
HAL Id: hal-01657528
https://hal.science/hal-01657528

Submitted on 22 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design of inductors with high inductance values for
resonant piezoelectric damping

Boris Lossouarn, Mathieu Aucejo, Jean-François Deü, Bernard Multon

To cite this version:
Boris Lossouarn, Mathieu Aucejo, Jean-François Deü, Bernard Multon. Design of inductors with high
inductance values for resonant piezoelectric damping. Sensors and Actuators A: Physical , 2017, 259,
pp.68-76. �10.1016/j.sna.2017.03.030�. �hal-01657528�

https://hal.science/hal-01657528
https://hal.archives-ouvertes.fr


Design of inductors with high inductance values
for resonant piezoelectric damping

B. Lossouarna,∗, M. Aucejoa, J.-F. Deüa, B. Multonb
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Abstract

The resonant piezoelectric shunt requires specific inductance and resistance values in order to reach an opti-
mum in terms of vibration reduction. Yet, practical limits appear in the low frequency range: the required
inductance and the corresponding quality factor are often too high to be satisfied with standard passive
components. In this paper, inductors are designed with closed magnetic cores made of high permeability
materials. Those components are successively integrated into a piezoelectric shunt dedicated to vibration
control of a cantilever beam. It is shown that custom designs can definitely extend the application of passive
resonant shunt strategies to lower frequency.
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Nomenclature

L̂(ω) Equivalent series inductance
R̂(ω) Equivalent series resistance
µ Permeability
µ0 Vacuum permeability
µe Relative effective permeability
ω Angular frequency
ωe Resonant shunt angular frequency
ωO Natural angular frequency in open circuit
ωS Natural angular frequency in short circuit
ρ Resistivity of the conductor
ϕ Magnetic flux
ξe Electrical damping factor
Ae Effective cross-sectional area
Aw Window area
AL Permeance
B Magnetic flux density
Bsat Saturation flux density
Cε Blocked piezoelectric capacitance
cQ Criterion for the choice of the core
D Mechanical displacement transfer function
dw Wire diameter
e Global piezoelectric coefficient
Emax Maximum energy in the inductor
F Force applied to the structure
fO Natural frequency in open circuit
fS Natural frequency in short circuit
G Charge displacement transfer function
H Magnetic field strength
i Electrical current
IBmax Maximum current before saturation
IJmax Maximum current before overheating
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imax Maximum current flowing through the shunt
J Maximum current density
KD Stiffness in open circuit
KE Stiffness in short circuit
kc Coupling factor
ku Filling factor
L Optimal series inductance
L0 Pure inductance
le Effective magnetic path length
lw Average length per turn
m Equivalent moving mass
N Longitudinal force in the piezoelectric element
n Number of turns
q Electric charge displacement
R Optimal series resistance
R+

s Additional series resistance
Rp Parallel resistance
Rs Series resistance
Sw Cross-sectional area of the conductor
U Mechanical displacement
Umax Maximum mechanical displacement
V Voltage across the piezoelectric element
Ve Volume of magnetic material
Z Impedance

1. Introduction

Structural vibration damping occurs when shunting piezoelectric material with passive electrical circuits.
This can be realized with the resistive and resonant shunts described by Hagood and von Flotow [1]. It
essentially consists in converting the mechanical energy of a vibrating structure into electrical energy, which
is then dissipated into a resistor. In addition, the resonant shunt requires an inductor that is combined
to the piezoelectric capacitance in order to generate an electrical resonance. Similarly to what is observed
with a tuned mass damper [2, 3], the electrical resonance enhances the energy transfer when it is tuned to
the mechanical mode to control. Consequently, a passive and potentially lightweight solution can provide
significant vibration reduction without strong modification of the mechanical structure. This control strategy
was first applied through single-mode shunts [1, 4–8] and then extended to multi-mode shunts [9–15].

A drawback of the resonant shunt technique is that practical applications generally require large induc-
tance values. The notion of large inductance is not clearly defined in the shunt damping literature because,
depending on the authors, it can be in a range of 0.1 H, 10 H or even 1000 H [6, 15, 16]. In any case,
the standard inductor series are usually limited to 0.5 H, which cannot satisfy most of the resonant shunt
applications. Fleming et al. [16] proposed to use additional capacitance across the electrodes of the piezo-
electric patches in order to decrease the required inductance. However, they also show that this solution
induces a reduction of the damping performance. Furthermore, standard inductors present another limit:
they offer an internal resistance which is usually too large for resonant shunt applications [17]. The chal-
lenging inductance and resistance requirements explain why most of the experimental validations involving
resonant shunts are performed with synthetic inductors [6–9, 15, 17–20] or with a current source [11–13].
The use of those active circuits pushes back the limits of physical inductors but it questions the practical
implementation of a purely passive resonant shunt damping.

A passive inductor is commonly made of a coil of conductive wire wound around a magnetic circuit.
Contrary to what has been sometimes stated [8, 16], passive inductors above 1 H are easily feasible with
closed magnetic cores [21, 22]. Moreover, the direct equivalence between large inductance and large weight
or volume [7, 17, 19, 20] is unfunded because the selection of a magnetic core depends on the energy that
has to be stored into the component. For vibration control applications involving relatively low energy
transfers, high permeability ferrite cores are available and give access to large inductance values [22, 23].
Furthermore, numerous magnetic materials with larger permeabilities are also available. For example, some
nanocrystalline alloys exhibit permeabilities up to ten times the highest ferrite permeabilities. The required
inductance can then be obtained with a fewer number of turns, which reduces the internal resistance of
the component. The use of closed magnetic circuits with high permeability materials thus enables the
design of inductors with large inductance values and high quality factors [23]. This allows the application
of piezoelectric damping strategies with purely passive components [24, 25].
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Figure 1: Spring-mass model illustrating a control with shunted piezoelectric material.

The main objective of this paper is to show that resonant piezoelectric damping can be implemented
with passive inductors. First, we recall the main results related the resonant shunts. An optimal tuning of
the electrical component is defined by minimizing the displacement of the structure to control. This also
leads to novel results concerning the quantification of the energy that has to be stored into the inductor.
Yet, we note that practical applications usually require very high inductance values that cannot be satisfied
with standard inductors. The next sections then shows that closed magnetic cores can be of great interest
for resonant piezoelectric damping. The main characteristics of passive inductors are described and it is
explained how to select a suitable magnetic core from resonant shunt specifications. The last section of
the paper is then devoted to the design of inductors for the control of a cantilever beam with a pair of
piezoelectric patches. A ferrite core and a nanocrystalline toroid are selected and used to damp the first two
bending modes of the considered beam.

2. Resonant shunt damping

Considering resonant piezoelectric shunts, optimal inductance and resistance values are found from a
minimization of a transfer function involving the mechanical displacement to control. The maximum current
flowing through the shunt is also quantified for later design of the electrical components. Yet, an example
experimental setup shows that the required inductance values cannot be satisfied with standard passive
components.

2.1. Spring-mass model

The resonant piezoelectric shunt is first illustrated through the control of a unimodal structure rep-
resented by a spring-mass system. As shown in Fig. 1, a shunted piezoelectric element is connected in
parallel with a spring of stiffness KE , representing the stiffness of the whole structure when the piezoelectric
transducer is short-circuited. The piezoelectric coupling is defined from

N = KEU − eV
q = eU + CεV

, (1)

where N is the longitudinal force in the piezoelectric material, U is the displacement of the mass m, V is
the voltage between its electrodes and q represents the electric charge displacement. The constant e which
is expressed in N/V or in C/m is the global piezoelectric coefficient and Cε is the blocked capacitance, that
is the piezoelectric capacitance measured when preventing displacement of the mechanical system (U = 0).
If F is an external force applied to the mass m, it is found from Fig. 1 that mÜ = F −N and Eq. (1) gives

mÜ = F −KEU + eV
q = eU + CεV

. (2)

One can then define a natural angular frequency in short circuit: ωS =
√
KE/m. This refers to the resonance

of the mechanical structure when the piezoelectric element is short-circuited (V = 0). If the shunt is made
of an inductor L in series with a resistor R, the impedance Z(ω) = R+ jωL leads to

V = −Rq̇ − Lq̈. (3)
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Figure 2: Analogous models representing a resonant piezoelectric shunt: (a) Mechanical representation. (b) Electrical repre-
sentation.

In the present study, we consider that the inductor is not subjected to magnetic saturation, so that the
inductance L does not depend on the current amplitude. Substituting Eq. (3) into Eq. (2) gives

mÜ = F −KEU − e2

Cε

(
U − q

e

)
e2L

q̈

e
= −e2Rq̇

e
+
e2

Cε

(
U − q

e

) , (4)

which can be illustrated by the mechanical model in Fig. 2(a). It is found a model that directly shows the
analogy of the resonant shunt with a tuned mass damper [2, 3]. Remark that the damper is not between
the two moving mass but between the added mass and the ground, meaning that an infinite damping is
equivalent to an open-circuit case.

The mechanical models in Fig. 2(a) can be converted into its electrical analogues by reformulating Eq. (4)
as

−F = −jωmU̇ − KE

jω
U̇ +

e2

jωCε

(
q̇

e
− U̇

)
−jωe2L

q̇

e
− e2Rq̇

e
=

e2

jωCε

(
q̇

e
− U̇

) (5)

in order to introduce the electrical circuit in Fig. 2(b). Equation (5) shows that −q̇/e corresponds to the
current flowing through the resulting RL branch and the inductor m represents the mass of the mechanical
structure. When comparing Figs. 2(a) and 2(b), there are equivalences between mass and inductor, damper
and resistor and spring and capacitor. This refers to the direct electromechanical analogy [26–28].

2.2. Optimization of the resonant shunt

When coupling a resonant piezoelectric shunt to a mechanical structure, the damping performance can
be optimized by choosing suitable resistance and inductance values. If we focus on a min-max optimization
on the displacement U of the mass m, we want to minimize the maximum of the displacement transfer
function U/F , where the input excitation is a harmonic force F of constant amplitude. Several methods
were proposed to define optimal values for L and R [1, 6, 29]. It is remarked that they all give relatively
close results when dealing with moderate values of the coupling factor kc =

√
e2/(KECε) [6, 29]. Here, the

method proposed by Thomas et al. [6] is considered. Equation (4) is first written as

mÜ +KDU = F +
e

Cε
q

Lq̈ +Rq̇ +
1

Cε
q =

e

Cε
U

, (6)
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where KD = KE + e2/Cε. The constant KD is the stiffness of the structure in Fig. 1 when the piezoelectric
element is open-circuited, i.e. q = 0. Then, Eq. (6) is equivalent to

1

ω2
O

Ü + U =
F

KD
+

e

KDCε
q

1

ω2
e

q̈ +
2ξe
ωe

q̇ + q = eU
, (7)

where ωe =
1√
LCε

is the resonant shunt angular frequency, ξe =
R

2

√
Cε

L
is the damping factor and

ωO =
√
KD/m is the natural angular frequency in open-circuit. Recall that ωS =

√
KE/m, the coupling

factor is thus defined from the open- and short-circuit natural frequencies as

kc =

√
e2

KECε
=

√
KD −KE

KE
=

√
ω2
O − ω2

S

ω2
S

. (8)

Under harmonic excitation, one obtains from Eq. (7) that(
1− ω2

ω2
O

)
U − e

KDCε
q =

F

KD
and q =

e

1− ω2

ω2
e

+ 2jξe
ω

ωe

U
. (9)

By remarking from Eq. (8) that e2/(KDCε) = (ω2
O − ω2

S)/ω2
O, the dimensionless displacement transfer

function is expressed as

D(ω) =
U

F/KD
=

1− ω2

ω2
e

+ 2jξe
ω

ωe

ω2
S

ω2
O

−
(

1

ω2
O

+
1

ω2
e

)
ω2 +

ω4

ω2
Oω

2
e

+ 2jξe
ω

ωe

(
1− ω2

ω2
O

) , (10)

which gives

|D(ω)|2 =

[
1− ω2

ω2
e

]2
+ 4

ω2

ω2
e

ξ2e[
ω2
S

ω2
O

−
(

1

ω2
O

+
1

ω2
e

)
ω2 +

ω4

ω2
Oω

2
e

]2
+ 4

ω2

ω2
e

[
1− ω2

ω2
O

]2
ξ2e

. (11)

The tuning of the resonant shunt consists in determining the values of ωe and ξe that minimize the maximum
of |D(ω)|. Analytic calculations presented in [6] give

ωe = ωO and ξe =

√
3

8
kc. (12)

In the end, Eq. (12) leads to the optimal inductance and resistance:

L =
1

Cεω2
O

and R =

√
3

2

kc
CεωO

, (13)

where kc is the coupling factor that has been defined in Eq. (8).
The interest of the resonant piezoelectric control is illustrated by observing the modulus of the transfer

function D(ω) around ωO, the natural frequency in open circuit. First, Fig. 3 shows that the use of a resonant
shunt without any resistance creates an antiresonance at ωe, which is equal to ωO when the inductance is
tuned to its optimal value. Yet, the resonant shunt adds a new degree of freedom, as seen in the equivalent
mechanical model in Fig. 2(a). This explains why two resonances appear on both sides of the antiresonance.
The displacement is thus reduced around ωO but it is significantly increased around the new resonances.
Finally, the resistance given in Eq. (13) is added into the shunt to get a vibration reduction over a broader
frequency range.
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Figure 3: Modulus of the transfer function D(ω): (· · · ) with an open circuit, (- -) with the optimal inductance and no resistance,
(—) with the optimal inductance and the optimal resistance.

2.3. Current flowing through the inductor

Once optimal values of the electrical components are known, it is important to quantify the current
flowing through the resonant shunt in order to choose a suitable inductor. Equation (9) shows that the
electric charge displacement q is related to the mechanical displacement U through the dimensionless transfer
function

G(ω) =
q/e

U
=

1

1− ω2

ω2
e

+ 2jξe
ω

ωe

, (14)

whose square modulus is

|G(ω)|2 =
1[

1− ω2

ω2
e

]2
+ 4

ω2

ω2
e

ξ2e

. (15)

The maximum of |G(ω)| is reached when ω = ωe

√
1− 2ξ2e ≈ ωe. Consequently, ξe =

√
3/8kc gives

|G(ω)|max ≈
√

2

3

1

kc
. (16)

In the end, with imax ≈ |i(ωO)| = ωO|q(ωO)|, the maximum current flowing through the shunt is obtained
from Eqs. (14) and (16) as

imax =

√
2

3

ωO

kc
|e|Umax. (17)

The mechanical displacement U has been chosen as a reference to illustrate typical applications where the
displacement has to be maintained below a maximum value Umax. This value is generally known because it
is defined by the designer of the system. Furthermore, Eq. (2) shows that the global coupling coefficient is
e = −CεV/U in open circuit. If e has not been calculated from the characteristics of the considered system,
it can still be obtained experimentally from the ratio between the voltage and the displacement in open
circuit.

The maximum current given in Eq. (17) allows quantifying the maximum energy that has to be stored
into the inductor

Emax =
1

2
Li2max. (18)

From Eqs. (8), (13), (17) and (18), it is remarked that the maximum energy can also be expressed as

Emax =
1

3
KEU2

max. (19)

In the end, Eq. (19) shows that the magnetic component has to be able to store two thirds of the total
mechanical energy. Note that this result is based on the maximum displacement Umax observed once the
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Figure 4: Experimental setup: (a) Cantilever beam with two collocated piezoelectric patches connected to a resonant shunt.
(b) Picture of the actual setup showing the coil excitation system.

Figure 5: Displacement FRFs and corresponding operating deflection shapes obtained experimentally: (—) with short-circuited
patches, (· · · ) with open-circuited patches.

structure is controlled with a resonant shunt satisfying the tuning condition in Eq. (13). The resistance
value has a direct influence on the energy transfer: reducing the resistance increases the current flowing
through the shunt, which increases the amount of energy that has to be stored into the inductor.

2.4. Experimental investigations

An example setup involving a cantilever beam controlled by a pair of PZT patches is shown in Fig. 4(a).
The beam is excited by a non-contact system involving a coil and a magnet at the free end of the beam.
This setup was presented by Thomas et al. [6] for experiments involving resistive and resonant piezoelectric
shunts. The aluminum beam is 170 mm long, 25 mm wide and 2 mm thick. The two PZT patches are
made of PIC 151 material, they are 25 mm long, 20 mm wide and 0.5 mm thick. As seen in Fig. 4(b),
the collocated patches are placed near the clamping area for maximizing their effect [6, 30]. In the present
setup, they are polarized in identical directions and connected in parallel for the control of bending modes
[1, 31]. The velocity of the beam is measured with a laser vibrometer. The frequency response functions
are then obtained by referring to the current in the coil which is considered proportional to the input force
over the frequency range of interest [6]. A scanning process allows the experimental characterization of the
operating deflection shapes. Two bending modes are identified below 400 Hz. They are represented in Fig. 5
with the frequency response function (FRF) related to the displacement at the free end of the beam.

The blocked capacitance is approximated by direct measurement of the piezoelectric capacitance at
100 Hz and 20 ◦C when no bending motion is allowed and it is found Cε = 34.4 nF. From the FRFs in
Fig. 5 and from Eqs. (8) and (13), it becomes possible to extract optimal inductance and resistance for the
control of the first two bending modes. The results are given in Table 1, which presents for each mode the
resonance frequencies in short and open circuit, fS and fO, the coupling factor kc and the resulting series
inductance L and series resistance R. We remark that the required inductance exceeds easily 0.5 H, which can
be considered as an upper limit for standard inductors provided by electronic component distributors. High
inductance could be eventually satisfied with inductors in series but this would require numerous components
that would largely exceed the optimal resistance [32]. This highlights a practical limit of the resonant shunt
damping strategy when considering low frequency applications. Yet, it is shown in the following section

7



Table 1: Natural frequencies, piezoelectric coupling factors and optimal shunt specifications for the first two bending modes.

fS fO kc L R
(Hz) (Hz) (-) (H) (kΩ)

Mode 1 47.07 47.46 0.129 327 15.4

Mode 2 333.6 336.1 0.123 6.52 2.07

L0 Rs

Rp

(a)

L̂(ω) R̂(ω)

(b)

Figure 6: Electrical circuit models of an inductor: (a) Model with a series resistance and a parallel resistance. (b) Model
involving an equivalent series inductance and an equivalent series resistance.

that for standard vibration amplitudes which involves relatively low energy transfers, suitable inductors of
reasonable size can be designed.

3. Design of passive inductors

An electrical model for an inductor with both series and parallel resistance is given. The basics of inductor
design are then presented with the classical equations governing magnetic circuits. The inductance is defined
from the properties of the magnetic core, which is selected in order to satisfy the electrical specifications of
the resonant shunt.

3.1. Equivalent circuit models

A suitable model for a passive inductors is obtained by considering a pure inductance L0 combined with
a resistance Rs in series and a resistance Rp in parallel, as represented in Fig. 6(a). The resistance Rs

approximates the low frequency copper losses, i.e. the Joule heating in the wire that forms the inductor.
The parallel resistance Rp represents the magnetic losses. Those are due to iron losses in the magnetic
material (hysteretic losses and the eddy current losses) as well as losses in the winding through skin and
proximity effects [21, 22]. The equivalent series resistance R̂(ω) is represented in Fig. 6(b) together with
L̂(ω), which is the equivalent series inductance. Both values come from the impedance of the electrical
model in Fig. 6(a), which is recast in Z(ω) = R̂(ω) + jωL̂(ω) where

L̂(ω) =
L0

1 +

(
L0ω

Rp

)2

R̂(ω) = Rs +
Rp

1 +

(
Rp

L0ω

)2

. (20)

From this formulation, it is remarked that the equivalent series inductance and resistance necessarily depend
on frequency. This effect is due to the magnetic losses that have been represented by the parallel resistance
Rp. If Rp is constant, R̂(ω) increases and L̂(ω) decreases when ω increases. This explains the frequency
dependence observed when measuring the equivalent inductance and resistance of passive inductors involving
non-negligible magnetic losses.
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Figure 7: Two inductor designs: (a) Toroidal core. (b) RM core.

3.2. Basics of electromagnetism

When considering a magnetic core without air gap and made of a linear and homogeneous magnetic
material of permeability µ, the equations related to the magnetic flux density B, the magnetic field strength
H and the magnetic flux ϕ can be written as follows:

B = µH, ϕ = BAe and Hle = ni. (21)

The constant Ae defines the effective cross-sectional area of the magnetic core and le is the effective magnetic
path length. The magnetic flux ϕ is caused by the current i flowing through a conductor, which is wound
around the core with n turns. This is represented in Fig. 7(a) in a case involving a toroidal core. With other
core geometries, the flux may be split in two magnetic paths, as shown in Fig. 7(b) where a RM core is
considered [21, 22]. In any case, a changing magnetic flux is generated by a voltage V , which is equal to the

time derivative of the total flux going through the n turns of the coil: V = n
dϕ

dt
. Moreover, the inductance

L of an electrical circuit is defined as the ratio of the voltage to the time derivative of the current, i.e.

V = L
di

dt
. As a consequence, the inductance can be expressed from Eq. (21) by

L = ALn
2 (22)

where AL = µeµ0Ae/le is the permeance. The permeability µ is defined as the product of the vacuum
permeability µ0 times the relative effective permeability µe, which is usually given by the core manufacturers
together with the constants Ae and le.

3.3. Magnetic core selection

In the previous section, it has been shown that piezoelectric damping applications involving resonant
shunts require specific inductance and resistance values. Considering a magnetic core of permeance AL,
Eq. (22) gives the number of turns that is required to satisfy the inductance L. The number of turns is
naturally restricted by the fixed window area Aw. This limit is quantified by the filling factor

ku =
nSw

Aw
, (23)

where Sw is the cross-sectional area of the conductor. Even with a full window area, the filling factor ku does
not usually exceed 0.5, especially with very thin wires. This is partly due to the presence of insulation layers
that limit the proportion of conductor in the total wire cross-section [21, 22]. Another reason is that a wire
with circular cross-section cannot entirely fill the available window area. The manufacturing process is also
crucial because it determines the winding arrangements. For instance, a handmade coil with disorganized
layers leads to a significant reduction of ku.

Once the number of turns is defined, a full window area minimizes the resistance of the wire, which is
obtained from

Rs = ρ
nlw
Sw

=
ρlw
kuAw

n2, (24)
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where lw is the average length per turn and ρ is the resistivity. This shows that the series resistance is
minimized by maximizing the filing factor. Yet, as ku is bounded, an inadequate selection of the magnetic
core can lead to a case where Rs exceeds the optimal shunt resistance R. Furthermore, the copper losses only
represent a portion of the total losses in the component [21–23]. Indeed, the influence of the parallel resistance
Rp in Fig. 6(a) is usually non-negligible for piezoelectric shunt applications involving high permeability cores
[24]. We thus need to ensure

R̂(ω) ≤ R, (25)

and the shunt can then be tuned by adding an external resistor R+
s . The parallel resistance Rp may be

difficult to evaluate as it depends on the core material, on the frequency and on the flux density. In the
following experiments, its contribution to the equivalent series resistance is clearly below the optimal shunt
resistance.

The introduction of a criterion for the choice of a core that is able to satisfy both specifications on L
and R is essential. The condition in Eq. (25) necessarily induces that Rs ≤ R. Then, Eqs. (22), (23) and
(24) leads to the definition of a criterion

cQ =

(
kuALAw

ρlw

)
R

L
≥ 1. (26)

The criterion cQ is thus calculated from the core specifications and from the electrical properties of the
resonant shunt. The filling factor can be set to ku = 0.5 and ρ to 1.7× 10−8 Ω·m, which is the resistivity of
copper [21]. If cQ is more than one, we can expect a resonant shunt with a sufficiently high quality factor
if the contribution of the parallel resistance Rp is not significant. If cQ is below one, the considered core
cannot satisfy both L and R requirements. Then, another core with a larger ratio ALAw/lw would have to
be found.

3.4. Maximum current and stored energy

Two practical limits appear when considering the use of passive inductors. First, the magnetic flux
density has to remain below the saturation flux density Bsat in order to avoid a reduction of the equivalent
inductance value. From Eqs. (21) and (22), this means that

imax < IBmax =

(
BsatAe√
AL

)
1√
L
, (27)

where IBmax represents the maximum current before saturation. The second limit concerns the root mean
square current density imax/(

√
2Sw), which cannot exceed J , the maximum current density that would

damage the component. Consequently, Eqs. (22) and (23) gives

imax < IJmax =
(√

2kuJAw

√
AL

) 1√
L
, (28)

where IJmax is the amplitude of the sinusoidal current leading to a root mean square current density equal
to J . The currents IBmax and IJmax thus need to be considered as upper limits when introducing the chosen
inductor into a specific electrical circuit. For practical cases involving high permeance magnetic cores as in
the following experiments, it is remarked that IBmax � IJmax. Magnetic saturation is thus the main limitation
that has to be considered when designing the inductors. Note from Eq. (27) that the maximum current
IBmax decreases when AL increases. That means that even if high permeance can be used to reach high
inductance values, one has to keep in mind that this restrains the maximum energy that can be stored into
the component. Indeed, when imax = IBmax, Eqs. (18), (22) and (27) lead to

Emax =
1

2
LIBmax

2
=

1

2

B2
sat

µeµ0
Ve, (29)

where Ve = Aele is the volume of magnetic material. If we want to increase the storage capability of the
magnetic core, we thus have either to increase its volume or to decrease its effective permeability, provided
that Eq. (26) is still satisfied.
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Figure 8: RM core: (a) Two half parts of the magnetic core. (b) Coil former. (c) Resulting component

Table 2: Geometry and properties of the two magnetic cores.

Ae le Aw lw Bsat µe AL Emax

(mm2) (mm) (mm2) (mm) (T) (-) (µH) (µJ)
RM 10 core

(T38)
98 44 41 52 0.43 5720 16 55

30×20×10 toroid
(Vitroperm 500F)

40 79 236 50 1.20 87500 56 21

4. Experimental results

Magnetic components are selected in order to damp vibration of the considered cantilever beam with a
piezoelectric resonant shunt. Suitable inductors involving two different types of closed cores are designed
accordingly and connected to the pair of piezoelectric patches.

4.1. Magnetic cores for the experiments

Two closed magnetic cores with a similar mass around 22 grams but different shapes and materials are
selected. The first core is a RM 10 core made of T38 material (EPCOS). The core is represented in Fig. 8(a)
and its geometry is given in Table 2. As seen in Figs. 8(b) and 8(c), a cylindrical coil former facilitates
winding and assembly of the magnetic component. As various materials are available for this range of
components, the ferrite core providing the larger permeance was selected in order to maximize the criterion
cQ given in Eq. (26). This justifies the use of the RM 10 core in T38 ferrite, whose material properties
and resulting permeance are given in Table 2. The limit in terms of energy storage is then obtained from
Eq. (29). Note that no energy density optimization is given in the present study whose main objective is to
show that high inductance values can be reached with passive components. The dimensions of the magnetic
cores were actually chosen from practical reasons related to availability of the components and winding
issues. Still, in the following experiments standard vibration amplitudes do not lead to a case reaching the
maximum energy capability.

The equivalent permeability of the chosen ferrite material is considerably lower than the permeability of
some nanocrystalline materials [21, 22]. The second core that is considered is thus made of Vitroperm 500F
(VAC) which is a high permeability nanocrystalline material. The core is a 30×20×10 toroid represented
in Fig. 9(a) and described in Table 2. In the end, this core offers a larger permeance AL when compared
to the ferrite core. Note that the geometry of the toroid makes winding harder and the automation of the
process would require a specific toroidal core winding machine.

4.2. Practical design of the inductors

The choice of the two magnetic cores is validated by the calculation of the criterion cQ for the two
considered bending modes, from Eq. (26) and Tables 1 and 2. The filling factor ku is initially set to 0.5
in order to consider a full window area. The results are presented in Table 3 for the ferrite core and in
Table 4 for the nanocrystalline toroid. Note that cQ � 1, which means that both cores can satisfy the L
and R specifications if the contribution of the parallel resistance presented in Eq. (20) is not too large. The
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Figure 9: Nanocrystalline toroid: (a) Magnetic core before winding. (b) Wound with 296 turns (dw = 5/10 mm). (b) Wound
with 1800 turns (dw = 2/10 mm).

Table 3: Inductor design characteristics with the ferrite core.

cQ n dw ku IBmax IJmax

(-) (turns) (mm) (-) (mA) (mA)

Mode 1 17 4520 5/100 0.22 0.58 8.3

Mode 2 120 638 2/10 0.49 4.1 130

Table 4: Inductor design characteristics with the nanocrystalline toroid.

cQ n dw ku IBmax IJmax

(-) (turns) (mm) (-) (mA) (mA)

Mode 1 370 2416 2/10 0.32 0.35 130

Mode 2 2500 341 5/10 0.28 2.5 830

number of turns is then computed from Eq. (22) and a standard wire diameter dw = 2
√
Sw/π is chosen by

updating ku and ensuring that its value remains below 0.5. In the end, the maximum currents related to
both conditions on the saturation flux density and the maximum current density are obtained from Eqs. (27)
and (28), where J is set to 3 A/mm2 [22]. For the present inductors involving cores with high permeance,
the maximum current IBmax is significantly lower than IJmax. In other words, an increase of the current would
detune the resonant shunt before overheating the coil. This may be another advantage of the closed core
inductors that would ensure the integrity of the electrical components.

The ferrite core reaches its limits when focusing on the first mode of the beam. Table 3 gives a solution
with 4520 turns of 5/100 copper wire but its practical implementation is tough. Indeed, such a number
of turns with a thin and thus delicate wire would require dedicated tools that were not available for the
present application. This example shows that ferrite cores are sometimes not suitable when considering low
frequency applications involving resonant shunts. Cores with larger cQ ratios are then necessary. Finally,
the control of the first mode can still be satisfied with the nanocrystalline toroid. This core is wound by
hand according to Table 4 for the first mode and for the second mode, which leads to the components in
Figs. 9(b) and 9(c). The ferrite core is also wound for the control of the second modes but not for the first
mode because of the aforementioned practical limit.

4.3. Piezoelectric damping of vibrations

The three inductors are successively connected to the pair of piezoelectric patches in order to reduce the
vibration amplitude of the beam in Fig. 4(b). First, the damping of the second bending mode is targeted.
The numbers of turns of the inductors are adjusted in order to get resonant shunts that are correctly tuned.
The ferrite core is wound with 613 turns and the nanocrystalline toroid is wound with 296 turns. The
difference with the theoretical values presented in Tables 3 and 4 is explained by the fact that the AL

values appearing in Tables 2 are specified at 10 kHz. Yet, the permeance varies nonlinearly with respect to
the frequency, as it has been observed for the inductance L̂(ω) in Eq. (20). Over a frequency range below
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Figure 10: Damping of the second bending mode: (a) With the ferrite core (n = 613): (· · · ) open circuit, (- -) shunted
on inductor without additional resistor, (—) shunted on inductor with additional series resistor R+

s = 1.8 kΩ. (b) With the
nanocrystalline toroid (n = 296): (· · · ) open circuit, (- -) shunted on inductor without additional resistor, (—) shunted on
inductor with additional series resistor R+

s = 1.4 kΩ.
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Figure 11: Damping of the first bending mode with the nanocrystalline toroid (n = 1800): (· · · ) open circuit, (- -) shunted on
inductor without additional resistor, (—) shunted on inductor with additional series resistor R+

s = 6.7 kΩ.

10 kHz, the AL values given by the core manufacturer are thus lower estimates that could be adjusted by
measurement at the frequency of interest.

The closed core inductors offer an equivalent series resistance which is below the optimal shunt resistance.
This is confirmed in Fig. 10, where it is seen that an external series resistance R+

s needs to be introduced
in order to reach the optimal damping configuration. It is noticed that R+

s is below the optimal resistance
R = 2.1 kΩ. Yet, the series resistance of the wire is not significant as indicated by the large values of the
cQ criterion for the chosen magnetic cores. This means that the magnetic losses modeled by the parallel
resistance Rp cannot be neglected. Fortunately, its influence yields an equivalent series resistance that is
lower than the optimal resistance.

The nanocrytalline toroid can satisfy the 327 H requirement for the first mode of the beam. The toroid
needs 1800 turns to reach this optimal inductance, which differs from the estimated value. Again, the main
reason is that the equivalent permeance increases significantly when going to low frequency, especially with
the considered nanocrystalline material. Figure 11 shows that the handmade inductor is able to provide a
significant vibration reduction. Although some nonlinearities are observed [32], the magnetic flux density is
actually far from the saturation limit. Indeed, the considered excitation amplitude causes an open-circuit
displacement equal to 30 µm at the end of the beam. This leads to a maximum current produced by the
piezoelectric patches that is only about 14 µA, which is 25 times lower than the limit given in Table 4.

5. Conclusions

A two-degree of freedom model gives optimal inductance and resistance values for a resonant shunt. This
coupled model has been used to quantify the electrical current flowing through the inductor as well as the
magnetic energy, which is required for an adequate design of the magnetic component. A criterion based on
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inductance and resistance specifications is proposed in order to choose a suitable magnetic core for resonant
piezoelectric shunt applications. The experimental setup requires inductance up to 327 H for a control with
a resonant shunt. It is shown that such a high inductance value is not impractical for piezoelectric damping
applications because of the low amplitudes of both the electrical current and the stored magnetic energy.

As custom designs are required to reach large inductance values with low series resistance, two cores
made of soft magnetic materials are proposed: a RM core in ferrite and a nanocrystalline toroid. Ferrite
cores offer decent permeabilities but some applications require nanocrystalline materials for even larger
inductance. The inductor designs are successively validated by observing significant vibration reductions.
Consequently, closed magnetic cores clearly extend the resonant shunt strategy to lower frequencies that
were not reachable with standard passive inductors. Future perspectives include the optimization of the
mass or dimensions of the magnetic cores. The interest of lower permeability materials or cores with air gap
will be evaluated with respect to the potential increase in terms of energy density.
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