without using the theory of Gröbner basis and requiring for B a weaker property than to be closed by division.

(2.2.6) One important fact with border bases is that they are more suitable for computational purposes specially when data is given by approximate values. Another one is that they can be useful in more general cases when Gröbner bases over rings are not available or not easy to manage.

The Bézout local theorem

Let us recall two theorems in [3].

Theorem 3.1. ([3, Theorem 1]) Let (A, m, k) be a local Henselian ring. Let f 1 , . . . , f m ∈ A[X 1 , . . . , X n ] = A[X], f 1 , . . . , f m their images in k[X], B := A[X]/ f 1 , . . . , f m = A[x 1 , . . . , x n ] and B := B/mB = k[X 1 , . . . , X n ]/ f 1 , . . . , f m = k[x 1 , . . . , x n ]. Let B 1 := B m+ x , B 1 := B x1,...,xn and assume 1 ≤ dim k (B 1 ) < ∞.
Then the A-algebra B 1 is a finitely generated A-module.

A domain A is called a DVR with uniformizing parameter p when every nonzero element of A is uniquely expressed in the form up m for some m > 0 and u ∈ A × . In this case A is local with radical pA.

Theorem 3.2. ([3, Theorem 5]) Let (A, m, k) be a Henselian DVR. Let f 1 , . . . , f n ∈ A[X 1 , . . . , X n ] = A[X], f 1 , . . . , f n their images in k[X], B := A[X]/ f 1 , . . . , f n = A[x 1 , . . . , x n ] and B := B/mB = k[X 1 , . . . , X n ]/ f 1 , . . . , f n = k[x 1 , . . . , x n ]. Let B 1 := B m+ x , B 1 := B x1,...,xn and assume dim k (B 1 ) = r ≥ 1.
Then the A-algebra B 1 is a free A-module of rank r, whose basis is given by lifting any k-basis of B 1 .

We give first a result that implies a generalization and an important precision in Theorems 3.1 and 3.2 in case of a residually finite global complete intersection (m = n and the residual algebra is finite): see corollary 3.5.

In the sequel we use the notation m[X] for the ideal of A[X] generated by m (the polynomials with coefficients in m) and m+ X for the ideal m[X] + X (the polynomials ∈ A[X] with constant coefficient in m). (b) In case we know a border basis of B as k-algebra, its rewriting rules can be lifted, to provide, for a suitable s ∈ 1 + mB, a system of generators of B[1/s] as an A-module.

2. Assume in addition that the A-algebra B is presented with an equal number of generators and relations, that is Note. In order to be able to compute a k-basis of B, we need a priori that B is finitely presented as an A-algebra. So, in item 1 (a) we do not assume that B has a k-basis, and in item 2 the hypothesis implies that we are able to compute a border basis of B.

B := A[X 1 , . . . , X n ]/ f 1 , . . . , f n = A[x 1 , . . . , x n ]. ( 
An intuitive meaning of the first part of the statement of the theorem is that, when A is a domain with quotient field K and the polynomial system is residually zero-dimensional, inverting s "maps at infinity" all zeroes of I in K which are not integral over A. We explain this intuition through Corollary 3.4. An A-algebra is a commutative unital ring E with a ring morphism ρ : A → E, in the sequel we use in this case the terminology "an A-algebra ρ : A → E".

Corollary 3.4. Same hypotheses and notations as in Theorem 3.3 1. Assume moreover that B := A[X 1 , . . . , X n ]/ f 1 , . . . , f m = A[x 1 , . . . , x n ] and we are given an A-algebra ρ : A → E and a zero (ξ 1 , . . . , ξ n , ζ) of {f 1 , . . . , f m , ZS(X) -1} in E. Then each ξ i is integral over ρ(A).

Proof. Since B[1/s] is a finite A-module, each x i is integral over A in B[1/s]: in fact x i annihilates the characteristic polynomial of the matrix of multiplication by x i with respect to a system of generators of B[1/s] as A-module. The morphism ρ gives by factorization a morphism of A-algebras B[1/s] → E mapping (x 1 , . . . , x n , z) to (ξ 1 , . . . , ξ n , ζ). So each ξ i annihilates a monic polynomial with coefficients in ρ(A).

Corollary 3.5. Same hypotheses and notations as in Theorem 3.3 1, and in addition assume that the kalgebra B is local, more precisely that B = B x1,...,xn (this means that each x i is nilpotent, or also that (0, . . . , 0) is the unique zero of f 1 , . . . , f m in an algebraic closure of k).

1. There exists an s ∈ 1 + mB such that B[1/s] = B m+ x is a finitely generated A-module.

If in addition B

:= A[X 1 , . . . , X n ]/ f 1 , . . . , f n = A[x 1 , . . . , x n ],
then the A-algebra B m+ x is a free A-module of rank r, whose basis is given by lifting any k-basis of B with its rewriting rules.

Proof (as in Corollary 3.5 1). Then each ξ i is "integral over m" (see the precise meaning in the proof).

Proof. Since x i is nilpotent, the multiplication µ xi by x i in B is given by a lower triangular matrix M i with zeroes on the diagonal (after a suitable change of basis as a k-vector space). Since we have a generator system B of B[1/s] as an A-module which is lifted from a border basis B of B, and since the rewriting rules are also lifted, the multiplication by x i in B[1/s] can be expressed w.r.t. a generator system B (obtained from B by lifting the above change of vector space basis) by a lifting of the above matrix M i and the characteristic polynomial of this lifted matrix has the form T r + r-1 j=0 µ i,j T r-j with µ i,j ∈ m j . So, we get an equality in E: ξ r i + r-1 j=0 ρ(µ i,j )ξ r-j i = 0 and µ i,j ∈ m j .

Proof of Theorem 3.3. 1. We set B = A[X 1 , . . . , X n ]/I for some ideal I ⊆ A[X]. As B is a finitely generated nonzero k-vector space, we can represent it as a quotient of some finitely presented nonzero k-algebra

k[X 1 , . . . , X n ]/ f 1 , . . . , f m for some f i ∈ I. So B is a quotient of the finitely presented A-algebra B 0 = k[X 1 , . . . , X n ]/ f 1 , . . . , f m
whose residual k-algebra B 0 is a k-vector space with a finite k-basis. Hence w.l.o.g. we can assume that B is finitely presented. Hence B has a border basis. There exists a finite set of monomials B ⊂ N n containing 1 and closed by division, such that {x α : α ∈ B} is a k-basis of B, and for

β ∈ ∂B h 0 β (X) := X β - α∈B u 0 β,α X α (with u 0 β,α ∈ k)
are the corresponding rewriting rules.

Now we follow the constructions in the proof of [3, Theorem 1] (see Claim 4 in [3]). As

f 1 , . . . , f m = h 0 β : β ∈ ∂B ⊆ k[X 1 , . . . , X n ], we have h 0 β = m i=1 p i,β f i , with some p i,β ∈ A[X]. For β ∈ ∂B we put H β (X) := m i=1 p i,β f i (so H β = h 0 β ).
Next we reduce these polynomials H β with the following "formal rewriting rules"

h β := X β - α∈B u β,α X α ,
where u β,α are variables, whose suitable values in A we are looking for. Following [3] and [START_REF] Emilia | Stable Deformation of Zero-Dimensional Quotient Algebras[END_REF] we get

H β = β ∈∂B Q β,β h β + R β (2) for polynomials Q β,β (( u β,α ), X) ∈ A[( u β,α ) β∈∂B,α∈B , X] and R β = α∈B R β,α X α with R β,α (( u β,α )) ∈ A[( u β,α )]. Moreover ∆(( u β,α ), X) := det(( Q β,β ) β,β ∈∂B ) ∈ 1 + m[( u β,α ), X].
In [3] and [START_REF] Emilia | Stable Deformation of Zero-Dimensional Quotient Algebras[END_REF] we proved that (u 0 β,α ) is an isolated simple zero of the system R β,α = 0 . Since A is Henselian, by MHL, there exists a unique solution (u β,α ) ∈ A ∂B×B of the system R β,α = 0 lifting the solution (u 0 β,α ) ∈ k ∂B×B . For β ∈ ∂B, we define

h β := X β -α∈B u β,α X α , Q β,β (X) := Q β,β ((u β,α ), X) ∈ A[X], S(X) := ∆((u β,α ), X) = det((Q β,β ) β,β ∈∂B ) ∈ 1 + m[X].
Equalities [START_REF] Emilia | Revisiting Zariski main theorem from a constructive point of view[END_REF] give

H β = β ∈∂B Q β,β h β . ( 3 
) Let s = S(x) ∈ A[x] = B. The ideal f 1 , . . . , f m , SZ -1 ⊆ I ⊆ A[X, Z] contains polynomi- als h β 's for β ∈ B since h β ≡ ZSh β
and Sh β is expressed from the H β 's using the cotransposed matrix of (Q β,β ) β,β ∈∂B . As f i belong to the ideal I, we get a well defined A-algebra morphism

Φ : C = A[X]/ (h β ) β∈∂B -→ A[X, Z]/ I, SZ -1 = B[1/s] X i -→ X i As an A-module, C is generated by the classes X α mod J = (h β ) β∈∂B (for α ∈ B).
Moreover Φ is surjective because S has an inverse in Φ(C). Indeed Φ(C) is a finitely generated A module and the multiplication by S in Φ(C) is residually onto (it is the identity), therefore by Nakayama lemma the multiplication by S is itself onto on Φ(C).

As we get Φ(C) = B[1/s], B[1/s] is generated as A-module by the lifting {x α ; α ∈ B} of B and the h β 's are rewriting rules for this generator system.

We have

B = A[X 1 , . . . , X n ]/ f 1 , . . . , f n . By item 1 we know that B[1/s] is a finitely generated A-module for some S(X) ∈ 1 + m[X].
We can apply the theorem of de Smit & Lenstra 2.1 to conclude that B[1/s] is a finite free A-module. Clearly its rank is the same after ⊗ A k, so it is equal to the dimension r = #B of the k-vector space B[1/s] = B. Since B[1/s] is generated by a lifting of B, we conclude by saying that in a free module of rank r, any generator system of r elements is a basis.

On the other hand, since the generator system {x α : α ∈ B} of the A-module C is mapped by Φ to a basis of the A-module B[1/s] with the same number of elements, we have that Φ is injective and therefore it is an isomorphism. This fact will be used in Section 4. In consequence we have finished the proof of the theorem.

2

Our main concern is the following result in which item 3 generalizes [3, Theorem 11]. We point out that in [3, Theorem 11] we forgot to give as an hypothesis the fact that A is integrally closed in K: the proof was given only for the case of a valuation domain and used implicitely the normality hypothesis in the general case. So C is a finitely presented A-algebra to which we can apply Corollary 3.5 1. There exists s ∈ 1+mC such that C[1/s] = C m+ x . Since e ∈ 1+mB+ x we see that s is written as v(x)/e m for a v ∈ 1 + mB + x and a suitable exponent m. Finally we see that

C[1/s] = B[1/u] = B m+ x
where u = sv ∈ 1 + mB + x . This finishes the proof of item 1.

2. Now we give some details for describing C and C[1/s] when C is presented with an equal number of generators and relations. Let E(X) ∈ A[X] s.t. e = E(x), we have

1 -E ∈ m + X + f 1 , . . . , f n and E 2 -E ∈ m[X] + f 1 , . . . , f n (inside A[X]) Therefore C := B[1/e] = A[x, 1/e] = A[X, T ]/ f 1 , . . . , f n , E(X)(T + 1) -1 = A[x, t]
Now we write s = S(x, t) where S(X, T ) ∈ 1 + m[X, T ] and Corollary 3.5 2 says us that

D := C[1/s] = A[X, T, Z]/ f 1 , . . . , f n , E(X)(T + 1) -1, S(X, T )(Z + 1) -1
is a free A-module of rank r, whose basis is given by lifting any k-border basis of B[1/e] = B x1,...,xn with its rewriting rules. This finishes the proof of item 2.

3. First of all notice that under the hypothesis of 3, A is a Henselian local ring and item 2 applies. Let

:= {f 1 , . . . , f n , E(X)(T + 1) -1, S(X, T )(Z + 1) -1}
Since D is a free A-module of rank r, D ⊗ A K is a finite K-vector space of dimension r.

Since K is an algebraically closed field, by Stickelberger's theorem (see [START_REF] Lombardi | Commutative Algebra. Constructive Methods[END_REF].17]), we can decompose D ⊗ A K as (ξ1,...,ξn+2)∈Z K (Σ)

K[X, T, Z] (X-ξ,T -ξn+1,Z-ξn+2) / Σ

In each (ξ 1 , . . . , ξ n+2 ) ∈ Z K (Σ) the corresponding local K-algebra is zero-dimensional and the sum of multiplicities is equal to r.

It remains to prove that the points of Z K (Σ) correspond exactly to the zeroes of (f 1 , . . . , f n ) in K having their coordinates in m, and that the corresponding local K-algebras are isomorphic. First let (ξ 1 , . . . , ξ n+2 ) ∈ Z K (Σ) where ξ 1 , . . . , ξ n ∈ m. Since E(x) ∈ 1 + m + x , we get ε := E(ξ 1 , . . . , ξ n ) ∈ 1 + m. This ε has a unique inverse in K, and this inverse is written 1 + µ with µ ∈ m. This forces ξ n+1 = µ. Morevover the two local algebras at (ξ 1 , . . . , ξ n ) and (ξ 1 , . . . , ξ n+1 ) are "equal" It remains to see that any zero (ξ 1 , . . . , ξ n+2 ) ∈ Z K (Σ) has its first n coordinates in m. Corollary 3.4 (with E = K and ρ : A → K the inclusion morphism) shows that ξ 1 , . . . , ξ n+1 are in A (recall that A is assumed to be integrally closed). Then Corollary 3.6 shows that ξ 1 , . . . , ξ n+1 are in m.

  Theorem 3.3. Let (A, m, k) be a local Henselian ring, B := A[x 1 , . . . , x n ] be a finitely generated Aalgebra and set B := B/mB = B ⊗ A k the residual algebra. Assume that B is a nonzero finitely generated k-vector space. Then it holds: 1. (a) There exists s ∈ 1 + mB s.t. the A-algebra B[1/s] is a finitely generated A-module.

  a) If dim k (B) = r ≥ 1, there exists S ∈ 1+m[X] s.t. letting s = S(x), B[1/s] is a free A-module of rank r. (b) More precisely, any border basis of the residual algebra B = B[1/s] can be lifted with its rewriting rules to a border basis of B[1/s] with its rewriting rules.

Theorem 3. 7 .Proof. 1 .

 71 (Bézout local) Let (A, m, k) be a Henselian local ring and B := A[x 1 , . . . , x n ] a finitely generated A-algebra. Let B := B/mB = k[x 1 , . . . , x n ] be the residual algebra. Assume that B is finitely presented 1 as a k-algebra and that dim k B x1,...,xn = r ≥ 1 (this means that (0) is an isolated residual zero of multiplicity r). Then mB + x 1 , . . . , x n (denoted as m + x ) is a maximal ideal of B and we have:1. (Pure algebraic form, without zeroes)The A-algebra B m+ x is a finitely generated A-module: there exists anu ∈ 1 + mB + x such that B[1/u] = B m+ x , B[1/u] = B x1,...,xn ,and we get a generator system of the A-module B m+ x by lifting a k-border basis of B[1/u].2. (Local complete intersection case, without zeroes) If in addition B is finitely presented asB := A[X 1 , . . . , X n ]/ f 1 , . . . , f n = A[x 1 , . . . , x n ],then B m+ x is a free A-module of rank r, whose basis is given by lifting any k-border basis of B x1,...,xn with its rewriting rules.3. (Local complete intersection case, usual form, with zeroes)Assume that (A, m, k) is a local normal domain with algebraically closed quotient field K and let B as in item 2. Then, there are finitely many zeroes of (f 1 , . . . , f n ) above the residual zero (0) (i.e., zeroes with coordinates in m) and the sum of their multiplicities equals r. Let B 1 := B m+ x , B 1 := B x1,...,xn . The hypothesis dim k (B 1 ) = r ≥ 1 means that (0) is residually an isolated zero of multiplicity r. So, we can construct an e ∈ B with e ∈ B such that • e is an idempotent in B, • for a suitable integer N , 1 -e = x 1 , . . . , x n N in B, • B[1/e] = B 1 . (See [10, Theorem IX-4.7].) In particular e ∈ 1 + mB + x and e 2 -e ∈ mB Let C := B[1/e]. Since e ∈ 1 + mB + x , we have C m+ x = B m+ x , and C = B[1/e] = B x1,...,xn = C x1,...,xn .

K[x 1

 1 , . . . , x n ] x1-ξ1,...,xn-ξn K[x 1 , . . . , , x n+1 ] x1-ξ1,...,xn+1-ξn+1 .This follows from the facts that K[x 1 , . . . , ,x n+1 ] = K[x 1 , . . . , x n ][1/E(x)] and that E(x) is invertible in K[x 1 , . . . , x n ] (x1-ξ1,...,xn-ξn) . Indeed E(x 1 , . . . , x n ) ≡ E(ξ 1 , . . . , ξ n ) = ε mod x 1 -ξ 1 , . . . , x n -ξ n in K[x 1 , . . . , x n ], so E(x 1 , . . . , x n ), x 1 -ξ 1 , . . . , x n -ξ n = 1 in K[x 1 , . . . , x n ].Similarly S(ξ 1 , . . . , ξ n , µ) ∈ 1 + m, it has a unique inverse in K, and this inverse is written 1 + ν with ν ∈ m. This forces ξ n+2 = ν and the equality K[x 1 , . . . , x n ] (x1-ξ1,...,xn+1-ξn+1) K[x 1 , . . . , , x n+1 ] (x1-ξ1,...,xn+2-ξn+2) .

  . 1. First we note that B m+ x = B x1,...,xn = B. We apply Theorem 3.3. We get an s ∈ 1 + mB

such that B[1/s] is a finitely generated A-module. Since s is invertible in B m+ x , we get an A-morphism ϕ : B[1/s] → B m+ x . We show that "ϕ is a canonical isomorphism": the two localizations of B are the same one. This means that any element c ∈ 1+mB+ x is invertible in B[1/s]. Since c = 1 in B x1,...,xn and B = B x1,...,xn , we get c = 1 in B[1/s] and the result follows from Nakayama: the multiplication by c in B[1/s] is an A-endomorphism which is residually onto, hence itself is onto and c is invertible in B[1/s]. 2. We have the hypothesis of Theorem 3.3 2 and B[1/s] = B m+ x . Corollary 3.6. Same hypotheses and notation as in Corollary 3.4. Assume moreover that B = B x1,...,xn

From a constructive point of view we cannot deduce that B is finitely presented from the fact it is finitely generated.
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Remark 3.1. Theorem 3.7 1. can be seen as a generalization of the Mather-Weierstrass division theorem. In fact let k be a field,

. . , X n , Y 1 , . . . , Y ]] alg , I = F 1 , . . . , F q an ideal of A m , and assume that the morphism A n → C = A m /I is quasi-finite (i.e. C/m n C is a finite dimensional k-vector space). We will see that C is a finite A-module. As A m is the henselization of (A n [Y 1 , . . . , Y ]) mn+ Y1,...,Y , we can assume that I is contained in some

where

t ∈ A m and f (Y , t) = 0.

W.l.o.g. we assume that F i = P i (Y , t) where P i (Y , T ) ∈ A n [Y , T ]. We apply the theorem with A = A n , B = (A n [Y , T ]/ P 1 , . . . , P q ) m+ Y . Finally we get that B is a finite A-module. So, it is Henselian and

And C is a finite A-module. This is the Mather Theorem.

In the case of q = 1, we get the Weierstrass division theorem applying 3.7 2.

Application

This section is written in classical mathematics, allowing us to deal with C as if it were a discrete field (i.e. assuming we have an equality test for complex numbers). E.g., Theorem 4.1 is not written in a constructive form because, since there is no zero test for elements of C, it is impossible to know in the general situation what are exactly the distinct zeroes and their multiplicities for the perturbed polynomial. E.g., it is a priori impossible to know if a monic univariate polynomial of degree two has one double root or two distinct roots. A constructive and continuous form of the FTA has a slightly different formulation, the best one being [START_REF] Richman | The fundamental theorem of algebra: a constructive development without choice[END_REF], where the zeroes of a complex polynomial are seen as forming a multiset that varies continuously in a suitable complete metric space. See also [START_REF] Bishop | Foundations of constructive analysis[END_REF]Chapter 5] for another constructive formulation, and [12, Appendix A, page 276] for an optimal modulus of continuity. We think that Theorem 4.2 would need a subtle constructive reformulation, with a more precise proof than that we give here.

Finally we would like to point out that, in the spirit of the proof of [START_REF] Eisermann | The fundamental theorem of algebra made effective: an elementary real-algebraic proof via Sturm chains[END_REF]Eisermann] which is an analogous to Theorem 4.1 for the algebraic closure R[i] of a real closed field R, one could prove the classical multivariate version of Theorem 4.2 for R[i], taking into account the usual manipulation of semialgebraic continuous functions w.r.t. the topology in C n ∼ = R 2n defined by the order of the real closed field R.

We start with a classical result of complex analysis, about the continuity of roots of a univariate polynomial defined over C (the field of complex numbers), with respect to its coefficients. By Ω(ξ, ) we denote the polydisc of C n centered at ξ ∈ C n : that is

The statement is the following easy consequence of Rouché's Theorem.

exactly m j roots counting with multiplicities in Ω(ξ j , ), for every j ∈ 1..s . This section consists in giving a clear proof of the following theorem, which is a classical result about the continuity of the points in a 0-dimensional complete intersection C-algebra, as in [START_REF] Arnold | Classification of critical points, caustics and wave fronts[END_REF]9]. Theorem 4.2. Let g 1 , . . . , g n ∈ C[X 1 , . . . , X n ] be polynomials of degrees d 1 , . . . , d n respectively and let p ∈ Z C (g 1 , . . . , g n ) be an isolated zero of multiplicity r. Let N 1 , . . . , N n be the number of monomials of degree respectively d 1 , . . . , d n in the variables in X 1 , . . . , X n , and let N = i N di . We can see (g 1 , . . . , g n ) as an element (a) ∈ C N . Let us consider a "slightly perturbed system" ( g 1 , . . . , g n ) corresponding to an element ( a) ∈ C N . Then for all > 0 there exists 1 with 0 < 1 < and δ 1 > 0 such that for all ( a) ∈ Ω(a, δ 1 ), the perturbed system has only finitely many zeroes in Ω(p, 1 ); moreover the sum of multiplicities of these zeroes equals r.

Proof. For sake of simplicity we assume p = (0, . . . , 0), that is

. . , g n . We consider a family of new indeterminates:

Let us denote by G 1 ( a (1) , X), . . . , G n ( a (n) , X) the generic polynomials of degrees d 1 , . . . , d n respectively. So, g i = G i (a (i) , X) for some a (i) ∈ C Ni . We set now

We can see the v (i) j 's as indeterminate perturbations of the a

j ) i=1,...,n;j=1,...,Ni ]] alg the ring of algebraic formal power series (or the ring

j ) i=1,...,n;j=1,...,Ni } of analytic power series) with coefficients in C in the variables v (i) j . In the second case this ring can be identified with the ring of germs of analytic functions in a neighborhood of a = (a (i) j ) i,j . In both cases the ring is Henselian with residue field C. Then, we apply Theorem 3.7 2 taking as

Let us recall some elements in the proof of 3. In this situation a C-border basis B of B 1 := B x1,...,xn (with r = #∂B) lifts with its rewriting rules to an A-basis of D. So we get in D for every β ∈ ∂B an equation

These U β,α are algebraic power series in the formal coefficients v's and they give analytic functions in a neighborhood of (a) = (a (i) j ) i,j . Let us denote by Λ i the multiplication matrix by x i in the free A-module D = Span A (B), w.r.t. the basis B using [START_REF] Bishop | Foundations of constructive analysis[END_REF]. Notice that the entries of Λ i are either 0 or 1 or one of the U β,α 's and, since B is a border basis, one has Λ i Λ j -Λ j Λ i = 0 (6) in A r×r for i = j. Now we remark that in the proof of 3.7 2 we have seen that the following ideals of A[X 1 , ..., X n ] coincide.

Hence one gets equalities (β ∈ ∂B):

for some W i , M, R ∈ A[X, T, Z], and on the other side (i = 1, . . . , n)

for some

. We know that identities ( 8) and (9) hold in the smallest sub-C-algebra of A containing the U β,α 's. We recall that m = v (i)

To stress the (analytic) dependence of E and S on the v (i) j 's we shall write E( v, X) and S( v, X, T ). Now let P i ∈ A[Y ] denote the characteristic polynomial of the multiplication by the image of x i in D (i.e. the characteristic polynomial of Λ i ). Its coefficients are Z-polynomials in the U β,α 's. By change of ring,

From , by usual arguments of Taylor calculus for convergent series we can find δ and < such that the following properties hold: i) All the U β,α are convergent and also the coefficients in ( 8) and (9) are convergent for any a (i) ∈ Ω(a (i) , δ). Therefore the same will hold for the coefficients of P i .

ii) The polynomial E( v, X) as a polynomial with coefficients which are analytic functions in a neighborhood of a (i) 's verifies that for every ( a (i) , x) ∈ Ω(a (i) ; δ) × Ω(0; ), |E( a, x) -1| < .

In particular for those points ( a, x) we have E( a, x) = 0 and we may also ask that 1 -1 E( a,x) < . iii) In the same way for ( a (i) , x, t) ∈ Ω(a (i) ; δ) × Ω(0; ) × Ω(0; ), S( a, x, t) does not vanish and 1 -1 S( a,x,t) < .

We apply Theorem 4.1 with and

is a monic polynomial of degree r, whose coefficients belong to a neighborhood Ω(0; δ ), then, the distance of each of the r complex roots of Q to 0 is less than . Notice that Q can be considered as a perturbation of P i . Then, for every a (i) ∈ Ω(a (i) ; δ ); we consider g i := G i ( a (i) , X), which is "a perturbation" of the g j , and we denote by U β,α the result of specializing U β,α in the values of a (i) 's. Then the following facts hold true and alltogether prove the theorem taking the value δ 1 as δ and 1 as :

1. {x β : β ∈ B} is a basis of the C-vector space, because the relations of commutations (6) still hold under specialization at a (i) (see 2.2.4 in section 2 on border bases). Consequently the ideal of C[X] I = I( a (i) ) := X α -β∈B U β,α X β has r zeroes in C n counted with multiplicity.

2. The characteristic polynomial of the multiplication by X i in the ring C[X]/ I is P i . For every (ξ) ∈ C n which is a zero of I its coordinates ξ i 's are roots of the polynomials P i (T ). We know that these roots belong to Ω(0; ). On the other hand these zeroes are zeroes of the ideal J( a (i) ) := ( g i ) i=1,...,n C[X], because of the specialization of (9).

3. Conversely given (ξ) ∈ C n which is a zero of the ideal J( a (i) ) and such that (ξ) ∈ Ω(0; ) we are going to prove that (ξ) is a zero of I( a (i) ). As a (i) ∈ and (ξ) ∈ Ω(0; ), by ii) above we have that t := 1 -1 E( a (i) ,ξ) ∈ Ω(0, ). Consequently it makes sense to substitute in [START_REF] Eisermann | The fundamental theorem of algebra made effective: an elementary real-algebraic proof via Sturm chains[END_REF], ( a (i) , ξ, t). since the right hand side vanishes, the same happen for the left hand side. [START_REF] Arnold | Classification of critical points, caustics and wave fronts[END_REF]. Given (ξ) ∈ Ω(0; ), zero of J( a (i) ) and hence of I( a (i) ) the local rings C[X]/I( a (i) ) (X-ξ) and C[X]/J( a (i) ) (X-ξ) coincide. In fact this comes from (9), and by substituting in (8) T by 1 -1 E( a (i) ,X) and Z by 1 -1 S( a (i) ,X,T ) , which is allowed since both expressions are rational regular at the point (ξ).