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This text presents a numerical and theoretical study of multistability in two stochastic models
of transitional wall flows. An algorithm dedicated to the computation of rare events is adapted on
these two stochastic models. The main focus is placed on a Stochastic Partial Differential Equation
model proposed by Barkley. Three types of events are computed in a systematic and reproducible
manner: (i) the collapse of isolated puffs and domains initially containing their steady turbulent
fraction, (ii) the puff splitting, (iii) the build up of turbulence from the laminar baseflow under
a noise perturbation of vanishing variance. For build up events, an extreme realisation of the
vanishing variance noise pushes the state from the laminar baseflow to the most probable germ of
turbulence which in turn develops into a full blown puff. For collapse events, the Reynolds number
and length ranges of the two regimes of collapse of laminar-turbulent pipes: independent collapse
or global collapse of puffs, is determined. The mean first passage time before each event is then
systematically computed as a function of the Reynolds number r and pipe length L in the laminar-
turbulent coexistence range of Reynolds number. In the case of isolated puffs, the faster-than-linear
growth with Reynolds number of the logarithm of mean first passage time T before collapse is
separated in two. One finds that ln(T ) = Ap × r − Bp, with Ap and Bp positive. Moreover, Ap

and Bp are affine in the spatial integral of turbulence intensity of the puff, with the same slope.
In the case of pipes initially containing the steady turbulent fraction, the length L and Reynolds
number r dependence of the mean first passage time T before collapse is also separated. We find
that T ≍ exp(L(Ar −B)) with A and B positive. The length and Reynolds number dependence of
T are then discussed in view of the Large Deviations theoretical approaches of the study of mean
first passage times and multistability, where we study ln(T ) in the limit of small variance noise. Two
points of view, local noise of small variance and large length, can be used to discuss the exponential
dependence in L of T . In particular, it is shown how a T ≍ exp(L(A′R − B′)) can be derived
in a conceptual two degrees of freedom model of a transitional wall flow proposed by Dauchot &
Manneville. This is done by identifying a quasipotential in low variance noise, large length limit.
This pinpoints the physical effects controlling collapse and build up trajectories and corresponding
passage times with an emphasis on the saddle points between laminar and turbulent states. This
analytical analysis also shows that these effects lead to the asymmetric probability density function
of kinetic energy of turbulence.

PACS numbers: 47.27.Cn, 05.10.Gg, 82.20.Uv

I. INTRODUCTION

Transitional wall turbulence is an important regime of
many geophysical or industrial flows. One fundamental
example is the stably stratified planetary boundary layer.
This flow manifests itself over ocean (where the strat-
ification is mostly stable) and over land after the late
afternoon transition (which corresponds to the stabilisa-
tion of stratification) [1, 2]. In both examples, the sta-
bly stratified wall flow will display the feature of simple,
academic transitional wall flows such as plane Couette
flow and pipe flow [1]. These flows are controlled by the
Reynolds number, the ratio of advection over viscosity.
In these prototypes of transitional wall turbulence, for a
given range of Reynolds number, turbulence can coexist
in time and space with laminar flow [3, 4]. Turbulent
patches (termed puffs in Hagen–poiseuille pipe flow [5])
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can split [4, 6], extend [5, 7–9] or collapse after a time
[10, 11]. These flows are thus very intermittent and this
intermittency is the main obstacle in understanding and
modeling of this type of turbulence. This limits the qual-
ity of climate models where boundary layer turbulence is
parameterised using a simple model because it is not ex-
plicitly resolved [2].

Stated more precisely, transitional wall flows undergo
spatio-temporal intermittency (STI) [10]. The core in-
gredients of this behaviour are the stability of the lami-
nar baseflow for all Reynolds numbers [12, 14] (or quite
beyond the transitional range), transient chaos of small
subsections of the flow [13] and possibility of contagion of
neighbouring regions [15]. In infinite size domains, tur-
bulence is sustained with a steady turbulent fraction in
the transitional range as a consequence of this process
[15, 16]. One fundamental feature of STI in pipe flow
is that the turbulent puffs are transient and metastable
and can collapse or split after a mean first passage time
T [17, 18]. This time is often termed the lifetime of the
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Figure 1. Sketch of the conceptual phase space of a transi-
tional wall flow, including basin boundary, minimal seed of
turbulence, the turbulent coherent structures (1 to n puffs)
and the events linking these metastable states: turbulence
collapse, puff splitting, build up of turbulence from the lami-
nar baseflow under vanishing perturbations (possibly joining
optimal trajectory). L stands for laminar baseflow.

puff in this context. Knowing and understanding the
duration of these transients is a necessity if one is to pro-
pose models of such flows that are realistic and simple
enough so that they can be incorporated in climate mod-
els [2], for instance. In pipe flow, extensive data on the
passage time is available concerning the low Reynolds
number part of the transitional range. One finds that
ln(T ) is faster than linear in Reynolds number [11]. In
smaller pipes, one finds that ln(T ) is proportional to pipe
length× Reynolds number [19]. Such a size scaling may
have the same origin as other exponentially increasing
chaotic transient in extended systems (see [20] § 4). Ver-
ification of the proposed scalings has not yet been done
in the higher part of the transitional range and in larger
pipes. In other flows, the available results are even more
fractional. The main limitation in obtaining these results
is of course the extreme length of the transients at play.
Educing the exact scaling of mean first passage times is
fundamental if one wants to discuss the physical mecha-
nism behind turbulence collapse and build up.
If one is to extend or even obtain the Reynolds number

and length dependence of mean first passage time before
collapse of transitional wall turbulence, especially in flows
with a realistic geometry, one has to propose a strategy
adapted to the study of very rare events which is numer-
ically and theoretically tractable. This strategy should
be applied in a large enough range of Reynolds number
and domain length so that scalings are thoroughly veri-
fied. One can define several rare events along with their
passage time, which are sketched in figure 1. One finds
the collapse of puff and laminar-turbulent pipes and the
splitting of a turbulent puff. Another class of events is the
build up of turbulence starting from the laminar state,
under perturbations of vanishing variance, often passing
by optimal perturbations or a minimal seed [21, 22]. For-
tunately, all three events can be reformulated as a prob-

lem of multistability between several metastable states.
Multistability has been a very active field of study in sta-
tistical physics and probabilities [17, 23–27]. Many tools
and concepts are available that can be used for the study
of transient turbulence. Moreover, many of these tools
and concept originate from kinetic chemistry [17, 27], so
that they can be presented to a very wide community
using references to classical results such as the Arrhenius
law [17].
In this text, we will present a joint numerical and the-

oretical study of the mean first passage time before these
events in two models of pipe flow. A spatio-temporal
Stochastic Partial Differential Equation (SPDE) model
of pipe flow was chosen [16]. The extensive numerical
study, beside of giving insightful physical result, should
hopefully propose guidelines and methods for the study of
rare events in Direct Numerical Simulations. This study
is complemented by a theoretical and numerical analy-
sis of a two degrees of freedom Stochastic Differential
Equation (SDE) model [29]. Since the chosen models are
stochastic, all the theoretical assertions strictly hold and
the orders of approximations are understood. The nu-
merical method used for rare events calculation in these
two models is called Adaptive Multilevel Splitting (AMS)
[23, 30]. It is a mutation-selection algorithm [28], aris-
ing from kinetic chemistry [27], designed to compute ex-
tremely fast extremely rare multistability events along
with the corresponding mean first passage times. The
passage times will be computed in a very large range
of length and Reynolds number so as to verify precisely
scaling laws, and thus discuss physical mechanisms with
a sound basis. The numerical results will be discussed
and complemented by theory derived from Large Devia-
tions approaches of the study of rare events [25, 31–34].
These approaches concern the asymptotic study of very
large mean first passage times T and very small proba-
bilities ρ, under a felt noise of small variance 1/B. Large
Deviations revolve under the formulation of said passage
times, probability density functions (pdf) etc. as a Large
Deviation principle

lim
1/B→0

1

B
ln(T ) = I(✚✚B) , lim

1/B→0
− 1

B
ln(ρ) = I ′(✚✚B) . (1)

The functions I and I ′ are generally called rate functions,
are independent of the noise variance 1/B (as indicated
by the diagonal strikethrough✚✚B), and are of finite ampli-
tude. The rate functions can often be derived using ded-
icated techniques [24, 25, 32, 33]. Behind many of these
computations lie the instanton, the most probable tra-
jectory in multistability events in the low variance noise
limit. Parametric studies, presentation of numerical re-
sults and comparison with theory will be very convenient
using such a framework. In particular, written approxi-
mately, one can see that these results generalise the Ar-
rhenius law for mean first passage times T ≍ exp(BI)
and the Boltzmann factor for pdf ρ ≍ exp(−BI ′). This
uses the notation ≍ to write in a compact manner that
the equalities should be understood in the limit of the
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logarithm form of equation (1) [25] § 3.2. Earlier success-
ful use of such coupled theoretical and numerical stud-
ies are for instance the general study of metastability in
the stochastic Ginzburg–Landau equation [24] and sim-
ilar work has been performed in a model of the zonal
turbulent jets of Jupiter [36]. Indeed, geophysical fluid
dynamics is another situation where multistability occurs
[37], and many parallels can and will be drawn between
the two fields of study. An accelerated sampling proce-
dure for computation of mean first passage time before
collapse of puffs in a model of pipe flow has also recently
been proposed [38]. The sampling is done by reducing or
increasing the Reynolds number when the kinetic energy
crosses certain thresholds, in order to facilitate turbu-
lence collapse. First passage durations are reconstructed
from these samples using a pdf based argument. Em-
pirical criteria give guidelines for choices of thresholds
and Reynolds numbers leading to maximum precision.
Large deviations methods have also been applied in a di-
rect manner to compute most probable paths and tran-
sition rates between the linearly laminar baseflow and
Tollmien–Schlichting type waves in low Reynolds number
two dimensional plane Poiseuille flow [39]. Improvement
of the temporal discretisation and of the optimisation
procedure may lead to calculations in three dimensional
plane Poiseuille flow, where wall turbulence can exist.
This study will be presented according to the follow-

ing plan. The SPDE model of pipe flow and our choice of
control parameters will be presented first (§ II A). The
numerical method, AMS, and its application to the model
will be presented next (§ II B). Numerical results will
then be presented in two parts: firstly by detailing the
feature of selected turbulent collapse, puff splitting and
turbulence build up trajectories (§ III A), secondly by
presenting the parametric study of mean first passage
times (§ III B, III C). Theory is then used to interpret the
parametric dependence of numerically computed passage
times. We firstly discuss the length dependence of mean
first passage time in the various regimes of collapse in sec-
tion IVA. The conceptual two degrees of freedom model
is then analysed analytically to derive the Reynolds num-
ber scaling of the mean first passage times before collapse
of turbulence in section IVB. The results and perspec-
tives are eventually discussed in the conclusion (§ V).

II. MODEL AND METHOD

A. The stochastic partial differential equations

model of transitional Hagen-Poiseuille flow

To a large extent, the complexity of transitional pipe
flow can be successfully reduced to one dimension of
space (the streamwise position x) models coupling the
streamwise velocity u and the intensity of turbulence q
[16]. At their core, the models are based on the obser-
vation that pipe flow turbulence is very similar to an ex-
citable system, like the action potential in a neuron. In

this text, we use a Stochastic Partial Differential Equa-
tion (SPDE) model which reads

∂u

∂t
= −(1 + U)

∂u

∂x
+ ǫ1(1 − u)− ǫ2uq , (2)

∂q

∂t
+ U

∂q

∂x
=

∂2q

∂x2
+ q(u+ r − 1− (r + δ)(q − 1)2) + q

√
2

β
η . (3)

〈η(x, t)〉 = 0 , 〈η(x, t)η(x′, t′)〉 = δ(x− x′)δ(t− t′) .

The term η is a noise white in time and space. It leads
to a multiplicative noise interpreted with an Itō rule (see
[18] § 4.2 ). In this system of stochastic partial equations,
r is the Reynolds number: The main control parameter.
Following Barkley [16], the other parameters are set as
ǫ1 = 0.04, ǫ2 = 0.2, δ = 0.1 and the inverse variance of
the noise is set at β = 1.5 so that the model describes
the relevant dynamics. One key element is that q 6= 0
stimulates 1−u and that 1−u goes to zeros when q = 0.
In this manner q leads 1 − u. The pipe is periodic in x
and has a length L.
This model contains the physics of pipe flow, from the

fully laminar baseflow to higher Reynolds number slugs
[40] through the transitional regime [16]. One can consult
the mentioned references for more details on the typical
regimes and on the internal mechanics of the system of
(stochastic) partial differential equations. Note that the
origin of the noise in transitional turbulence models is
different from that in two dimensional turbulence mod-
els, where metastability is also studied [37]. This is not
an extrinsic energy injection, so that it is not balanced
by dissipation. Instead, it represents the intrinsic fluc-
tuations of turbulence. In particular, such noises terms
are absent in Direct Numerical Simulations. In wall tur-
bulence, the injection of energy is actually extraction of
energy by turbulence from the laminar base flow mostly
through the lift-up process [35]. This effect is taken into
account in the deterministic part of the models.
We give here a brief overview of the typical content

of the model in the transitional regime. Turbulence (see
Fig. 2 (a,b)) exists if r & 1 and coexists in a steady
manner with laminar flow provided r . 1.8 [16] (Fig. 2
(c)). The model realistically reproduces turbulent puffs
[16] (Fig. 2 (a,b)). These coherent structures display lo-
calised non zero turbulence q 6= 0 along with a deficit
of streamwise velocity u < 1. The model contains the
asymmetry of u between the sharp trailing edge and the
smooth leading edge of the puff.
When studying the collapse of turbulence, one can con-

sider two types of initial conditions. On the one hand,
one can consider the collapse of an isolated equilibrium
puff (at r = 1.0, Fig. 2 (a)) [11]. The equilibrium puff
is anything but at equilibrium, since it can not only col-
lapse, but also split, until a quasi-steady state is reached
(Fig. 2 (b) at r = 1.3). This second state is hereafter
termed at steady turbulent fraction. It is the other start-
ing point for the study of turbulence collapse [10]. One of
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the reasons of the relevance of this second starting point
is that it is well defined no matter the Reynolds number
in the transitional regime. Meanwhile isolated puffs be-
come harder and harder to define as r is increased, mainly
because of puff splitting. Said puff splittings will be com-
puted using an isolated puff as initial condition. Isolated
puffs will also be used as targets for the computation of
turbulence build up.
In order to give a clear view of the meaning of the

values of r in terms of regime of turbulence (not sus-
tained, coexistence, uniformly turbulent), the time and
space average of the turbulent fractionQ and the stream-
wise velocity deficit 1− U

Q ≡ 1

T L

∫ x=L,t=T

x=0,t=0

q(x, t) dxdt ,

1− U ≡ 1− 1

T L

∫ x=L,t=T

x=0,t=0

u(x, t) dxdt , (4)

are computed in the range 0.6 ≤ r ≤ 2.5 in a pipe of
length L = 1600 using a duration T = 2000 (Fig.2 (c)).
This indicates that Laminar-turbulent coexistence occurs
in the range 1 . r . 1.8. We do not go in details into the
scaling of Q and U in r at rc ≃ 1.0 above which a steady
non zero turbulent fraction can exist in the flow. This
has already been examined a twin chaotic model [16].
We will consider collapse of turbulence, puff splitting and
turbulence build up in the range 0.6 . r . 1.8.

B. Adaptive Multilevel splitting

We now explain the principle of the method we use to
compute the rare turbulent collapses, puff splittings and
build ups. The algorithm Adaptive Multilevel Splitting
(AMS) will be used to calculate the corresponding tra-
jectories and mean first passage times (i.e. the lifetime
of turbulence). For more details, see for instance the
monograph by Del Moral [28] for a general presentation
of the mathematical framework of mutation-selection al-
gorithms, see [23, 41] for the initial presentation of the
algorithm and mathematical demonstration of the con-
vergence of such calculations and see for instance [24]
for a thorough presentation of its use coupled to theory
to study multistability in a gradient system. Note that
Giardana-Kurchan-Lecomte-Tailleur algorithms follow a
similar principle of cloning and Large Deviation theoreti-
cal framework, even if they are designed to study atypical
trajectories by weighting by Lyapunov exponents [54]. In
the context of transitional wall flows, edge states are such
atypical trajectories that could be studied using these
Lyapunov weighted dynamics [57, 58].

1. Principle of the algorithm

AMS is a mutation-selection algorithm, in the family
of importance sampling [23, 28], which uses N clone dy-
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Figure 2. Streamwise velocity u and turbulence intensity q
as a function of space x in two situations: (a) isolated puff,
(b) steady turbulent fraction. (c) Space and time average of
turbulence intensity Q and streamwise velocity deficit 1− U
as a function of the Reynolds number r in the transitional
range. The range of laminar-turbulence coexistence, where
0 < 1− U < 1, is indicated by black dashed lines.

namics { ~X1≤i≤N(t)} to compute N reactive trajectories,
the probability for their occurrence and an estimator of
the mean first passage time before they occur. In our

study, we have ~X(t) = (q(x, t), u(x, t)). Let us first gen-
erally define reactive trajectories and first passages. It
is very natural to describe this in phase space, a point
of view which is common place in the study of transi-
tional turbulence. Let us term A the neighbourhood of

the starting point ~X0 (for instance partially turbulent
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Figure 3. (a) Sketch of first passages and reactive trajectories
in phase space. (b) Sketch of the principle of the Adaptive

Multilevel Splitting Algorithm, in the case of three clones. The
sketch indicates the starting state A, the arrival state B, levels
of reactions coordinates φ and two examples of branching.

flow Fig. 2 (a,b)) and B the neighbourhood of the arrival
point (for instance laminar baseflow). They are sketched
in figure 3 (a). We also define C, an hypersurface that
closely surrounds A. A first passage is the natural dy-

namics of the system starting from ~X0, fluctuating and
having excursions out of A until it reaches B (Fig. 3, (a),
black then red line). The average duration of first passage
trajectory is termed the mean first passage time T . This
is the lifetime of turbulence in the context of transitional
pipe flow. A very important part of the dynamics is the
reactive trajectory. This is the portion of the dynamics
during which the jump between the two states actually
occurs. It is strictly defined as a realisation of the dy-
namics of the system which leaves A, crosses C and then
reaches B before A (Fig. 3, (a), red line). For a large
class of problems and reaction coordinates, AMS calcu-
lates specifically these trajectories in an asymptotically
unbiased manner along with the mean first passage time
T .
Let us now describe the steps of the algorithm (Fig. 3

(b)). AMS uses N clones dynamics of the system and

φ : ~X → φ( ~X) ∈ R a reaction coordinate. The reaction

coordinate measures the position of ~X relatively to A
and B. We often take φ(∂A) = 0 and φ(∂B) = 1 on
the subsets boundaries. The larger φ, the further away

the excursion of ~X is. Our specific choices of φ will be
given at the end of the section. The algorithm iteratively
computes N reactive trajectories in the following manner
(Fig. 3 (b)):

• In a stage 0, natural dynamics of the system are

ran. The { ~Xi} start from C and evolve in time
until they either reach A or B. If the event is rare,
most, if not all, of them reachA (Blue lines in Fig. 3
(b)). The number of iterations is k = 0. We then
execute the iterative mutation selection stages.

• At each stage, we compute the maximum of φ on

each trajectory Φi = maxt(φ( ~Xi(t))) and order the
Φi by increasing values (Numbers assigned to blue
lines in Fig. 3 (b)). The trajectory j which realises
the smallest Φj = miniΦi is suppressed (Number 1
in Fig. 3 (b)). This is the selection: we favour tra-
jectories which have excursions toward B. In order
to keep the number of trajectories constant, a new

trajectory ~Xj is generated by branching (Number
1′ branched on 2 in Fig. 3 (b)). Another trajectory
~Xl 6=j is chosen: index l is drawn randomly from
{1, . . . , j − 1} ∪ {j + 1, . . . , N} using an uniform
distribution. Since we work with dynamics discre-
tised with time step dt and Φl > Φj , there exists

M ∈ N such that φ( ~Xl(m × dt) < Φj , ∀m < M

and φ( ~Xl(M × dt)) > Φj . This means that M × dt

is the first time at which ~Xl crosses the level Φj .

We set ~Xj(m× dt) = ~Xl(m × dt) for 0 ≤ m ≤ M .
Precisely enforcing this constraint is fundamental
for unbiasedness of the method [23, 44]. The new

trajectory ~Xj(t) then follows its natural time dis-
cretised dynamics from (M + 1) × dt on, until it
reaches either A or B (for instance, the purple or
red curves branched respectively on 2 and 3, Fig. 3
(b)). It uses its own realisation of the noise, mak-

ing it different from ~Xl from the branching point
on. The number of iterations is increased by one
k = k+1. This stage is repeated until all trajecto-

ries ~Xi(t) reach B. The final k is used for calcula-
tions of passage time.

Each AMS run yields a random number of iteration k.
An important intermediate quantity, the probability α of
reaching B before A is first calculated. An estimator of
α is

α =

(

1− 1

N

)k

, α =

〈(

1− 1

N

)k
〉

o

≃
〈

exp

(

− k

N

)〉

o

.

(5)
The exponential approximation of α is useful to given
an order of magnitude of k from α. The · indicates the
random output of each AMS run and the average 〈·〉o
indicates average over o independent realisations of the
algorithm (see § A). When running the algorithm, we
will also compute the average duration of reactive tra-
jectories τ , the duration of non reactive trajectories t2
(those that start from C and go back to A) and the av-

erage duration t1 it takes for the system to go from ~X0

to the hypersurface C. It can be demonstrated (see [30])
that the estimator of the mean first passage time is

T =

〈

(t1 + t2)

(
1

α
− 1

)

+ (t1 + τ )

〉

o

. (6)

This can be heuristically understood by noting that there
is one out of n + 1 excursions which realises a reactive
trajectory so that α ≃ 1/(n+1). Indeed, the probability
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α is numerically defined in DNS of the type of stage 0
as the number of passing trajectories over N as we take
the limit N → ∞. One then notes that a first passage
trajectory consists of n ≃ 1/α− 1 “failing” trajectory of
duration t1+t2 and then a reactive trajectory of duration
t1 + τ . The average over multiple independent realisa-
tions of AMS will always be performed before presenting
results on mean first passage time T , average duration of
trajectories τ = 〈τ 〉o.
The acceleration provided by the use of AMS in the

computation of reactive trajectories and mean first pas-
sage times is exponential . If one uses classical direct
numerical simulations, the cost is of order T , while using
AMS has a cost of order k ∝ ln(T ). This is particu-
larly interesting when T increases exponentially with the
control parameters of the system. Note that like every
numerical procedure, the quantities calculated by AMS
converge with numerical parameters. These quantities
converge with the time step like

√
dt [42]. This actually

originates from the convergence of hitting times calcu-
lated through a numerical discretisation with a standard
time scheme: no improvement is brought by classical
higher order discretisations. Only times calculated us-
ing very special discretisations converge faster than

√
dt

[43]. Quantities calculated by AMS also converge with
grid size dx → 0 [24]. The role of the number of clones
N in obtaining a precise estimate of α, T , τ is peculiar
[23, 28, 41, 42, 44]. By precise, we mean that α is within
a small and well defined interval of confidence around
〈α〉o with a high probability. We explain the effect of N
in details in appendix A. Once the basic improvements
of φ are performed, there may still exist a bias in the esti-
mation of α (etc.) by 〈α〉o that goes to 0 when N goes to
infinity. Output of each single run of AMS are certainly
random variables whose variance decrease like 1/

√
N . In

order to obtain a precise estimate, one should average
over o realisations the output of AMS calculations. The
larger the N is, the fewer o are necessary. Moreover, the
increase of N increases the precision of the outputs of a
single AMS calculation. One can therefore consider that
the AMS calculations converge as N, o → ∞. The use
of AMS is thus a trade-off between cost (1/dt, 1/dx, N ,
o) and precision. The constraint on φ for convergence is
that it should be sensible: the better the φ, the faster the
convergence with N [42, 44]. A poorly chosen φ leaves
very specific traces in the statistics of k over repeated
independent realisations of the algorithm, so that it is
easily detected [42, 44]. In practice, one chooses φ after
a few trials in a test case which can be confronted to
either theory or direct numerical simulation.

2. Reaction coordinates

Let us now present the reaction coordinates we use to
compute specific events (turbulence collapses, splittings
etc.) with the AMS in the case of the SPDE model of
pipe flow.

When we compute turbulence collapses, either of an
isolated puff (Fig. 2 (a)) or of a domain with steady tur-
bulent fraction (Fig. 2 (b)), we use the reaction coordi-
nates defined as follow. Let Q0 be the spatially averaged
turbulence intensity of the initial condition. In order to
generate collapses, φ is defined as

Q0 ≡ 1

L

∫ L

0

q(x, t = 0) dx , φ ≡ 1−

√

1

LQ0

∫ L

0

q(x, t) dx .

(7)

The square root extends the range of low Q in φ. This
is useful in order to treat correctly the last stages of the
collapse. In order to generate splittings, we define the
turbulent fraction F (relative area where q ≥ qmin), and
use the reaction coordinate

F(t) ≡ 1

L

∫ L

x=0

θ(q − qmin) dx ,

φsplit ≡
F(t)

F(0)
− 1 , (8)

where θ is the Heaviside step function. We chose qmin =
0.1. In order to calculate build ups of turbulence out of
the laminar baseflow, we used the reaction coordinate

φseed ≡
√

1

LQf

∫ L

0

q(x, t) dx − ǫ , (9)

where ǫ is a vanishing positive constant which defines the
laminar state A as a tiny ball around q(x) = 0 ∀x. This
parameter ǫ has to be small enough so that A is strictly
included in the “basin of attraction” of the laminar state.
The constant Qf is the spatial average of q taken for a
typical equilibrium puff (Fig. 2 (a)). In that case, the ini-
tial condition is q = 0 and u = 1 ∀x. Two supplementary
independent noises

√

2/Σηu and
√

2/Σηq, white in time
and space, are respectively added to equation (2) and
equation (3). Their variances vanish as we let Σ → ∞.
These two noise terms represent the small perturbations
that may exist in a controlled though imperfect experi-
mental Hagen–Poiseuille flow. In this text, we chose them
to be white for simplicity and for consistency with the pe-
riodic, strongly modeled system we use. If this procedure
were to be transposed to a direct numerical simulation,
one could for instance localise this noise in space, in a
small streamwise range, in order to model perturbations
at the pipe inlet or at the walls, in order to model ru-
gosity of the pipe, external vibration in the experimental
facility. In further applications to stably stratified wall
flows, this can represent the impact of downward prop-
agating internal gravity waves on the laminar wall flow
[2].
Convergence in the limits N, o → ∞ has been tested

(§ A). Precise results at a reasonable cost are obtained
if N = 1000. We also use dt = 0.01 and dx = 0.2. Equa-
tion (2) is integrated semi-implicitly without introducing
artificial drifts ([18] § 4.2).
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III. NUMERICAL RESULTS

We now present the numerical computations of collapse
splitting and build up trajectories as well as the corre-
sponding mean first passage times in the SPDE model
using the AMS.

A. Visualisations of turbulence collapses, puff

splittings and puff build ups

We present 5 typical examples of trajectories in the
form of spatio-temporal diagrams of q (Fig. 4 (a,b)), 1−u
(Fig. 4 (c,d)) and ln(|q|) (Fig. 4 (e)). Refer to figure 2
(c) in order to situate the value of Reynolds number r of
each simulation.
The turbulence collapses are computed using reaction

coordinate φ (Eq. (7)). We first present the collapse of an
isolated puff at r = 1 (Fig. 4 (a)). This event occurred in
a pipe of length L = 800. This is the most studied event
in such situations. In the model, the collapse occurs as
a block: q decreases relatively homogeneously in the puff
with very little shrinking until the puff has collapsed.
The mean first passage time before collapse of this puff
is T ≃ 1.3 · 104. We then present a puff splitting at
r = 0.95 (Fig. 4 (b)). The splitting was calculated using
reaction coordinate φsplit (Eq. (8)). This illustrates the
well known fact that puff splitting occur through the ex-
tension of the puff on the leading edge and then splitting
in the middle (see [4, 6] and references within). The split-
ting occurs after a mean first passage time T ≃ 2 · 108.
Provided L & 300, the collapse or splitting of isolated
puffs is independent of the pipe length.
We then present events which are harder to sample in

direct numerical simulations. They concern the collapse
of a pipe starting with the steady turbulent fraction. We
first present a peculiar regime which manifests itself in
the lower range 1 . r . 1.2 of laminar turbulent coexis-
tence (see Fig. 2 (c)), provided the pipe is not too long.
A spatiotemporal diagram of 1−u is given in figure 4 (c).
In that case, at r = 1.1, the collapse of turbulence occurs
puff by puff, quite independently from one another, and
takes a relatively long time τ ≃ 3000, while the collapse
of each of the puffs has a relatively shorter duration of
order O(10). The mean first passage time before col-
lapse of turbulence in this pipe of length L = 1200 at
r = 1.1 is T ≃ 1017 ≫ τ . In very long pipes or provided
r & 1.2, the collapse of turbulence in a pipe initially hav-
ing the steady turbulent fraction is quite generic. Let us
present an example of such a collapse with a spatiotem-
poral diagram of 1 − u at r = 1.2 and L = 1200, for
which T ≃ 1032 (Fig. 4 (d)). The collapse occurs in a
short time τ ≃ 35. In fact, the collapse of all the puffs
is simultaneous and no more independent. What most
likely changed between r = 1.1 (Fig. 4 (c)) and r = 1.2
(Fig. 4 (d)) is the increased probability of puff splitting.
This makes the long lasting existence of a gap between
puffs very unlikely, so that the most probable path for

turbulence collapse necessitates that no gap is left. Con-
sequently, the collapse of all the puffs occurs at the same
time.
We eventually present the build-up of a turbulent puff,

starting from the laminar baseflow, out of a noise of van-
ishing variance. We use the reaction coordinate φseed

(Eq. 9) and we set Σ = 25000 and r = 1.15 in a do-
main of length L = 50. A spatio-temporal diagram of
the logarithm of the turbulent intensity ln(|q|) showing
the development of the puff from a laminar state stimu-
lated by noise of very small variance is given in figure 4
(e). The generation of the puff occurs through the se-
lection of a germ of small spatial length and small but
finite amplitude at t ≃ 1.5. The germ is created by an
extreme realisation of the noise of small variance. The
germ then grows in amplitude, the spatial maximum of
the structure saturates (t ≃ 3.5) and it extends in length
until it reaches a state similar to that of an equilibrium
puff. The logarithm of the mean first passage time out of
the laminar state is O(103) at this Σ. The event is very
rare. Such a large Σ was used to check that we indeed
stimulated a germ of turbulence from the laminar state
and simply not pushed a flow that already contained this
germ. Indeed, if the flow already contained the germ,
there is no more saddle to pass. The probability of de-
veloping a puff would then converge toward a finite value
as the variance of the added noise vanishes 1/Σ → 0.
The mean first passage time would also converge toward
a finite value. Meanwhile, the probability of developing
a puff would tend to 0 as 1/Σ → 0 and the mean first
passage time would diverge exponentially if the saddle
had not been crossed and a germ had to be developed
[17, 24, 25, 45]. This is the case of the presented example.
The difference in the Σ dependence of T is a confirma-
tion that there exists a saddle point between the laminar
state and the one puff state in the model equation (2,3).

B. Isolated puffs: Reynolds number dependence of

mean first passage times

We now consider the collapse and splitting of isolated
puffs (see Fig. 2 (a) and Fig. 4 (a,b)) systematically and
quantitatively. We will compute the duration of collapse
trajectories of isolated puffs (distribution, average τ and
variance) and the mean first passage time before both
events T in the relevant range of Reynolds number (see
Fig. 2 (c) for comparison) starting from a range of initial
conditions.
We first consider the duration of collapse trajectories.

We use isolated puffs in pipes of lengths 200 ≤ L ≤ 1600
at r = 1.0. We perform AMS computations of puff col-
lapse using φ (Eq. (7)) and N = 20000 clones. Using
the 20000 computed reactive trajectories, a sample large
enough to faithfully represent the variety of collapses, we
compute the empirical distribution of collapse duration
µ(s) as well as the average collapse duration τ = 29.2±0.2
(for all sizes) and the variance of duration σ = 9.8± 0.1
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Figure 4. Spatiotemporal diagrams of reactive trajectories in the SPDE model computed using AMS. (a) Collapse of an isolated
puff at r = 1. (b) Splitting of a puff at r = 0.95. (c) collapse of a domain of length L = 1200, initially with steady turbulent
fraction, at r = 1.1. (d) Collapse of a domain of length L = 1200, initially with steady turbulent fraction, at r = 1.2. (e)
Colour levels of the logarithm of turbulence intensity for a build up of a turbulent puff out of noise of vanishing variance at
r = 1.15 and Σ = 25000.

(for all sizes). Note that this is the physical distribution
of collapse durations. The quantities µ(s), τ and σ can in
principle be sampled in DNS, at a much higher cost, by
accumulating an equivalent number of collapses and us-
ing the corresponding durations to perform the statistics.
In our case, this is done using approximately 2000 tra-
jectories sampled out of 107 trials at r = 1.0 in a domain
of size Lx = 200. The average and variance of trajectory
durations calculated by mean of DNS is equal (up to the
incertitudes) to those calculated by AMS.
We display the distributions of durations, originating

from AMS and DNS, for all considered lengths as a func-
tion of the normalised duration s′ = (s − τ)/σ (Fig. 5).
On top of that, we add a normalised Gumbel distribu-
tion. The normalised Gumbel distribution reads

µ(s′) =
π√
6
exp

(

−πs′√
6
− γ − exp

(

−πs′√
6
− γ

))

, (10)

where γ ≃ 0.6 is the Euler constant. This choice of com-
parison originates from the fact that it has been demon-
strated that for one degree of freedom system, the dura-
tion of reactive trajectories follows a Gumbel distribution
[26]. Note that this result is demonstrated by considering
only the stochastic process, independently of the simula-
tion or sampling procedure. This is numerically verified
[42] (for standard behaviour). Similarly, the variance of
durations σ could be explained by a physical model in the
case of random walk of fronts in the Ginzburg–Landau
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Figure 5. Normalised distribution of duration of collapses of
isolated puffs in pipes of lengths 200 ≤ L ≤ 1600 at r = 1.0,
sampled by mean of AMS and DNS, compared to a normalised
Gumbel distribution.

equation [24]. In the case of collapse in this model of pipe
flow, the comparison between the distribution of dura-
tion of reactive trajectories and the normalised Gumbel
is very good. In a spatially extended system, namely the
one dimension Ginzburg–Landau equation, it has been
checked that the duration of reactive trajectories followed
a distribution very similar to a Gumbel [24]. The com-
parison was very precise at large durations s ≥ τ .

We then compute the mean first passage time before
collapse of isolated turbulent puffs as a function of the
Reynolds number r in pipes of length L = 800 in two
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types of AMS calculations (both using N = 1000 clones).

Using direct numerical simulations of the model, we
generated a set of initial conditions which are equi-
librium puffs at r0 in the range of Reynolds number
0.9 ≤ r0 ≤ 1.15. In the first type of AMS calculation,
we compute the mean first passage time Tr0(r) before
collapse of each of these puffs in the range of Reynolds
number 0.6 ≤ r ≤ 1.8. This covers the range of r where
turbulence cannot be sustained and the range where tur-
bulence coexists with laminar flow with a finite turbu-
lent fraction (Fig. 2 (c)). Since this concerns the col-
lapse of turbulent puffs which are not changed (while the
Reynolds number is), these events are termed “‘collapses
of fixed puffs” (in Fig. 6 for instance). Due to the defi-
nition of reaction coordinates and of mean first passage
times, we condition our dynamics to have a turbulent
fraction which is no greater than that of the initial con-
ditions. Such a conditioning is well taken into account
theoretically by fixing the necessary boundaries, since we
work with stochastic dynamics (see [18], § 5.5 and [25],
§ 6.1). The numerical studies of the collapse of isolated
puff actually always include some conditioning, since it
is often required that the puffs do not split when mean
first passage times are studied in models [16, 38]. In our
case this is taken one step further in order to investigate
how the structure of the phase space of the stochastic
model (via the corresponding initial conditions) leads to
the dependence of T on r for nea equilibrium puffs. From
general theoretical argument, we expect that values of T
for two initial conditions remain distinct if the control
parameters are changed, provided that the initial condi-
tions are not both within one standard deviation of the
most probable state. The difference between values of T
can actually be written formally in an integral form (see
[18], § 5.5 and [25], § 6.1) which is rarely tractable, unless
the model is a gradient system. In said gradient systems,
the logarithm of the ratio of two conditioned mean first
passage times from two distinct initial conditions is actu-
ally given by the potential difference between these two
initial conditions. This potential difference can grow or
decay with control parameters, depending on the system.
Performing this type of numerical experiment will thus
inform us on how the phase space of the stochastic model
changes with r. Provided the revealed dependence on r
is simple enough, we may provide a clear description of
how the mean first passage time of the near equilibrium
puff depends on r.

We present the decimal logarithm log(Tr0(r)) for three
puffs at equilibrium at r0 = 0.95, r0 = 1.10 and r0 =
1.15 (Fig. 6 (a)). Two regimes of log(Tr0(r)) appear.
For r ≤ 0.8, All the curves collapse and Tr0(r) is nearly
independent of the initial condition. Only the durations
of the collapse trajectories τ , included in T (see Eq. (6)),
differ. For r ≥ 1, the mean first passage time before
collapse of these puffs is clearly distinguishable from one
initial condition to another. In fact, an affine tendency
ln(Tr0(r)) = Ap(r0) × r − Bp(r0) appears, with Ap > 0
and Bp > 0. The growth rate Ap(r0) and ordinate at the

origin Bp(r0) are systematically calculated by affine fits.
We find that both Ap(r0) and Bp(r0) are both growing
affine functions of the initial total turbulent intensity Q0

of each puff (Fig. 6 (b)). This can be written as

Q0(r0) ≡
∫ L

x=0

qr0(x, 0) dx , Ap(r0) = A′
p(Q0(r0) +A′′

p) ,

Bp(r0) = B′
p(Q0(r0) +B′′

p ) , A
′
p ≃ B′

p .

(11)

We now present the mean first passage time before
collapse and splitting of near equilibrium puffs (Fig. 6
(a), red symbols). This is done for illustrative pur-
pose. The two curves cross near r = 1.0, above which
splitting becomes more probable than collapse. The
slight discrepancy between the Reynolds number thresh-
old of sustained turbulence obtained from the spatial av-
erages (Fig. 2 (c)) and the Reynolds number at which
Tcollapse = Tsplitting comes from small errors on both esti-
mations. Since they are not the main focus of this text,
these two Reynolds numbers are estimated using smaller
datasets and thus come with an error. The mean first
passage time before collapse of equilibrium puffs is actu-
ally a subset of the results presented in the former para-
graph, since the equilibrium puff at r0 is only considered
as an initial condition for AMS calculation at r0. This
actually shows how the former result (Eq. (11)) controls
the mean first passage time before collapse of equilibrium
puffs. Indeed, if one knows the ensemble average of the
total turbulence intensity Q0(r) of the equilibrium puff
at r, one can then deduce the mean first passage time be-
fore of equilibrium puffs at this Reynolds number, since
ln(T ) = A′

p(Q0(r) + A′′
p) × r + A′

p(Q0(r) + B′′
p ). Per-

forming these two types of experiments showed us that
the mean first passage time before collapse of equilibrium
puffs could be separated into two parts. Firstly, the re-
action of the system to any puff, at a given Reynolds
number, gives the affine dependence ln(T ) = Apr − Bp.
Secondly, the amplitude of the equilibrium puff yields the
two coefficients Ap and Bp.
The mean first passage time before build up of turbu-

lence has been considered quantitatively for a range of r
and Σ (not shown here). One finds that ln(T )/Σ ≃ 0.035.
This depends very little on r.

C. Steady turbulent fraction: Length and Reynolds

number dependence of mean first passage times

We now consider the collapse of turbulence in pipes
initially containing their steady turbulent fraction at r
(see Fig. 2 (b), examples Fig. 4 (c,d) and dependence
of Q on r in Fig. 2 (c)). Unlike the isolated puff, this
starting point is always easily defined. The mean first
passage time before collapse of turbulence T and the av-
erage duration τ of turbulence collapses in these pipes are
computed as a function of r and L systematically in the
length range 50 ≤ L ≤ 1600 and in the Reynolds num-
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Figure 6. (a) Decimal logarithm of the mean first passage time
of several events as a function of the Reynolds number r in a
pipe of length L = 800: collapse fixed puffs (lines), collapse
of near equilibrium puffs (red lozenges), as well as splitting
of near equilibrium puff (red dots). The vertical dashed lines
indicate the range of laminar turbulent coexistence (Fig. 2
(c)). (b) Measured slopes Ap (blue asterisks) and ordinate at
the origin Bp (red lozenges) for equilibrium puffs at different
Reynolds numbers as a function of the total intensity of tur-
bulence of said puffs Q. The dashed lines indicate the affine
fits of these data.

ber range 1.05 ≤ r ≤ 1.6, where such a steady turbulent
fraction can be sustained in the infinite length limit.

We first present ln(T (L)) at r = 1.15 in figure 7 (a).
The linear growth of ln(T ) with L is visible. A linear
fit is performed to calculate the growth rate. The fit is
added to the plot in our example. In practice the expo-
nential growth of T with L, ln(T ) = f(r) × L, is found
no matter the Reynolds number in the range [1.05; 1.6]
(Fig. 7 (b)). Note that the mean first passage time before
collapse of isolated puffs is independent of the length of
the pipe provided that it is large enough (for instance
L > 200 at r = 1.15). This is illustrated at r = 1.15 by
adding the logarithm of the mean first passage time be-
fore collapse of isolated puffs as a function of L in figure 7
(a) (red curve). We then consider the growth rare f(r)
of T as a function of r. It is calculated systematically in
the range 1.05 ≤ r ≤ 1.6 and displayed in figure 7 (c).
This function f(r) is in good approximation affine with
r, f(r) ≃ Ar −B with A,B > 0. We can educe this ten-
dency in a large range of length and Reynolds number
in the SPDE model. Note that it had previously been
seen in a smaller range of length and Reynolds number
in Direct Numerical Simulations [19].
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We eventually present the logarithm of the average du-
rations of collapse trajectories as a function of the pipe
length in the range of Reynolds number [1.05; 1.6] (Fig. 7
(d)). Error bars are added: they are computed using the
variance of τ over the realisations of the algorithm used
to compute τ . While there is a slightly larger uncertain-
ties over the value of ln(τ) in the intermediate range of
1.2 ≤ r ≤ 1.3, these error bars show that the tenden-
cies of τ(r, L) can be trusted and do not arise from large
uncertainties over the estimate. We can distinguish two
types of behaviour of ln(τ). For r < 1.2, the average
duration of trajectories grows very fast with L after a
threshold pipe length (L ≥ 200 for r ≥ 1.1) and sat-
urates. This threshold pipe length decreases with the
Reynolds number. These very long durations are due to
the specific type of collapse, which involves independent
collapse of each puff (Fig. 4 (c)). The threshold pipe
length is simply given by the length above which the
pipe can contain two puffs at a given Reynolds number.
The duration saturates when the pipe is long enough for
splitting to be probable in one of the many holes created
by puff collapses (L ≥ 600 for r ≥ 1.1). At r = 1.2,
independent puff collapses occur for intermediate length
(200 ≤ L ≤ 800), while global collapses (Fig. 4 (d)) be-
come the typical event in long pipes (L ≤ 1200). At
larger Reynolds numbers (r ≥ 1.3), the collapse duration
varies little with length and is two orders of magnitude
smaller than what is found at lower Reynolds numbers.
The pipe undergoes a global collapse of turbulence. This
systematic examination of collapse duration thus gave a
quantitative criterion to determine whether the collapses
happen independently puff by puff, or globally.

IV. THEORY AND INTERPRETATION

The Reynolds number and length scalings of mean first
passage times before collapse of turbulence in the SPDE
model can be interpreted and discussed in view of the-
ories of metastability. In section IVA, we consider the
collapse of turbulence in pipes initially containing the
steady turbulent fraction and we interpret the mean first
passage time dependence on length. This will take the
point of view of small variance local noise. We show in
section IVB how the Reynolds number and size depen-
dence of the mean first passage times T ≍ exp(L(Ar−B))
can be derived in a two degrees of freedom model. This
will take the point of view of large pipe lengths. This
will again mostly concern the global collapse of laminar-
turbulent pipes, but should also bring some insight on the
mean first passage time before of isolated puffs. Relying
on these results is entirely consistent since the model we
analysed with AMS is stochastic.

A. Length scaling of mean first passage times

before collapse of turbulence in pipe containing the

steady turbulent fraction

The first stage of our discussion consists in justifying
the persistence of a single scaling in size for T , while
collapse trajectories display very different features as r
and L are varied. More generally, this discussion also
serves as a reminder that independent events, which had
been invoked to explain the ln(T ) ∝ L scaling, are not the
only phenomenon which can lead to such a size scaling.
In this section, we use properties of T which are demon-

strated in the limit of zero noise variance β → ∞, but
nevertheless control T if the noise variance is fixed but
relatively small. Indeed, most theoretical results on mul-
tistability concerning mean first passage times T are
demonstrated in the limit of noise of variance 1/B → 0
for a stochastic process with an action St

~̇X = ~b( ~X) +

√

2

B
a( ~X)~η , 〈ηi(t)ηj(t′)〉 = δijδ(t− t′) ,

(12)

St =
1

4

∫ t

s=0

( ~̇X −~b)†(aa†)−1( ~̇X −~b) ds

(13)

Here arrows designate vectors, a is a matrix and † desig-
nate the transpose. The matrix (aa†) is the correlation
matrix of the noise: the total variance of the noise stands
as an independent factor 1/B. The term ~b is the deter-
ministic part of the Itō process. This is a formal rewriting
of systems such as Eq. (2, 3). The results on T take the
form of a Large Deviation Principle: a probability is ex-
ponentially small in the inverse noise variance [25, 31].
This is written more rigourously on the logarithm of said
mean first passage time in the limit of small variance
noise

lim
β→∞

− 1

B
ln(T ) = I(✚✚B) (14)

This rate function I may very well depend on the con-
trol parameters of the system with the strict exception
of the felt noise variance. Moreover, this function is not
some unknown: it depends in a very regular manner on
the properties of the stochastic differential equation of in-
terest. These results are relevant for a broader range of
parameter where the noise variance is small 1/B . 1/Bc,
that is to say smaller some minimal threshold. Indeed,
many properties on the asymptotic regime, such as the
prevalence of instanton-type trajectories, are found in
stochastic systems where the inverse noise variance is not
varied or turbulent flows where such an inverse noise vari-
ance is not a control parameter [46].
There are several ways of calculating the rate function

I. A systematic approach can consist in minimising the

action S of the system (Eq. (13)) over path ~X(s) and
duration t (see [24, 32, 33, 39, 56] and [25] § 6.1). The
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action is the time integral of a Lagrangian measuring the
amount of noise felt by reactive trajectories (Eq. (13)).
This yields a set of Euler–Lagrange equations, whose in-
tegration gives the reactive trajectory. The rate function
I is the infimum of the action. Another approach can be
using the Gärtner–Ellis theorem: calculating a charac-
teristic function then performing a Legendre transform,
an operation similar to using different ensembles in ther-
modynamics (see [25], § 3.3.1, [34] § 2.3, 6.5, B 1). A
less systematic approach can consist in a direct calcula-
tion. The rate function I = ∆V is given by the difference

of a function V( ~X) ( ~X = {u, q} in our case), termed a

quasi potential, between two very specific points ~X of the

phase space: the starting point ~XA of the first passage

and ~XS the lowest saddle of V between the starting point
and the arrival point B [31]

∆V = V( ~XS)− V( ~XA) . (15)

This quasipotential difference can be understood by ex-
amining the most probable reactive trajectory, termed
the instanton, which minimises the action S [24, 25, 32,
33]. It first contains a fluctuation path, from the starting
point to the saddle, stimulated by noise, on which the
action is strictly positive. This yields the quasipoten-

tial difference. It then has a relaxation path ~̇X = b( ~X),
which is deterministic in the zero noise limit, on which
the action is zero and which does not contribute to the
quasipotential difference.
The name quasi-potential arises from the study of mul-

tistability in gradient systems, where d ~X
dt = −~∇V +

√

2/B~η. In that case the potential V = V governs the
whole deterministic part of the dynamics. In such gradi-
ent system, equation (14) is in fact a well known result,
it derives from the Eyring-Kramers formula of the mean
first passage time [17, 45], which is even more widely
known as the Arrhenius law, owning to its original discov-
ery in kinetic chemistry. The mean first passage time can
be entirely calculated in the low noise limit in gradient
systems and extensive comparisons with results of AMS
calculations can be performed [24]. In the non-gradient
SPDE model, such a quasipotential would require ex-
tensive derivations in order to be analytically readable.
However, it is sufficient to know that it exists and to
know some of its general properties in order to propose
a first discussion of the numerical results.
If we make the loose assumption that the noise locally

felt by the puffs has a small variance when β = 1.5 in
equation (3), the mean first passage time before collapse
of turbulence is governed by the properties of such a quasi
potential. This can be checked by performing the artifi-
cial experiment where we follow the mean first passage
time before collapse of laminar turbulent domain in the
model of equation (2,3) when β is varied. This is done
at r = 1.3 and for a domain length of L = 200. When
examining the logarithm of the mean first passage time
as a function of β, we note that this function is very
close to linear, hinting toward large deviations of T in

0 5 10 15 20
β

5

10

15

I

ln(T)/ β
 I

Figure 8. Rate function I of the mean first passage time
before collapse of a laminar-turbulent domain as a function of
β (the inverse variance of the multiplicative noise of Eq. (3)),
calculated by two manners: ratio of ln(T )/β and slope of the
best linear fir of ln(T )(β). The computation is performed
using a domain length of L = 200 and a Reynolds number of
r = 1.3.

the large β limit. We can thus define a rate function I
as the best linear fit of ln(T ) function of β. In order
to determine how good an approximation of ln(T ) the
product I × β is, we display ln(T )/β and I in figure 8.
This shows that we have ln(T ) ∝ β, for β & 2, with
a proportionality factor which has the properties of the
quasipotential difference in the large β limit. This jus-
tifies the use of results on Large Deviations of T in the
large β limit to give an approximation of T , even if tak-
ing this limit is physically artificial. While there can be
10 to 20% error on the estimate of ln(T ) by this manner,
the variations of I still strongly influence those of ln(T ).
This cannot be used if one wants to explain fine changes
of T . However this is acceptable if one wants to discuss
changes of ln(T ) by an order of magnitude (Fig. 7 (b)).
The length L dependence of the mean first passage time
can thus be discussed in view of results on other systems.
In particular, we will invoke the length dependence of po-
tentials and quasipotentials when the reversal of the field
in nearly homogeneous in space (Fig. 4 (a,d)) [24]. Such
reversals were termed a flipping of the field. In that case,
it has been shown analytically and verified numerically
that the potential was linear in length ∆V ∝ L, in the
case of a gradient system. This length scaling originates
from the necessity of having a correlated movement of
the field at each point of space. This scaling can strongly
influence the length dependence of the mean first pas-
sage time even if β is finite though relatively small. We
can thus explain the three regimes of exponential length
dependence, two of which exist for all Reynolds numbers:

• If the domain is small and can accommodate only
one puff, we have a global collapse of said puff, a
flipping of the field, and the quasipotential goes
like ∆V = LδV , with δV a density of quasipoten-
tial, leading to ln(T ) ≃ LβδV at finite β. This
regime exists for all Reynolds numbers. The range
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Figure 9. Rescaled probability density function ρ of the ki-
netic energy of turbulence e sampled in numerical simulations
of plane Couette flow (from the data of [3]).

of pipe length concerned decreases with r as puff
density and steady turbulent fraction increase with
r (Fig. 2 (c)).

• If the domain is larger and can accommodate sev-
eral puffs and if the Reynolds number is not so large
that puff splitting is rare enough, then the puffs col-
lapse independently from one another (Fig. 4 (c)).
Let us term T1 the mean first passage time for the
collapse of any of the n puffs contained in the do-
main. The mean first passage time for the collapse
of turbulence in the whole pipe is then T = T n

1 .
Since the collapse of each single puff occurs as a
block, one still has ln(T1) ≃ βLpuffδV in the large
β limit. one also has L = nLpuff. As a consequence
ln(T ) ≃ βn(L/n)δV at finite β. One then finds
∆V = LδV . Note that this mechanism was invoked
in [19] for small length systems.

• If the domain is large enough that it can accom-
modate several puffs and if the Reynolds number is
large enough that splitting becomes very probable,
then all the puffs collapse together (Fig. 4 (d)). The
argument is now the same as in the small scale case,
one finds again ∆V = LδV with the same quasipo-
tential density. This again leads to T ≃ exp(LβδV)
at finite β.

In any case, one finds that ln(T ) ≃ βδVL. If one assumes
that βδV = (Ar−B), we thus have the calculated scaling
in length ln(T ) = L(Ar − B) (Fig. 7 (a,b)) of the mean
first passage time before collapse of turbulence, through-
out all type of collapse.

B. Reynolds number dependence of mean first

passage time before collapse of turbulence derived

from a quasipotential

Another point of view can be taken in order to dis-
cuss the size and Reynolds number scalings of mean first
passage times and derive that T ≍ exp(L(Ar − B)). If

the Reynolds number r is not so small or the length L
is large enough that the turbulence in the pipe collapses
as a whole, one can consider the collapse toward zero
of quantities like the spatially average intensity of tur-
bulence Q, or the spatially averaged kinetic energy of
turbulence. This analysis does not apply to the indepen-
dent collapse of puffs which occur in the narrow range
1.0 ≤ r ≤ 1.15. In that case, instead of invoking some-
what artificial Large Deviations in the limit of small vari-
ance of the ad hoc local noise felt by the system to ap-
proximate T at finite but relatively large β, one can more
naturally and more rigorously consider large deviations
in the limit of large length [51]. Indeed, one very natu-
rally finds that limL→∞ ln(T )/(L) = I(r,✓L) in the results
of AMS calculations. Such a behaviour is not surprising
since it has already been reported in the probability den-
sity functions ρ of the kinetic energy of turbulence e in
plane Couette flow [3]. This is shown again in figure 9.
This is particularly the case when the PDF are not Gaus-
sians any more, when the length dependence could not
be related to central limit behaviour, i.e. when the pdf
have exponential tails for e < 〈e〉 (Fig. 9). This large
deviations behaviour of the pdfs can be understood with
the same quasi potential as for the mean first passage
time. Indeed, this quasi potential also governs the prob-
ability density function, which ha a Boltzmann factor
form ρ ∝ exp(−β̄V) [31, 47], where β̄ scales the inverse
variance (with β̄ ∝ LxLz in plane Couette flow). This
motivates us to educe the quasipotentials in models of
wall flows.
After having introduced the general concepts used to

study metastability, we now apply them to a simple but
enlightening model of transitional wall flow. We will show
that the scaling limL→∞ ln(T )/L = AR − B can be de-
rived in that case. Following the idea of large deviations
in the large length limit, this model should be understood
as model for some spatial averages. While a theoretical
analysis of the transitions in the SPDE model may be
possible, it would require a thorough a technical work
which is outside the scope of the current text. We will
proceed in three steps. We first present the model, its ba-
sic deterministic properties and show what type of noise
should be included to faithfully represent spatially aver-
aged behaviour in section IVB1. We then compute the
quasi potential V which can then be used to determine
the probability density functions in section IVB2. We
eventually use the quasipotential to compute analytically
the mean first passage times before collapse and the cor-
responding trajectories, and show how a scaling of the
type T ≍ exp(L(Ar −B)) can arise in section IVB3.

1. The conceptual model

The two degrees of freedommodel we use was originally
proposed by Dauchot & Manneville [29]. It arises from
a projection of principle and truncation of the Navier–
Stokes equations on the first wall normal Fourier mode of
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ux, the departure to the streamwise baseflow, represented
by X1, and second wall normal Fourier mode of uy, the
wall normal velocity field, represented by X2. The two
coupled ordinary differential equations read

dX1

dt
= s1X1 +X2 +X1X2 , (16)

dX2

dt
= s2X2 −X2

1 , (17)

The first linear terms s1,2X1,2 arise from viscous dissi-
pation. For a higher readability of the analysis, we set
s1 = s2 = −1/R ≤ 0. The Reynolds number is thus
denoted by R. The additive term +X2 comes from ad-
vection by the linear base flow and the quadratic terms,
from advection by the departure to the baseflow. This
model contains many of the basic features of transitional
wall flows. The fixed point X1 = X2 = 0, which corre-
sponds to no non-trivial flow on top of the linear flow, is
linearly stable for all Reynolds numbers. The linear op-
erator arising from the linearisation of the ODEs about
(0, 0) is highly non normal, due to +X2 in equation (16).
This leads to transient growth of the type t exp(−t) of
optimal perturbations to the state (0, 0) on both side of
the boundary of the basin of attraction of the laminar
state. The model includes lift-up in this manner [35]. If
R ≥ 2, two other fixed points arise from a saddle node
bifurcation. They correspond to

X±
2 = −RX±

1

2
, X±

1 =
−1±

√

1− 4
R2

2
, (18)

and X2 explicitly reads

X±
2 =

−
(
R− 2

R

)
±
√
R2 − 4

2
. (19)

The existence of a finite amplitude non-trivial state dis-
tinct from the stable linear flow is represented by the −
solution and the saddle point in between is represented
by the + solution. Note that this saddle node bifurca-
tion can occur because of the non-normal term +X2 in
equation (16). All the fixed points are illustrated in the
bifurcation diagram of figure 10. To some extent, X1 is
akin to the spatial average 1 − U and X2 is akin to the
spatial average Q. We firstly note that X1 arises from
ux, like u, while X2 arises from uy like q. Also, the stable
non trivial solution X−

1 will saturate quickly, while more
and more energy is given to the mode X−

2 , as is seen for
the two spatially average variables (Fig. 2 (c)). Given the
low dimensionality of the model, these solutions are time
independent. Note that in the large Reynolds number
limit R → ∞, a Taylor expansion shows that X±

1,2 follow
simple scaling laws

X−
1 = −1 +O

(
1

R2

)

, X−
2 = −R+O

(
1

R

)

,

(20)

X+
1 = − 1

R2
+O

(
1

R4

)

, X+
2 = − 1

R3
+O

(
1

R5

)

.

(21)

0 1 2 3 4 5 6
R

-6

-5

-4

-3

-2

-1

0

X

X
lam

X
1
+

X
1
-

X
2
+

X
2
-

Figure 10. Bifurcation diagram of the deterministic two de-
grees of freedom model, as a function of Reynolds number R,
including both X1 and X2. The continuous lines indicate the
stable fixed points. The dashed lines indicate the unstable
fixed points. The green dot indicates the saddle node bifur-
cation.

These scaling laws are visible in the bifurcation diagram
for R & 3. We recover here another classical property of
transitional wall flows. The kinetic energy of perturba-
tions necessary to cross the boundary between turbulent
and laminar baseflow decreases like a power of R (see
[14] and references within). One can find similar models
arising from a similar procedure in geophysical fluid dy-
namics [55]. However, their statistics are more complex
than those we consider here [50].
In order to discuss transitions from the non trivial fixed

point X−
1,2 to the laminar fixed point (0, 0), a measure

of complexity, which was integrated out in the model,
should be reinserted. In accordance with the SPDE stud-
ied numerically, we do so by adding noise to the model,
with inverse variance β̄, which now reads

dX1

dt
= − 1

R
X1 +X2 +X1X2 +

√

2

β̄
ga(X1)η1 , (22)

dX2

dt
= − 1

R
X2 −X2

1 +

√

2

β̄
ga(X1)η2 , (23)

〈ηi(t)〉 = 0 , 〈ηi(t)ηj(t′)〉 = δijδ(t− t′) . (24)

We use the variable X1 in the multiplicative noise led by
η1,2, which are uncorrelated and white in time. There are
several reasons for this. Firstly, we will see that X1 is the
fastest variable of the two. This choice of course gives to
the noise the property of going to zero when there is no
turbulence. More importantly, X1 remains bounded by 1
and does not grow much with the Reynolds number. As
a consequence, this choice also gives the property that
the variances of X1 and X2 are independent of R, or at
the very least grow slowly with R, as is seen in spatially
averaged data sampled from direct numerical simulations
[3].
We will discuss several types of noise using ga(X1) =

|X1|a. When multiplicative, the noise is interpreted with
an Itō rule. The case a = 0 is that of simple additive
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white noise. This case is less relevant in collapses when
X1,2 are close to 0 (which is then not absorbing). It is
however a first, tractable (numerically and analytically)
approximation if one is to study the trajectories going
from the turbulent state to the saddle: this assumes that
the amplitude of turbulence does not vary much on the
turbulent side of the saddle. This causes little error, be-
cause in the framework of rare events, studying the tra-
jectory from the starting point to the saddle between the
starting point and arrival point is sufficient to compute
the mean first passage times. The two other cases are
a = 1 and a = 1/2. These two cases correspond to a
multiplicative noise going to zero with the amplitude of
turbulence. The model is now relevant to describe col-
lapse at all values of X1,2. The case a = 1 follows the
original SPDE. The case a = 1/2 follows models arising
from reaction diffusion process, like the one describing
directed percolation [49]. It is moreover an illustration
of a peculiar transition occurring in such model when a
is decreased below 1

2 (§ E).
The noise inverse variance is controlled by the con-

stant β̄. Our theoretical analysis will concern the limit
1/β̄ → 0. This can either be a crude representation of
a turbulent puff, assuming that it feels a relatively low
noise variance. More realistically, this can represent the
limit L → ∞, where X1 and X2 are space averaged vari-
ables, and the Reynolds number is not so small that all
turbulence collapse occur globally (Fig. 4 (d)). These

noise terms arise from the spatial integralQ = 1
L

∫ L

x=0
qη.

We can show analytically and confirm numérically in ap-
pendix B that Q is a delta correlated in time random
variable. The average of Q is 0 and its variance decrease
like 1/L with a factor which grows like the intensity of
turbulence in the flow. We thus choose β̄ ∝ L in our
model. This further justifies using a multiplicative noise
with a > 0. We can then also discuss how non trivial
rescaled pdf of kinetic energy (see Fig. 9) arise from such
models.

2. Educing the quasipotential

As explained in subsection (IVA), the parametric de-
pendence of mean first passage times in stochastic sys-
tem is very often governed by the quasi-potential V of the
system. In order to educe such a quasipotential, the de-
terministic part of stochastic differential equations of the
type Eq. (2,3) Eq. (12) or Eq. (22,23) can be rewritten
through a transverse decomposition

~̇X = −aa†~∇V( ~X) +~l( ~X) +

√

2

B
a(~x)η . (25)

We use B as the noise inverse variance and aa† as the
noise correlation matrix. When it exists, this decom-
position is unique. There is orthogonality condition be-

tween ~l and ~∇V , and ~l cannot be written in a gradient
form. One can see the origin of the aa† factor in § E

(Eq. (E1)). Note that there exists some cases where the
existence of such a decomposition does not ensure that V
govern passage times or the steady probability measure
(when defined). This happens when there are direct con-
nections between fixed points of the deterministic model
[50], for instance. We do not have such a problem in
our model, where fixed points of the deterministic model
are isolated. This means that mean first passage time go
like exp(β∆V) and probability density functions go like
exp(−βV) (when defined). However, this decomposition
of the deterministic part of the equation is absolutely
not trivial. As a consequence, we will consider numeri-
cal solutions of the problem and analytical approximated
systems in order to discuss V .
The quasipotential V can be displayed by considering

the steady pdf ρ(X1, X2) of the system Eq. (22,23) in
the case a = 0. The pdf ρ is obtained by solving numer-
ically the steady Fokker–Planck equation equivalent to
the coupled SDEs (see [18] § 5.2)

0 = − ∂

∂X1

((

− 1

R
X1 +X2 +X1X2

)

ρ

)

− ∂

∂X2

((

− 1

R
X2 −X2

1

)

ρ

)

+
1

β̄

(
∂2

∂X2
1

+
∂2

∂X2
2

)

ρ . (26)

The partial differential equation is discretised using finite
differences. Note that this is not a problem constrained
by boundary conditions, but instead by the normalisation
of ρ to

∫
ρdX1dX2 = 1. In this text, this constraint is

taken into account in the numerical problem by reformu-
lating the partial differential equation into a variational
problem and using a Lagrange multiplier. An alternative
method can be to relax the time dependent Fokker–Plank
equations [50]. In the low noise limit, the pdf ρ follows
large deviations in 1/β̄ and one has

− lim
1/β̄→0

1

β̄
ln(ρ) = V(X1, X2) , (27)

i.e. a Boltzmann factor. We ensure that V exists by
checking that the numerical solution does converge to-
ward such a form in the high β̄ limit. We give an exam-
ple of probability density function at R = 2.1 (just above
the bifurcation of the deterministic system) for a = 0
and β̄ = 200 in figure 11 (a). There is a small maxi-
mum near X1,2 = 0, the “laminar” deterministic stable
fixed point. A second more probable maximum is visible
X1 ≃ −1/2 and X2 ≃ −1, near the non trivial “tur-
bulent” deterministic fixed point. We verify that ρ is
governed by a quasipotential in the large β̄ limit: we dis-
play minX1

(−(1/β̄) ln(ρ)) as a function of X2 in figure 11
(b) for increasing values of β̄. The curves are shifted by
a constant so that the minimum is zero, as is common in
the study of Large Deviations. The collapse of the curves
is visible. It is very similar to the behaviour of the proba-
bility density functions sampled in numerical simulations
of Couette flow (Fig. 9).
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Figure 11. (a) Colour levels of the probability density func-
tion ρ(X1, X2) obtained by solving the Fokker–Planck equa-
tion (26) with a = 0 (additive noise), β̄ = 200, R = 2.1. (b)
minX1

(−(1/β̄) ln(ρ)) for increasing values of β̄ at R = 2.1 and
a = 0 (additive noise), along with asymptotic quasipoten-
tial. (c) Asymptotic quasipotentials calculated analytically
(Eq. (32), Eq. (34), Eq. (36)) for R = 4 and all three noise
cases (labeled “asy”, a = 0, additive, and a = 1, a = 1

2
multi-

plicative). On top of it is added the quasipotential calculated
numerically by solving the Fokker–Planck equation (labeled
“FP”, a = 0) and the quasipotentials evaluated numerically
by integration of the SDEs for all three noise cases (labeled
“num”).

The quasipotential does not have a trivial analytic ex-
pression. In particular, it is certainly not a third order
polynomial. Hopefully, the dynamics have a very partic-
ular structure which will simplify the study. Let us first

rescale the equations in χ1 = X1, χ2 = X2/R, so that
χ1,2 = O(1) through most of the turbulence collapse.
The rescaled coupled SDEs read

dχ1

dt
= R

(

χ1χ2 + χ2 −
1

R2
χ1

)

+
√
Rga(χ1)

√

2

β̃
η1 ,

(28)

dχ2

dt
= − 1

R
(χ2 + χ2

1) +
1√
R
ga(χ1)

√

2

β̃
η2 ,

(29)

where β̃ = Rβ̄. The structure of a slow/fast system ap-
pears (see [18] § 8.3). We retained 1/R2 for physical
reasons discussed throughout the text. The Reynolds
number R controls the timescale separation. The vari-
able χ1 is slaved to χ2 because it adjusts very fast to
changes of χ2, in a time scale of order R. Meanwhile,
the variable χ2 evolves more slowly with a time scale
of order 1/R. This master slave structure of X1, X2 is
another similarity with the SPDE model, where q leads
1− u. Note that the prefactors of the noise in R are also
typical of slow/fast dynamics, at fixed β̄. We introduce
the variable ζ1

ζ1 ≡ χ1 +
χ2

χ2 − 1
R2

. (30)

This variable will adjust fast to zero and the system will
keep χ1 ≃ −χ2/(χ2 − 1/R2). We can then perform the
elimination of the fast variable ζ1. This procedure is
rather similar to adiabatic elimination of fast mode in de-
terministic system (see [53] § 5.1 for principle of adiabatic
elimination and § 5.2 for projection on central manifold),
with some subtleties arising from the noise and correla-
tions with the eliminated variable. Note also that this not
a weakly non linear analysis near the threshold of a bi-
furcation, as is often the case in fast variable elimination
of deterministic dynamical systems. Such a procedure
is commonplace in the study of rare events. However,
unlike here, the time scale separation is often governed
by β̄, the Large Deviation parameter. This leads to a
more complex situation [32]. As noted in section IIA,
this difference with slow-fast systems arising from two
dimensional turbulence is caused by the different role of
the noise. In our case, it is not an energy injection, the
non trivial state exists even without noise. The noise is
instead the trace of the intrinsic turbulent fluctuations.
This will not cause problems, since the elimination is
based on order identification in the timescale parameter
1/R, so that will we be able to keep small 1/β̄ and be
consistent.
The change of variable to ζ1 is performed in ap-

pendix C1. A heuristic elimination in the Langevin equa-
tion is performed in appendix C 2: this procedure is more
readable, however it does not strictly ensure the validity
of the result in our two parameters R, β̃ case. Such va-
lidity is obtained by performing the elimination in the
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Fokker–Planck equation (§ C3), even if the operation is
now less readable. When the result is rescaled and terms
that will vanish when studying the large deviations are
removed, we find the Stochastic differential equation for
X2 alone at a = 0

Ẋ2 = −
(
1

R
X2 +R2 X2

2

(RX2 − 1)2

)

+

√

1

β̄
η

= − dV
dX2

+

√

1

β̄
η . (31)

An approximation was made to incorporate the saddle
and laminar fixed point in the slow system. It makes
sense to include the low amplitude X1 < 1, X2 < R in
this procedure, because X2 still controls X1 through the
linear non normal lift up term in this range of amplitude
and is thus still leader in the dynamics. Since it involves
only one degree of freedom one has l = 0 when writing
the SDE in the form of equation (25). The system is nec-
essarily gradient and thus derives from a quasipotential
V . Knowing the noise correlation matrix as a function
of X2, we can thus deduce the quasipotential from the
deterministic part of our model where X1 is eliminated,
for all three noise types (a = 0, 1

2 and 1). We do this by
rewriting the resulting SDEs forX2 in the general form of
equation (25). In the additive noise case, partial fraction
decomposition and integration yields the quasipotential

V =
1

2R
X2

2 +X2 +
2

R
ln(1 −RX2) +

1

R

1

1−RX2
− V0 .

(32)
The quasipotentials, as rate functions, are often shifted
by a constant V0 chosen so that V(X−

2 ) = 0 at the main
minimum. We use the constant V0 so that V(X−

2 ) = 0.
We add the analytically calculated V at R = 2.1 to the
plot of numerically calculated V in figure 11 (b). There
is already a good agreement, even if R is small. The min-
imum near 0 and the saddle is well captured by our ap-
proximation of keeping 1/R2 in the slow dynamics. More-
over, the approximation will give a more precise value for
X2 of the global minimum of quasipotentials in the whole
range of Reynolds number.

The same procedure can be repeated when using a mul-
tiplicative noise (remarks in § C). Note that keeping the
X2 dependence of the multiplicative noise implies an ap-
proximation to the fast variable elimination similar to
keeping the precise structure of minima and saddle in
the quasipotential. If we use a = 1, the SDE in which
X1 is eliminated reads

dX2

dt
= −

(
1

R
X2 +

X2
2

(X2 − 1
R )2

)

︸ ︷︷ ︸

=−

(

X2

X2−
1

R

)

2

dV/dX2

+

√

2

β̄

X2

X2 − 1
R

η2 .

(33)
Following the general form of equation (25), the quasipo-

tential, as a function of X2, reads

V =
1

2R
X2

2 +

(

1− 2

R2

)

X2 +
1

R3
ln(|X2|)− V0 . (34)

Note that because of the noise variance vanishing fast
enough at X1,2 = 0, the quasipotential goes to mi-
nus infinity at X2 = 0. As a consequence, the func-
tion exp(−β̄V) will diverge extremely fast like |X2|−β̄ at
X2 = 0 and β̄ large. Therefore it cannot be normalised
and the pdf is not defined as a function. Instead, it is a
distribution, a dirac delta function in 0. This divergence
of V at zero arises from the constant part of b and a noise
variance going to zero fast enough at zero.
If we choose a = 1/2, the SDE where X1 is eliminated

reads

dX2

dt
= −

(
1

R
X2 +

X2
2

(X2 − 1
R )2

)

︸ ︷︷ ︸

=−
X2

X2−
1

R

dV/dX2

+

√

2

β̄

√

X2

X2 − 1
R

η2 .

(35)
Following equation (25), this yields again the quasipo-
tential

V =
1

2R
X2

2 +

(

1− 1

R2

)

X2+
1

R
ln(1−RX2)−V0 . (36)

Note that now, the quasipotential is finite at 0. This is
the case for all 0 ≤ a ≤ 1/2. The probability density
function will still diverge at 0 like X−1. Note however,
that since the system is discretised numerically, this di-
vergence is slowed down, and this can lead to the laminar
state not being absorbing any longer. As discussed in ap-
pendix E, this property should manifest itself only if a is
strictly under 1

2 .
We compare all three quasipotentials calculated an-

alytically to numerical solutions, either of the Fokker–
Planck equation or the coupled SDEs in figure 11 (c).
The agreement between numerical and analytical estima-
tion of V is good for 0 > X2 > X−

2 , at least within one
standard deviation, as shown by the perfect agreement
between numerical and analytical result in that range. In
particular, the value of the minimum of V , at X2 & −R
is well captured by the approximation performed in the
elimination of the fast variable. Some properties are es-
pecially worth mentioning. For X2 ≃ X−

2 , the quasipo-
tentials are nearly parabolic. Note however that they
remain parabolic away from X−

2 only if |X2| > |X2|−.
In the range 0 ≤ |X2| ≤ X−

2 , the quasipotentials are
nearly linear. This is similar to DNS results (Fig. 9).
This leads to exponential tails in the probability density
functions. For more than one standard deviation, the nu-
merical results estimated from simulations of the SDEs
or solution of the Fokker–Planck equation are not trust-
worthy, since the corresponding probabilities are very low
and thus poorly estimated by standard methods. Never-
theless, one find both numerically and analytically that
for X2 > X−

2 , one has Va=0 ≤ Va= 1

2

≤ Va=1. In or-

der to check the validity of analytical estimation of V
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Figure 12. Reactive trajectories in the two degrees of freedom
model at R = 2.5, showing build up of turbulence under addi-
tive noise (β̄ = 10000), collapse of turbulence under additive
noise (β̄ = 1500), the starting and ending points of trajecto-
ries, the relaxation paths from the saddle point X+

1,2 to the

nodes X−

1,2 and 0 and the X1 nullcline X1 = (X2/(X2−1/R)).

for more than one standard deviation out of X−
2 and il-

lustrate the analytical calculation of mean first passage
time before of turbulence in that model, we will now turn
to a comparison between analytical result and AMS nu-
merical results. We will then compare the numerically
computed mean first passage times to those predicted by
the Arrhenius law exp(β̄∆V), which is the focus of our
study. This will show that the analysis can not only help
estimate pdf and explain their shape but also estimate
mean first passage times.

3. Mean first passage times and trajectories

The mean first passage time from state X−
1,2 to state

X1,2 = 0 is given analytically by the quasipotential differ-
ence between X−

2 and the saddle in all three cases (a = 0,
a = 1 and a = 1/2). This reads (1/β̄) ln(T ) = Vsaddle −
V(X−

2 ). This difference can be calculated exactly using
the full formula Eq. (19), Eq. (32), Eq. (34), Eq. (36), in
appendix D. In the limit of large R, through a Taylor ex-

pansion, we find ∆Va=0 = R
2 − 4 ln(R)

R +O
(
1
R

)
, ∆Va= 1

2

=
R
2 − 2 ln(R)

R +O
(
1
R

)
and ∆Va=1 = R

2 − 1
R +O

(
1
R2

)
. This

means that in all three cases, at lowest non zero order,
the mean first passage time before exit of state X−

1,2 has

the same asymptotic dependence in R and β̄. In Large
Deviations form and at large R, it reads

lim
1/β̄→0

ln(T )

β̄
= ∆V =

R

2
. (37)

Note that this final asymptotic result is not impacted by
the approximation made in the fast variable elimination,
since the corrective terms vanish. All three cases, the
actual potential difference is lower than the asymptotic
result, since corrections are all negative. The a = 1 is
quite close to the asymptotic result. Meanwhile, in the
a = 0 and a = 1

2 case, the correction, while going to zero

at R → ∞ is decreasing very slowly and is in fact close
to a constant of order one for R . 20.
We can compare this analytical result to AMS calcula-

tion of the mean first passage time before reaching (0, 0)
in all three cases (a = 0, a = 1 and a = 1/2), and escapes
from state (0, 0) in the a = 0 case (comparable to build
up of turbulence). We choose the reaction coordinates

ϕa=0 = 1− X2

X−
2

, ϕa>0 = (1 + ǫa>0)

(

1− X2

X−
2

)

,

ϕseed = (1 + ǫs)
X1

X−
1

− ǫs . (38)

This distinguishes the cases of additive (ϕa=0) and mul-
tiplicative noise (ϕa>0). A small constant ǫa>0 is added
to 1 in ϕa>0, so that AMS stops very slightly before X2

has entirely collapsed and the noise has entirely vanished,
thus ensuring that the final branchings will not be per-
turbed by a possible absence of noise. In the case of
build up of turbulence a small constant is subtracted to
ϕseed so as to define A as a tiny ball around the laminar
state. We follow the same procedure as in the study of
mean first passage times before collapse of turbulence in
the SPDE. We calculate reactive trajectories. We present
the collapse of turbulence at β̄ = 1500 and the build up
of turbulence at β̄ = 10000, both at R = 2.5, in fig-
ure 12. The collapse trajectory remains very close to the
X1 = X2/(X2 − 1/R) line: variable X2 stays the mas-
ter on the whole trajectory. The collapse trajectory is
stimulated by noise from X−

1,2 down to X+
1,2 (this is the

fluctuation path) and then collapse to 0 deterministically
(this is the relaxation path). Meanwhile the build up tra-
jectory is stimulated by noise from 0 to X+

1,2 (this is the

fluctuation path) and then reaches the turbulent state
X−

1,2 deterministically (this is the relaxation path). Even
if the trajectories are very close, note that the fluctuation
path from X−

1,2 to X+
1,2 is not the time reverse relaxation

path seen in the build up trajectory, since the system is
not gradient. Thus, trajectories of both types are gov-
erned by instantons in the limit of low variance noise.
Note that both trajectories spend some time fluctuating
around the saddle point X+

1,2. This decomposition of col-
lapse and build up trajectories stresses on the importance
of the saddle points on the separatrix between states or
on a minimal germ (see Fig. 4 (e)) in the case of build
up of turbulence.
We then calculate T as a function of β̄ for R ∈ [2; 20].

In the case of additive noise, we display ln(T ) as a func-
tion of β̄ for 2.5 ≤ R ≤ 20, as well as ln(T )(β̄) at R = 6
for the a = 1 and a = 1

2 multiplicative noise cases in fig-
ure 13 (a). We can see that for all R, ln(T ) grows linearly
with β̄, so that f̄(R) = ln(T )/β̄ is independent of β̄, as
calculated analytically (Eq. (37)). Moreover, the slope
of ln(T )(R) ostensibly grows with the Reynolds number.
We perform an affine fit for all Reynolds numbers. This
yields f̄(R), for all three noise cases. We then display
f̄(R) for all three noise cases as a function of the Reynolds
number, along with the asymptotic prediction (Eq. (37))
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Figure 13. (a) Logarithm of the mean first passage time be-
fore exit of state X−

1,2 as a function of β̄ in the two degrees of
freedom model for increasing Reynolds number R in the three
noise cases. (b) Growth rate f̄(R) of the mean first passage
time before exit of state X−

1,2 as a function of Reynolds num-
ber R in the two degrees of freedom model for additive noise.

and full quasipotential differences (Eq. (D1), Eq. (D3),
Eq. (D2)) in figure 13 (b). The growth rate f̄a=0,1, 1

2

(R)

calculated numerically with AMS is affine in R and is in
very good agreement with the asymptotic result: it has a
slope within 10% of 1

2 and within 10% of corresponding
quasipotential differences for all three noise cases. The
ordinate at the origin is negative in all three cases, for
both numerical results and full quasipotential difference.
The source of the small discrepancy can be the approxi-
mation of the saddle done in the fast variable elimination.
The definition of B can also come into play because the
saddle point is very near it. We find analytically and nu-
merically that f̄a=0(R) < f̄a= 1

2

(R) < f̄a=1(R), as it was

the case for the quasipotentials (Fig. 11 (c)). All things
considered, if we remember that the noise in the model
goes to zero with the length β̄ ∝ L, we find analytically
and numerically that this two degrees of freedom model
leads to a mean first passage time dependence of the type
T ∝ exp(L(A′R−B′)). The use of the quasipotential dif-
ference also shows the importance of the saddle point in
collapse or build up.

V. CONCLUSION

A. summary

This text presented a joint numerical and theoretical
study of multistability in two stochastic models of tran-
sitional wall flows. The numerical study was focused on
turbulence collapse, splitting and build up in a SPDE
pipe flow model proposed by Barkley [16]. Adaptive
Multilevel Splitting, a mutation selection algorithm ded-
icated to the fast study of multistability, was used to
compute the trajectories of puff splitting, turbulence col-
lapse and build up and corresponding mean first passage
times in a reproducible manner. Using AMS exponen-
tially reduced the cost of these computations. Similarly
to other rare events or atypical trajectories calculation,
AMS modifies the dynamics to sample said rare events.
It is indeed a necessary condition for a valid rare events
study that said events are sample and not guessed. An
advantage of a method like AMS is that it comes along
with a strong mathematical and theoretical background
that quantitatively demonstrates, in a increasing num-
ber of systems, how the occurrence of observation of rare
events is changed. This leads to a precise estimation of
mean first passage time. Along with this come rules for
assessment of the precision of estimations and numerical
verifications.
The quantitative study was first focused on isolated

puffs. The mean first passage time T before puff collapse
was computed in the whole range of Reynolds number
of transitional turbulence for a wide range of initial con-
ditions (thus including the collapse of equilibrium puffs
in the lower range of Reynolds number). Using a fixed
initial condition for the computation of mean first pas-
sage times before collapse and basing the reaction coor-
dinate on turbulent intensity generalises the condition-
ing on maximal turbulent fraction, which should not be
much larger than that of the initial condition. Com-
puting these times in such a conditioned manner while
varying R shows that the logarithm of T is affine in the
Reynolds number ln(T ) = Apr − Bp. Moreover, the co-
efficients Ap, Bp depend in an affine manner on the total
turbulence intensity of the initial puff Q0 =

∫
q dx. Per-

forming such a conditioned study helps uncovering the
reaction of the phase to given states of isolated puff in
a manner which is well described by theory. Moreover
This provides a first separation of the mean first passage
time before collapse of turbulence between the reaction of
the phase space to a given initial condition and the way
the natural initial conditions depends on the Reynolds
number. Indeed, knowing Q0(r) yields the faster than
linear growth of ln(T )(r) for equilibrium puffs. Approx-
imates of the mean first passage times before splitting
of equilibrium puffs were computed in order to illustrate
the crossover of mean first passage times of collapse and
splitting very near the threshold of sustained laminar-
turbulent flow.
We could moreover compute turbulence collapse in
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pipes initially containing their steady turbulent fraction.
This showed two regimes of collapse of laminar-turbulent
flows: just above the threshold of sustained laminar-
turbulent coexistence, the collapse occurs puff by puff
through independent events. Meanwhile all puffs collapse
in a correlated manner in the rest of the range of laminar-
turbulent coexistence, due to increased probability of puff
splitting. The length and Reynolds number scaling of the
mean first passage time before collapse of turbulence in
these laminar-turbulent pipes is independent on the type
of collapse and one finds that T ≍ exp(L(Ar −B)) with
positive A and B in the whole transitional range, thus
providing a counterpart for results obtained in DNS of
short pipes [19].
Large Deviations approaches of the study of prob-

abilities and passage times were used to discuss the
length and Reynolds number dependence of the mean
first passage time before collapse of turbulence. These
theories often yield the dependence of said probability
and mean first passage times through a quasipotential
(1/B) ln(T ) = ∆V in the limit of zero variance noise
1/B → 0 [25]. We discussed the persistence of the same
length dependence of mean first passage time before col-
lapse of laminar-turbulent coexistence ln(T ) ∝ L in all
regimes of collapse. Furthermore, we proposed the com-
putation of the quasipotential in a simple two degrees of
freedom model proposed by Dauchot & Manneville [29],
which has all the properties one would expect of spatially
averaged wall turbulence. This showed that mean first
passage times before collapse of turbulence of the type
exp(L(A′R−B′)) could be derived in asymptotic limits.
This derivation stresses on the importance of the saddle
between the laminar and the turbulent state for the mean
first passage time dependence and the natural trajecto-
ries followed by turbulence build up and collapse. Addi-
tional numerical simulations of the simple model showed
that this derivations were precise.

B. Discussion

Most of the properties of the two degrees of freedom
model are found in the spatially averaged SPDE model
and more generally in numerical and laboratory experi-
ment. This means that the derivation of the mean first
passage times dependence on L and R in this simple SDE
model can enlighten us on the physical mechanisms con-
trolling the mean first passage time before collapse of
turbulence initially at its steady turbulent fraction. In
all cases, we find master/slave dynamics, where the Q
variable leads and the 1−U variable follows. In the aver-
age value of the steady state, the leader Q quantity grows
somewhat linearly with the Reynolds number while the
follower saturates. The leading variable indicates how
much kinetic energy is given to turbulence and how much
turbulence has to be collapsed. This amount of energy
grows more or less linearly with Reynolds number and
this is reflected in the position of the quasipotential min-

imum. The fact that at fixed length the noise felt by the
master variable saturates is reflected in the multiplicative
noise depending solely on X1. These two combined ef-
fects lead to the affine quasipotential difference. The fact
that turbulence has to be collapsed as a whole, like “flip”
reactive trajectories of gradient systems [24], gives rele-
vance to the study of such spatially averaged variables.
This means that the noise variance goes to zero like one
over the length and leads to the length dependence of
mean first passage time T . The case of the isolated puff
is somewhat similar, the increase of length corresponds
to the increase of Q0.
This two degrees of freedom model can also show us

that the physical mechanisms leading to the asymmetric
probability density functions of kinetic energy of turbu-
lence (see [3, 52]) are the same as those controlling the
parametric dependence of mean first passage time be-
fore collapse of turbulence. Indeed the mean first pas-
sage time before collapse of turbulence is governed by
∆V while the pdf is governed by V . The combined ef-
fect of very weak Reynolds number dependence of noise
variance and linear growth of kinetic energy of turbulence
with Reynolds number leads to the linear quasipotentials
in the range 0 ≤ e ≤ 〈e〉 and therefore the exponential
tails.

C. Perspectives

The success of the combined use of the numerical
method for the computation of trajectories and mean first
passage times and of the theoretical framework for their
interpretation opens a wide range of perspective for the
study of transitional turbulence in wall flows. Methods
like AMS can be successfully applied to chaotic and tur-
bulent dynamics [48]. This means that the mean first
passage time before collapse of turbulence can now be
extensively computed both in academic or realistic flow
configurations. Mean first passage time scalings with
Reynolds number and length and flow configurations can
thus be computed extensively, beyond what is deduced
from the models studied here or DNS of small systems
[19]. One can then check whether the physical mech-
anisms at work in the models studied in this text are
also relevant in actual pipe flow. Even if the internal dy-
namics are different (stochastic versus temporal chaos),
similar reasonings may be followed, since they are based
on the same notions in both cases (comparison of coher-
ent lengths to the domain size, independence of events
etc. [20]). When studying the role of saddles in passage
time Reynolds number dependence and turbulence col-
lapse, edge states may very likely play the role of the
simple saddle point used in the two degrees of freedom
model [57, 58].
From another point of view, this also opens a way to

estimate optimal evolutions, starting from the laminar
baseflow, leading to turbulence that go even beyond com-
puting the minimal seed [21, 22]. Indeed, by computing
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the most probable trajectory traveling from the laminar
baseflow to turbulence under a noise of vanishing vari-
ance, either with AMS-type method or through action
minimisation [39], the trajectory leading to turbulence
under a wide range of arbitrarily small external pertur-
bations can be found. This approach does not require
to “teleport” the flow in a state of finite energy since
the initial condition is the laminar baseflow. The per-
turbing noise of vanishing variance only plays a role in
the fluctuation trajectory from the laminar state to the
most probable saddle on such paths: from that point on,
theory ensures that the trajectory is a deterministic re-
laxation path and that it starts from a saddle point [25].
Moreover, this approach requires a single computation:
there is no need for a dichotomy on a finite energy of
the initial conditions. Such build up calculations are un-
der way, and should inform us on mechanisms leading
to development, collapse or extension of turbulence in
transitional wall flows.
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Appendix A: Effect of AMS parameters on the

precision of estimates

The notion of convergence of quantities z estimated by
AMS is peculiar, because it involves two parameters: the
number of clones N of the computation, and the num-
ber o of repetitions of independent AMS computations
at a fixed number of clones. Another specificity is that
it is probabilistic: α is within a given interval of con-
fidence of the estimate with a given probability. Un-
less the simulation is extremely expensive, one performs
an estimation of z = α, T , τ . . . etc. by averaging the
output of independent AMS computations at fixed clone
number N over several to many independent realisations
[23, 24, 42, 44]

〈z〉o =
1

o

o∑

i=1

zi . (A1)

In the text, we drop the 〈·〉o for readability. The quality
of this estimate, depending on N and o, can be quanti-
fied using two cumulants: the variance over realisations
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Figure 14. (a) Time series of X1, X2 obtained from numerical
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levels of probability density function ρa= 1
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numerically by integration of the SDEs for R = 3 and β̄ = 5.

〈(z−〈z〉o)2〉o and the difference between the average over
realisations and a “true” value estimated either by direct
numerical simulation (in order to separate the effect of
N from the effect of dt) or by theory: 〈z〉o− z. The DNS
used for the calculation of α follow the stage 0 of the
algorithm and estimates α by the ratio of reactive tra-
jectories by total number of test trajectories, when this
number goes to infinity. Mathematical results exist on
the variance

σα ≡ lim
o→∞

〈(α− 〈α〉o)2〉o (A2)

as a function of the number of clones N , using somewhat
idealised dynamics [23, 44]. Indeed, the estimate of α
by AMS has a variance σα, no matter the model or the
formulation of the algorithm. This variance can be used
to compute ±2σα/

√
o which gives the 95% confidence

interval for the estimation of α. It can be demonstrated
that

σα ≥ α
√

| ln(α)|√
N

. (A3)

There is equality in the ideal case [23]. The relative

variance σα/(α
√

| ln(α)|) is found to decrease like 1/
√
N

even in non ideal cases [24, 42, 44] (provided φ is rea-
sonable). As to limo→∞〈α〉o, several situations exist, de-
pending on the formulation of the AMS algorithm, the
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estimator of α and the number of degrees of freedom
of the model to which AMS is applied. While one can
ensure complete unbiasedness in one degrees of freedom
models using an estimator slightly improved with respect
to equation (5) [42, 44], a bias may exist between the
AMS estimation (averaged over realisations) and the es-
timate using DNS [23, 42]. One empirically finds that the
quantity ∆α/αDNS = (〈α〉o − αDNS)/αDNS is negative
or zero: positive values of ∆α/αDNS fall quite within a
relevant confidence interval around zero and correspond
to small sampling errors. In the general case of no sys-
tematic bias ∆α/αDNS goes to 0 like 1/N . This means
that if the bias is absent or negligible (the number of
clones is not so small), obtaining a precise estimate of
the probability of observing an event is a trade-off be-
tween the number of clones used in AMS computations
and the number of independent realisations over which
one averages. If one uses fewer clones in AMS computa-
tions (for instance, because of a constraint of memory),
one then needs more realisations of AMS computations to
average over in order to obtain a precise estimate. If one
uses more clones, then fewer realisations are necessary.

No demonstration of the scaling of σα exist yet that
mathematically apply to the use of AMS on a SPDE
model like Eq. (2,3). This does not mean that this scal-
ing is false. Indeed, transposing the argument of these
demonstration to SPDEs yields a justification which is
certainly not less strong than many physical derivations.
This state of fact means that one has to verify scalings
and assertions empirically. In order to do so, we choose
cases where α can be estimated using direct numerical
simulations. We considered collapses events of isolated
puffs at r = 0.85, r = 0.95, r = 1.0 and r = 1.05 and
splitting events at r = 1.0, all of them in a domain of
length L = 800. These cases display relatively small α
(down to O

(
10−5

)
) and span an order of magnitude of

α. In all these cases, we estimated αDNS , τDNS using a
large enough number of simulations. The quality of this
estimate will be given by 95% confidence intervals. The
precision on the estimate of T follows from the precision
on the estimate of these quantities. In parallel, we per-
formed AMS computations of these events using a range
of clone numbers 10 ≤ N ≤ 5000. For each of them, we
used a large enough number of realisations (going from
thousands when using N = 10 clones to tens when us-
ing N = 5000 clones), so that the statistics of α were
estimated with precision.

We first illustrate the convergence of the average of
〈α〉o as o is increased in figure 15 (a). We used the case of
a collapse event at r = 0.85. This shows that large errors
can be made if one uses few clones and few realisations,
for instance with N = 10. However, one can see that
the average over realisation always reaches an asymptotic
value as the number of realisations is increased. The rate
at which this asymptotic value is reached increases as the
number of clones is increased. The variance σα quanti-
fies this rate. Note that a small but non zero difference
is visible between AMS estimates of α at N = 10 clones
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Figure 15. (a) Probability 〈α〉o of observing a collapse esti-
mated after a sum over the number of independent repetitions
of AMS as a function of o at r = 0.85, for several N . (b) Esti-
mate of the probability of observing a collapse α (red curve)
as a function of the number of clones used in AMS computa-
tions, with large o. The blue curve indicates the probability
as estimated by DNS αDNS . The error bars indicate the 95%
confidence interval computed using the variance over repe-
titions. The dashed blue lines indicate the 95% confidence
interval for estimation of αDNS by DNS. (c) relative variance
of the estimate of the probability of observing a collapse or a
splitting as a function of N for several r. (d) relative differ-
ence between the estimate of α by AMS and DNS for collapse
and splitting events as a function of N for several r.
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and AMS estimates with higher numbers of clones. At
small N , this difference is larger when using the expo-
nential approximate estimator of α (Eq. (5)). One can
then illustrate the effect of the number of clones on 〈α〉o
as a function of N , displayed on top of the estimate of
α using DNS (Fig. 15 (b)). We used a o large enough
for the asymptotic value to be reached. One can see
that this estimate reaches an asymptotic value as N is
increased. One also see that even if a small difference
appears between AMS and DNS computation, one still
has an overlap of the 95% confidence interval as soon as
N ≥ 50, ensuring the probabilistic quality of the esti-
mate. Thus, if the variance of α follows the ideal scaling
of equation (A3), one can know how precise an estimate
of α is, given the number of clones in AMS computations
and the number of independent realisations. In order to
verify this scaling and quantify how many o are generally
need to estimate 〈α〉o, we display the rescaled variance

(〈(α−〈α〉o)2〉
√
N)/(α

√

| ln(α)|) as a function of the num-
ber of clones N (Fig. 15 (c)) One can see that for the col-
lapse events, the variance of α is actually very close to the
lower boundary of the idealised case, since the rescaled
variance is nearly 1 for all r and N . Meanwhile, one finds
that the rescaled variance is larger by a factor of two for
the splitting events, even if it follows the predicted scal-
ings in α and N . This indicates that splitting events are
harder to simulate and that a larger number of clones or
repetitions may be needed in order to obtain a given pre-
cision. There may be room for improvement of the reac-
tion coordinate. Figure 15 (c) overall indicates that even
if the estimate of the variance is not yet demonstrated to
follow the scaling of equation (A3) in the case of SPDE
(Eq. (2,3)), such a proposition may very well be true.
It is therefore reasonable to undertake such a demon-
stration. We eventually consider the relative difference
between the estimate of α using AMS and the estimate
of α using DNS: ∆α/αDNS ≡ (〈α〉o − αDNS)/αDNS

(Fig. 15 (d)). Note that this quantity is the typical bias
in the incertitude when considering the logarithm of α
(or similar quantities like ln(T )). One can see that in
all cases, the quantity ∆α/αDNS reaches an asymptotic
value as N is increased. In the case of collapse events,
this value is very close to 0 (typically 10−2 with our
estimates, this incertitude should be compared to val-
ues of order O(10)). There are small differences in the
asymptotic large N value of ∆α/αDNS as r is changed.
Our samples show that for r = 0.85 and r = 0.095, the
same asymptotic value limN→∞ ∆α/αDNS ≃ −0.025 is
reached. As r is increased, the samples show that we have
limN→∞ ∆α/αDNS ≃ 0.01 at r = 1.0 and an asymptotic
value of this relative difference which cannot be distin-
guished from 0 at r = 1.05 (when a small confidence
interval on αDNS is taken into account). This would in-
dicate that the quality of the estimate of α by AMS is im-
proving as r is increased. The a priori is that the quality
of the estimate decreases as α decreases. It is possible
that some changes in the structure of the reactive tra-
jectories as r is increased make them easier to compute

by AMS. In the case of splitting events, while the rela-
tive difference converges toward a relatively small value
(10−1, to be compared to logarithms of α of order 10),
this asymptotic value is not zero, hinting again toward
the higher difficulty of estimating the splitting probabil-
ity.

Other AMS estimates can be compared to DNS esti-
mates. Mathematical results exist only for α, so that
there are only empirical guidelines for other physical
quantities [42]. We tested the case of the average du-
ration of trajectories, because it is physically well de-
fined and because it is easily computed by both AMS
and DNS. The average duration of trajectories τ com-
puted by AMS is close to τDNS . Indeed, when consid-
ering the five cases of figure 15 (collapse at r = 0.85,
r = 0.95, r = 1.0 and r = 1.05 and splitting at
r = 1.0), one find that |〈τ 〉o − τDNS |/τDNS is smaller
than 10−2 for collapse events at all four Reynolds num-
bers, when using 10 ≤ N ≤ 5000 clones in computa-
tions. Unlike |〈α〉o − αDNS |/αDNS , no tendency with
N appear: this difference is always small, even when us-
ing N = 10 clones. Behind this lies the precision in
the estimate of reactive trajectories themselves by AMS.
If one wishes to sample them in order to examine the
physics of transitions, using few clones N and many rep-
etition o is always a good strategy. The relative dif-
ference is slightly larger for splitting events at r = 1.0,
|〈τ 〉o − τDNS |/τDNS = O

(
10−1

)
. It is smaller than the

relative difference of splitting probabilities (Fig. 15 (d)).
Note also that the rather large durations of collapses puff
by puff (Fig. 4 (c) and Fig. 7 (d) 1.0 ≤ r ≤ 1.15) is not
likely a numerical artifact but quite probably a physical
effect. Indeed, no effect of the number of clones was seen
in these estimates of τ . Moreover, when using an im-
perfect reaction coordinate, AMS calculation may in fact
overselect short duration trajectories, which are actually
improbable, over longer duration trajectories, which are
more probable and which imply spending a long time
around local probability maxima [42, 44]. When this oc-
curs, AMS outputs leave specific traces in the estimates,
such as fat tails in the distributions of k, a large, non
vanishing as N → ∞, skewness in the distribution of α.
This makes the problem easy to detect. Collapses puff by
puff are such long duration trajectories displaying bottle-
necks near local probability maxima. For this reason, the
long durations displayed for 1.05 ≤ r ≤ 1.15 in figure 7
(d) are very doubtfully numerical artifacts.

Note that when using AMS to study transitions in
the two degrees of freedom model equation (22,23), ef-
fects comparable to those see in figure 15 (d) while using
the estimator (Eq. (5)) remain much smaller, while ln(T )
spans more than two orders of magnitude.



24

Appendix B: Length scaling of spatially averaged

multiplicative noise

The spatial average of the noise term of equation (3)
reads

Q ≡
√

2

β

1

L

∫ L

x=0

q(x, t)η(x, t) dx

︸ ︷︷ ︸

≡I

. (B1)

This comes from the SPDE interpreted with an Itō rule,
so that the average of q(x, t) is uncorrelated from η(x, t):
“η happens dt later than q in the time discretisation”.
This means that

〈Q〉 =
√

2

β

1

L

∫ L

x=0

〈q(x, t)η(x, t)〉
︸ ︷︷ ︸

=0

dx . (B2)

Let us now consider the lagged-variance of Q. We will
work with discretised time, since this is how Itō processes
are mathematically defined. In that case, we have that

〈η(x, t)η(x′, t′)〉 = δ(x− x′)δt,t′
1√
dt

(B3)

Note the distinction between the Dirac delta function
δ(x − x′) and the Kronecker symbol δt,t′ arising from
the distinction between continuous space and time dis-
cretised with a time step dt. The time covariance of Q
is

〈(Q(t)−〈Q〉)(Q(t′)−〈Q〉)〉 = 〈Q(t)Q(t′)〉 = 2

βL2
〈I(t)I(t′)〉 .

(B4)
We could simplify using Eq. (B2). This is a first conse-
quence of having an Itō process. Let us now consider the
lagged covariance

〈I(t)I(t′)〉 =
∫ L

x=0

∫ L

x′=0

〈q(x, t)q(x′, t′)η(x, t)η(x′, t′)〉dxdx′

(B5)
Without loss of generality, let us set that t′ ≥ t. In
equation (B5), we have two cases for the two points two
times covariance of q and η

〈q(x, t)q(x′, t′)η(x, t)η(x′, t′)〉 =
〈q(x, t)η(x, t)q(x′, t′)〉〈η(x′, t′)〉 , If t′ > t (B6)

〈q(x, t)q(x′, t′)η(x, t)η(x′, t′)〉 =
〈q(x, t)q(x′, t)〉〈η(x, t)η(x′ , t)〉 , If t′ = t (B7)

This again comes from the fact that we are consider-
ing an Itō process (see [18] § 4.2). The spatial aver-
ages and correlations are not made explicit at this point.
Since η(x′, t′) can be extracted in the case t′ > t and
we have 〈η(x′, t′)〉 = 0, this leads to 〈I(t)I(t′ > t)〉 = 0.
The lagged correlation of equation (B5) can be rewritten
with a Kronecker delta symbol δt,t′ . We also use that

〈η(x′, t)η(x, t)〉 = 1
dtδ(x − x′) in discretised equations.

We can thus rewrite the lagged correlation

〈I(t)I(t′)〉 = 1

dt

∫ L

x=0

∫ L

x′=0

〈q(x, t)q(x′, t)〉δ(x − x′)δt,t′ dxdx
′

=
1

dt
δt,t′

∫ L

x=0

〈q(x, t)q(x, t)〉dx .
(B8)

We performed a first integration on x′ which uses the
Dirac δ function. Due to the translational invariance in
the periodic pipe, the second order moment 〈q(x, t)2〉 =
Cq(t) is independent on space. Note however, that this
function is not independent on time, since it contains
the information on the collapse of turbulence after a
mean first passage time T . This corresponds to having
q = 0 on ensemble average after T . One typically has
Cq(t) = O(1) if t . T and 0 ≤ Cq(t) ≪ 1 if t & T .
One important fact is that Cq(t) is expected to become
independent on size as size is increased, since the spatial
correlation extends within one puff or up to another puff
at most. Note that Cq(t) does however contain some
information about the spatial averages of 1 − u and q.
We thus have the lagged covariance of the multiplicative
noise term

〈(Q(t)− 〈Q〉)(Q(t′)− 〈Q〉)〉

=
2

βL2dt
δt,t′LCq(t) =

2

βLdt
δt,t′Cq(t) . (B9)

The average and lagged variance of Q are therefore the

same as that of a noise term of the type
√

1
2β̄

fa(q, u)η,

with β̄ ∝ L, provided Cq brings little size effect, as ar-
gued.

In order to illustrate this and show that Cq indeed
adds very little size dependence, we compute 〈(Q(t) −
〈Q〉)2〉Ldt from direct numerical simulations of the model

at r = 1.3, 1.4 and 1.5 (Fig. 16). Time series of
√

2/βηq
are sampled over a duration of 50000 time unit (too
short for a likely collapse at these Reynolds numbers).
We compute the cumulants. We can first see that Cq

brings no size dependence to the variance of the noise,
since the rescaled variance is independent of size. The
increase of the variance of this noise with the Reynolds
number also encourages to use a multiplicative noise in
the model, since it follows the increase of Q and 1 − U
with Reynolds. We also computed the relative skewness.
It remains mostly under 10−2 in absolute value and has
no definite sign, for all sizes. The decrease of the ab-
solute value of the skewness with the sample duration
indicates us that most asymmetry in the distribution of
qη is the consequence of the finite duration of the sam-
ple. This further hints toward Gaussianity of this noise
term. Note that some ensemble averaging would be nec-
essary to infinitely increase the size of the sample, while
enforcing the condition that no collapse occur.
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Figure 16. Normalised variance 〈(Q − 〈Q〉)2〉Ldt sampled
in direct numerical simulations of the model, (while no col-
lapse occurred) as a function of the domain size, for several
Reynolds numbers.

Appendix C: Change of variable and fast variable

elimination

1. The slow fast system

We change variables in the system of SDEs
(Eq. (22), (23)) to use the new variable ζ1 Eq. (30). Due
to the non-linearity of the change of variable, care must
be taken. We first calculate the derivatives of ζ1

∂ζ1
∂χ1

= 1 ,
∂2ζ1
∂χ2

1

= 0 ,

∂ζ1
∂χ2

= − 1

R2

1
(
χ2 − 1

R2

)2 ,
∂2ζ1
∂χ2

2

=
2

R2

1
(
χ2 − 1

R2

)3 .

(C1)

We then perform the change of variables using the Itō
Lemma [18] § 4.3.4 in the case a = 0. The new system of
SDEs now reads

dζ1
dt

= R

(

χ2 −
1

R2

)

ζ1 +
√
R

√

2

β̃
η1

+
1

R3
(
χ2 − 1

R2

)2

(

χ2 +
χ2
2

(
χ2 − 1

R2

)2 − 2ζ1χ2

χ2 − 1
R2

+ ζ21

)

+
2

β̃R3
(
χ2 − 1

R2

)3 +

√
2

√

β̃R
5

2

1
(
χ2 − 1

R2

)2 η2 ,

(C2)

dχ2

dt
= − 1

R

(

χ2 +
χ2
2

(
χ2 − 1

R2

)2

)

+
1√
R

√

2

β̃
η2

− 1

R

(
2ζ1χ2

χ2 − 1
R2

+ ζ21

)

.

(C3)

In equation (C2), the second line and the second term
of the third line arise from dχ2/dt. Meanwhile the first

term of the third line is specific to changes of variables in
stochastic differential equations and takes into account
particular correlations between variables.

2. The Langevin equations

We first perform a heuristic elimination working only
with the Langevin equations. This approach is more
readable, however, we will perform more approximations.
Fortunately, this will have little impact on the leading
order result. From the Langevin equation at leading or-
der for ζ1 (neglecting 1/R3 drift and the 1/R5 variance
noise), if the time scale separation is large enough, we
can assume that χ2 is a constant. Thus, taking the initial
condition ζ1 = 0, we obtain by variation of the constant

ζ1(t) ≃
∫ t

s=0

exp

(

−R

∣
∣
∣
∣
χ2 −

1

R2

∣
∣
∣
∣
(t− s)

)√

2R

β̃
η1(s) ds .

(C4)
This tells us that 〈ζ1〉 = 0 and that

〈ζ1(t)ζ1(t′)〉 =
1

β̃

(

exp

(

−R

∣
∣
∣
∣
χ2 −

1

R2

∣
∣
∣
∣
|t− t′|

)

− exp

(

−R

∣
∣
∣
∣
χ2 −

1

R2

∣
∣
∣
∣
(t+ t′)

))

. (C5)

Inserted in equation (C3), we therefore find that h1 =
2ζ1χ2/(R(χ2 − 1

R2 )) is a noise term (a priori not Gaus-

sian) whose variance is of order O( 1
R2β̃

), negligible with

respect to

√

2/(Rβ̃)η2 in the R expansion. Meanwhile

h2 = ζ21/R contains a deterministic drift term of order

1/(Rβ̃) which will not be neglected in the slow-fast sep-

aration. However, it is a deterministic term of order 1/β̃

which will vanish the 1/β̃ → 0 limit. Let us term (1/β̃)V1

a quasipotential containing the corrections brought to the
deterministic part by h2. If we have the one degree of

freedom process dx/dt = −∇(V0 + (1/β̃)V1) +
√

2/β̃η,

the pdf and mean first passage time will be proportional
to g = exp(−β̃V0 + V1), so that in the limit, one finds
that limβ̃→∞ − 1

β̃
ln(g) = V0. As a consequence, we will

study the process

dχ2

dt
= − 1

R

(

χ2 +
χ2
2

(
χ2 − 1

R2

)2

)

+
1√
R

√

2

β̃
η2 , (C6)

for comparison with ρ and T .
As we will explained more formally in § C3, fast vari-

able eliminations are not always that simple. If the scale
separation is also the large deviations parameter (see

[32]), a parameter like 1/β̃ remains finite, and the effect
of h1 and h2 have to be taken into account in full details.
Taking this effect into account with the procedures used
in this text would not be possible. They are caused by
very large deviations of χ2 out of its starting point. The
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corrections can quite dramatically impact the large devi-
ations of the slow variable, especially in the case where
their moments build up to create the noise felt by the
slow variable and even the multiple equilibria.
A similar procedure can be used to work out the case

of multiplicative noise. η1,2 will come with g(|χ2/(χ2 −
1/R)|) factors and corrections in ζ1 will arise from the

expansion of g. Again, they will have high orders in 1/β̃

and will be negligible in the 1/β̃ → limit.

3. Elimination in the Fokker–Planck equation

We now perform the elimination in the Fokker–
Planck equations equivalent to the two coupled SDEs
(Eq. (C2), (C3)). We follow the principle of the elim-
ination presented in [18] § 8.3.3, where the time scale
separation and operator properties are very similar. Note
that some difference in the treatment will arise from ap-
pearing drift terms and very high order in 1/R which will
trivially be eliminated. This approach is less readable in
term of the effect of each term in the dynamics. However
it shows more clearly how and why terms are eliminated,
especially since there are two small parameters 1/R and

1/β̃. We define some differential operators

L1f ≡ ∂

∂ζ1

((

χ2 −
1

R2

)

ζ1f

)

+
1

β̃

∂2f

∂ζ21
, (C7)

L2f ≡ ζ21
∂f

∂χ2
, (C8)

L′
2f ≡ −2ζ1

∂

∂χ2

(
χ2

χ2 − 1
R2

f

)

, (C9)

L3f ≡ ∂

∂χ2

((

χ2 +
χ2
2

(
χ2 − 1

R2

)2

)

f

)

+
1

β̃

∂2f

∂χ2
2

, (C10)

L4f ≡ ∂

∂ζ1

(

f

χ2 − 1
R2

(

2

β
(
χ2 − 1

R2

)

+χ2 +
χ2
2

(
χ2 − 1

R2

)2 − 2ζ1χ2

χ2 − 1
R2

+ ζ21

))

, (C11)

L5f ≡ 1

β

∂2

∂ζ21

(
f

χ2 − 1
R2

)

. (C12)

Note that we made an approximation in including
Reynolds number dependence in L3. This is done in
order to give a better description of the quasipotential
minima and saddle. Even if the time scales of X1,2 are
not separated by the same scalings if of low amplitude,
X2 is still leader through the non-normal linear lift up
term. The Fokker–Planck equation for pdf P (ζ1, χ2, t)
equivalent to the Langevin equations (C2,C3) reads

∂P

∂t
= RL1P +

1

R
L3P +

1

R
L2P +

1

R
L′
2P

+
1

R3
L4P +

1

R5
L5P . (C13)

One finds ν the steady pdf of ζ1, where the slow dynamics
of χ2 is eliminated, from the leading order L1ν = 0. This
normalised pdf reads

νχ2
(ζ1) =

√

β̃
∣
∣χ2 − 1

R2

∣
∣

2π
exp

(

−β̃

∣
∣
∣
∣
χ2 −

1

R2

∣
∣
∣
∣

ζ21
2

)

(C14)
Using ν, we define the projector of a pdf on statistics
where the fast steady dynamics of ζ1 and the slow time
dependent dynamics of χ2 are independent

Πf(χ2, ζ1, t) = νχ2

∫

f(χ2, ζ1, t) dζ1 . (C15)

In particular, applied to the pdf P , this yields ΠP =
νχ2

(ζ1) × p(χ2), where p(χ2) is the pdf of χ2 when the
fast variable is eliminate. The goal of the procedure is
to obtain a partial differential equation of the Fokker–
Planck type for p(χ2). We have that L1Πf = 0, since
ν is in the kernel of L1 and the integral is independent
on ζ1 and thus factors out of the derivatives. Meanwhile
ΠL1f = 0, since this is the integral of derivatives both
with respect to ζ1: it yields boundary terms at infinity
which are zero. We define the probability density func-
tion of v(χ2, ζ1, t) in which the two variables are made
independent due to timescale separation as well as an-
other function w

v ≡ ΠP , w = (1−Π)P , Πw = 0 . (C16)

We will work with Laplace transforms

ĥ =

∫

h(t) exp(st)dt , (C17)

so that the time derivatives correspond to a multiplica-
tion by s for Laplace transforms. Using v̂, ŵ, applying
operator Π and 1 − Π to equation (C13) yields respec-
tively

sv̂ =
1

R
ΠL3v̂ +

1

R
Π(L2v̂ + L′

2v̂) +
1

R
Π(L3 + L2 + L′

2)ŵ

+
1

R3
Π

(

L4 +
1

R2
L5

)

P̂

(C18)

sŵ = RL1ŵ
1

R
(1−Π)(L2 + L′

2 + L3)ŵ

+
1

R
(1−Π)(L2 + L′

2 + L3)v̂ +
1

R3
(1 −Π)

(

L4 +
1

R2
L5

)

P̂ .

(C19)

From equation (C19) we can write that

ŵ =
1

R

[
s

R
+ L1 +

1

R2
(1−Π)(L2 + L′

2 + L3)

]−1

◦
(
1

R
(1−Π)(L2 + L′

2 + L3)v̂+

1

R3
(1−Π)

(

L4 +
1

R2
L5

)

P̂

)

.

(C20)
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We can then insert it in equation (C18), this yields

sv̂ =
1

R
ΠL3v̂ +

1

R
Π(L2v̂ + L′

2v̂)

+
1

R3
Π(L3 + L2 + L′

2)◦
[
s

R
+ L1 +

1

R2
(1−Π)(L2 + L′

2 + L3)

]−1

◦ ((1 −Π)(L2 + L′
2 + L3)v̂)

+
1

R3
Π(L3 + L2 + L′

2)

◦
[
s

R
+ L1 +

1

R2
(1−Π)(L2 + L′

2 + L3)

]−1

◦(1−Π)

(

L4 +
1

R2
L5

)

P̂

+
1

R3
Π

(

L4 +
1

R2
L5

)

P̂ . (C21)

Since the timescale at which p(χ2) lives is R and that
it is the time dependence of v, we find that v̂ takes non
negligible values when s = O(1/R). The procedure works
by order identification, the relevant order for p(χ2) is
1/R, where we have

sv̂ =
1

R
ΠL3v̂ +

1

R
(ΠL2v̂ + L′

2v̂) . (C22)

In all these eliminations, the quality of the result de-
pends on how much the time scale is actually concen-
trated around 1/R. Note that Π and L3 do not commute,
however, we have

ΠL3v̂ = νχ2

∫

ζ′

1

(L3(νχ2
)p̂(χ2)) dζ

′
1

= νχ2
L3








(
∫

ζ′

1

νχ2
(ζ′1) dζ

′
1

)

︸ ︷︷ ︸

=1

p(χ2)








= νχ2
(ζ1)L3p̂(χ2) .

(C23)

The integral can be passed within the differential op-
erators and the probability density function νχ2

(ζ1) is
normalised. We then note that ΠL′

2v̂ = 0, since the in-
tegrand is odd. Meanwhile, we pass ζ1 and the integral
in the ∂χ2

derivative and perform the gaussian integral
in ΠL2v̂, this yields

ΠL2v̂ = νχ2
(ζ1)

1

β̃

∂

∂χ2

(
1

χ2 − 1
R2

p̂(χ2)

)

.

This gives rise to a deterministic term 1/(β̃(χ2− 1/R2)),
since it appears in a first order derivative of the pdf p(χ1).
This is actually the same term as the average in the fast
variable elimination in the SDE. Again, we will not take
this term into account in the final result. Indeed, as ex-
plained in section C 2, while this term remain in the slow

dynamics, it will disappear when we will consider large
deviations in the 1/β̃ limit. This can be shown more for-
mally by performing the elimination not on the proba-
bility density function, but on a large deviation function
S such that P ∝ exp(−β̃S). One then does the order

identification, on R and on β̃ (similarly to [32], where
the scale separation and the large deviation parameter
are the same). In our case the “L2” terms are indeed
retained at order O(1/R): they are actually the type of
terms which bring the subtle effects in the slow fast sep-
aration of Grafke et al. [32], with one small parameter.

However, they will be one order too low in β̃ to be re-
tained in the differential equation for the large deviation
function, and thus will not perturb the large deviations
of χ2.

Once these two terms are neglected, we find that

sνχ2
(ζ1)p̂ = νχ2

(ζ1)
1

R
L3p̂ . (C24)

We can factor νχ2
(ζ1) and take the inverse Laplace

transform. This yields the Fokker–Planck equivalent to
Langevin equation (C6).

Appendix D: Quasipotential differences

We give the quasipotential difference between the sad-
dle X+

2 and the minimum X−
2 , which appears in mean

first passage times. If the noise if additive, a = 0, we
have

V(X+
2 )− V(X2)

− = ∆V =
R
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In the first case of multiplicative noise a = 1
2 , we have
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In the second case of multiplicative noise a = 1, we have
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Appendix E: Non absorbing laminar state for a < 1/2

In the a = 1 case, the pdf ρ(X1, X2) (solution of equa-
tion (26)) is not defined as a function, but instead as a
distribution. In the a < 1

2 cases, this is quite different
and the pdf is a function. This is also the case for the
empirical distribution sampled numerically in the a = 1

2
case. The pdf can be normalised and defined as a func-
tion in that case. This can be illustrated by numerical
integration of the coupled SDEs at R = 3 and β̄ = 5
and a = 1

2 (Fig. 14 (a)). The time series show that the
X1,2 = 0, the a priori absorbing point, can be visited
quite often, but that the system still manages to avoid
turbulence collapse. This is in agreement with the fact
that while the probability of being in the neighbourhood
of the laminar state is large in the steady state, but the
probability of being in the turbulent state, while smaller
is non zero. This is seen in the steady probability density
function of ρa= 1

2

(X1, X2), sampled numerically (Fig. 11

(b)). The slow divergence at zero is not captured nu-
merically due to the finite duration of the sample and
binning, but ρ 1

2

(0, 0) is still quite large.

This can be understood by calculating the probability
density function ρ of X2, when the fast variable is elim-
inated and the quasipotential is known. The pdf is the
solution of the steady Fokker–Planck equation
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Note that the quasipotential is already introduced, since

we include a
(

X2

X2−
1

R

)2a

/
(

X2
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)2a

factor in the first

order derivative. We solve for µ and compute ρ

ρ = C

(
X2

X2 − 1
R

)−2a

exp (−βV +O(1)) = Cρ′ . (E2)

The pdf ρ can be defined as a function if it is normal-
isable, if C = 1/

∫
ρ′ dX2 is defined. This integral is

obviously not defined if a ≥ 1, due to the divergence of
the quasipotential and thus, the exponential. If a < 1

2 ,
not only the quasipotential is finite, but the integral of
the prefactor if also defined. Indeed,
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(E3)
The first integral is finite because the integral is a Gaus-
sian, meanwhile the second integral is bounded above by
(1/(1−2a))(1+1/R)2amaxX2∈[−1;0] exp (−βV +O(1)) if

a < 1
2 , otherwise it is not defined.
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