
HAL Id: hal-01657491
https://hal.science/hal-01657491v1

Submitted on 6 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Machine learning: Supervised methods, SVM and kNN
Danilo Bzdok, Martin Krzywinski, Naomi Altman

To cite this version:
Danilo Bzdok, Martin Krzywinski, Naomi Altman. Machine learning: Supervised methods, SVM and
kNN. Nature Methods, 2018, pp.1-6. �hal-01657491�

https://hal.science/hal-01657491v1
https://hal.archives-ouvertes.fr


 1 

POINTS OF SIGNIFICANCE 

 

Machine learning: Supervised methods, SVM and kNN 

Supervised learning algorithms extract general principles from 
observed examples guided by a specific prediction objective. 

In supervised learning, a set of input variables, such as blood 
metabolite or gene expression levels, are used to predict a 
quantitative response variable like hormone level or a qualitative one 
such as healthy versus diseased individuals. We have previously 
discussed several supervised learning algorithms, including logistic 
regression and random forests, and their typical behaviors with 
different sample sizes and numbers of predictor variables. This 
month, we look at two very common supervised methods in the 
context of machine learning: linear support vector machines (SVM) 
and k-nearest neighbors (kNN). Both have been successfully applied 
to challenging pattern-recognition problems in biology and medicine 
[1]. 

SVM and kNN exemplify several important trade-offs in machine 
learning (ML). SVM is less computationally demanding than kNN 
and is easier to interpret but can identify only a limited set of patterns. 
On the other hand, kNN can find very complex patterns but its output 
is more challenging to interpret. To illustrate both algorithms, we will 
apply them to classification because they tend to perform better at 
predicting categorical outputs (e.g., health versus disease) than at 
approximating target functions with numeric outputs (e.g., hormone 
level). Both learning techniques can be used to distinguish many 
classes at once, use multiple predictors and obtain probabilities for 
each class membership.  

We’ll illustrate SVM using a two-class problem and begin with a case 
in which the classes are linearly separable, meaning that a straight 
line can be drawn that perfectly separates the classes with the margin 
being the perpendicular distance between the closest points to the 
line from each class (Fig. 1a). Many such separating lines are 
possible and SVM can be used to find one with the widest margin 
(Fig. 1b). When three or more predictors are used, the separating 
line becomes a hyperplane, but the algorithm remains the same. The 
closest points to the line are called support vectors [1] and are the 
only points that ultimately influence the position of the separating 



 2 

line—any points that are further from the line can be moved, removed 
or added with no impact on the line. When the classes are linearly 
separable, the wider the margin, the higher our confidence in the 
classification because it indicates that the classes are less similar. 

 

Figure 1 | A support vector machine (SVM) classifies points by maximizing the 

width of a margin that separates the classes. (a) Points from two classes (grey, blue) 

that are perfectly separable by various lines (black) illustrate the concept of a margin 

(light yellow highlight), which is the rectangular region that extends from the 

separating line to the perpendicularly closest point. (b) An SVM finds the line (black) 

that has the largest margin (0.48). Points at the margin’s edge (black outlines) are 

called support vectors—the margin is not influenced by moving or adding other 

points outside it. (c) Imposing a separating line on linearly non-separable classes will 

incur margin violations and misclassification errors. Data same as in (b) but with 

two additional points added (those that are misclassified). The margin is now 0.64 

with 6 support vectors. 

Practically, most data sets are not linearly separable and any 
separating line will result in misclassification, no matter how narrow 
the margin is. We say that the margin is violated by a sample if it is on 
the wrong side of the separating line (Fig 1c, red arrows) or is on the 
correct side, but is within the margin (Fig. 1c, orange arrow).  

Even when the data are linearly separable, allowing a few points to be 
misclassified might improve the classifier by allowing a wider margin 
for the bulk of the data (Fig. 2a). To handle violations, we impose a 
penalty proportional to the distance between each violating point [1] 
and the separating line, with non-violating points having zero 
penalty. In SVM, the separating line is chosen by minimizing 1/m+C

∑pi where m is the margin width, pi is the penalty for each point and 
C is a hyper-parameter (a parameter used to tune the overall fitting 
behavior of an algorithm) balancing the trade-off between margin 



 3 

width and misclassification. A point that has a non-zero penalty is 
considered a support vector because it impacts the position of the 
separating line and its margin. 

When C is large, the margin width has a low impact on the 
minimization and the line is placed to minimize the sum of the 
violation penalties (Fig. 2, C = 1000). When C is decreased, the 
misclassified points have lower impact and the line is placed with 
more emphasis on maximizing the margin. (Fig. 2, C = 50 and C = 
5). When C is very small, classification penalties become insignificant 
and the margin can be encouraged to actually grow to encompass all 
points. Typically, C is chosen using cross-validation [2]. 

Recall we showed previously [3] how regularization can be used to 
guard against overfitting which occurs when the prediction equation 
is too closely tailored to random variation in the training set. In that 
sense, the role of C is similar, except here it tunes the fit by adjusting 
the balance of terms being minimized rather than the complexity of 
the shape of the boundary. Large values of C force the separating line 
to adjust to data far from the center of each class and thus encourage 
overfitting. Small values tolerate many margin violations and 
encourage underfitting.  

 

Figure 2 | The balance between the width of the margin and penalties for margin 

violations is controlled by a regularization parameter, C. Smaller values of C places 

more weight on margin width and less on classification constraints. 

We can avoid the explicit assumption of a linear class boundary by 
using the k-nearest neighbours (kNN) algorithm. This algorithm 
determines the class of an unclassified point by counting the majority 
class vote from its k-nearest neighbour training points (Fig. 3a). For 
example, a patient whose symptoms closely match those of patients 



 4 

with a specific diagnosis would be classified with the same disease 
status. Because kNN does not assume a particular boundary between 
the classes, its boundary can be closer to the “true” relationship. 
However, for a given training set, predictions may be less stable than 
for SVMs, especially when k is small, and the algorithm will often 
overfit the training data.  

The value of k acts to regularize kNN, analogous to C in SVM and is 
generally selected by cross-validation. To avoid ties in the vote, k can 
be chosen to be odd. Small k gives a finely-textured boundary which is 
sensitive to outliers and yields a high model variance (k = 3, Fig. 3b). 
Larger k gives more rigid boundaries and high model bias (k = 7, Fig. 
3b), pooling the effect of more distant neighbors. The largest possible 
value of k is the number of training points—at this extreme, any new 
observation is classified based on the majority in the entire training 
sample incurring maximal model bias.  

 
Figure 3 | Illustration of the k-nearest neighbours (kNN) classifier. (a) kNN assigns 
a class to an unclassified point (black) based on a majority vote of the k nearest 
neighbours in the training set (grey and blue points). Shown are cases for k = 1, 3, 5 
and 7; the k neighbours are circumscribed in the circle, which is colored by the 
majority class vote. (b) For k = 3, the kNN boundaries are relatively rough 
(calculated by classifying each point in the plane) and give 10% misclassifications. 
The SVM separating line (black) and margin (dashed) is also shown for C = 1000 
yielding 15% misclassification. As k is increased (here, k = 7, 13% misclassifications), 
single misclassifications have less impact on the emerging boundary, which becomes 
smoother. 

Neither SVM nor kNN make explicit model specifications about the 
the data-generating process such as normality of the data. However, 
linear SVM is considered a parametric method because it can only 
produce linear boundaries. If the true class boundary is nonlinear, 
SVM will struggle to find a satisfying fit even with increased size of 



 5 

the training set. To help the algorithm capture nonlinear boundaries, 
functions of the input variables, such as polynomials, could be added 
to the set of predictor variables [1]. This extension of the algorithm is 
called kernel SVM. 

In contrast, kNN is a nonparametric algorithm because it avoids a 
priori assumptions about the shape of the class boundary and can 
thus adapt more closely to nonlinear boundaries as the amount of 
training data increases. kNN has higher variance than linear SVM but 
it has the advantage of producing classification fits that adapt to any 
boundary. Even though the true class boundary is unknown in most 
real-world applications, kNN has been shown to approach the 
theoretically optimal classification boundary as the training set 
increases to massive data [1]. However, because kNN does not impose 
any structure on the boundary, it can create class boundaries that 
may be less interpretable than those of linear SVM. The simplicity of 
the linear SVM boundary also lends itself more directly to formal tests 
of statistical significance that give P values for the relevance of 
individual variables. 

There are also trade-offs in the number of samples and the number of 
variables that can be handled by these approaches. SVM can achieve 
good prediction accuracy for new observations despite large numbers 
of input variables. SVM therefore serves as an off-the-shelf technique 
that is frequently used in genome-wide analysis and brain imaging, 
two application domains with often low sample sizes (e.g., hundreds 
of participants) but very high numbers of inputs (e.g., hundreds of 
thousands of genes or brain locations). 

By contrast, the classification performance of kNN rapidly 
deteriorates when searching for patterns using high numbers of input 
variables [1] when many of the variables may be unrelated to the 
classification or contribute only small amounts of information. 
Because equal attention is given to all variables, the nearest neighbors 
may be defined by irrelevant variables. This so-called curse of 
dimensionality occurs for many algorithms that become more flexible 
as the number of predictors increases [1]. 

Finally, computation and memory resources are important practical 
considerations [4]. SVM only needs a small subset of training points 
(the support vectors) to define the classification rule, making it often 
more memory efficient and less computationally demanding when 
inferring the class of a new observation. In contrast, kNN typically 



 6 

requires higher computation and memory resources because it needs 
to use all input variables and training samples for each new 
observation to be classified. 

 
 

COMPETING FINANCIAL INTERESTS 

The authors declare no competing financial interests. 

Danilo Bzdok, Martin Krzywinski & Naomi Altman 

[1] Hastie, T., Tibshirani, R., Friedman, J. Springer Series in 
Statistics, Heidelberg (2001). 

[2] Lever, J., Krzywinski, M. & Altman, N. (2016) Points of 
significance: Model Selection and Overfitting. Nature Methods 
13:703–704. 

[3] Lever, J., Krzywinski, M. & Altman, N. (2016) Points of 
significance: Regularization. Nature Methods 13:803–804. 

[4] Bzdok, D. & Yeo, B.T.T. (2017) NeuroImage, 155: 549-564. 

 

 

Danilo Bzdok is an Assistant Professor at the Department of 
Psychiatry, RWTH Aachen University, in Germany and a Visiting 
Professor at INRIA/Neurospin Saclay in France. Martin Krzywinski 
is a staff scientist at Canada’s Michael Smith Genome Sciences 
Centre. Naomi Altman is a Professor of Statistics at The 
Pennsylvania State University. 

http://www.nature.com/nmeth/journal/v13/n10/abs/nmeth.4014.html
http://www.nature.com/nmeth/journal/v13/n10/abs/nmeth.4014.html
http://www.nature.com/nmeth/journal/v13/n10/abs/nmeth.4014.html
http://www.nature.com/nmeth/journal/v13/n10/abs/nmeth.4014.html

