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ABSTRACT

Smart cameras are image/video acquisition devices that integrate
image processing algorithms close to the image sensor, so they can
deliver high-level information to a host computer or high-level de-
cision process. In this context, a central issue is the implementation
of complex and computationally intensive computer vision algo-
rithms inside the camera fabric. For low-level processing, FPGA
devices are excellent candidates because they support data paral-
lelism with high data throughput. One computer vision algorithm
highly promising for FPGA-based smart cameras is feature match-
ing. Unfortunately, most previous feature matching formulations
have inefficient FPGA implementations or deliver relatively poor
information about the observed scene. In this work, we introduce a
new feature-matching algorithm that aims for dense feature match-
ing and at the same time straightforward FPGA implementation.
We propose a new mathematical formulation that addressed the fea-
ture matching task as a feature tracking problem. We demonstrate
that our algorithmic formulation delivers robust feature matching
with low mathematical complexity and obtains accuracy superior
to previous algorithmic formulations. An FPGA architecture is
lay down and, hardware acceleration strategies are discussed. Fi-
nally, we applied our feature matching algorithm in a monocular-
SLAM system. We show that our algorithmic formulation provides
promising results under real world applications.
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1. INTRODUCTION

Smart cameras are image/video acquisition devices with self-
contained image processing algorithms that simplify the formula-
tion of a particular application. i.e., algorithms for video surveil-
lance could detect and track pedestrians, but for a robotic appli-
cation, algorithms could be edge and feature detection. In recent
years, progress in microprocessor power and FPGA technology al-
lowed the creation of compact smart cameras with low cost and,
this increased the smart camera applications performance, so in
current embedded vision applications, smart cameras represent a
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promising on-board solution under different application domains:
motion detection, object detection/tracking, inspection and surveil-
lance, human behavior recognition [7, 9], etc. In any case, flex-
ibility of application domain relies on the large variety of image
processing algorithms that can be implemented inside the camera.
One task highly used by computer vision applications is feature
matching between different camera views. In computer vision, fea-
ture matching aims for pixel/point correspondences across different
viewpoints from the same scene/object (Fig. 1) and it is the basis
of several computer vision applications such as, augmented reality,
object recognition [2], etc. The most common formulation consists
in detecting a set of feature points and associate each point with
a visual descriptor. Once feature points and their descriptors have
been extracted from at least two images, it is possible to match fea-
tures across the images. In this context, feature-tracking seems to
be a simple point matching problem, nevertheless, in practice it is
a complex task since matching performance depends on the feature
extractor/visual descriptor properties. Specific detectors and de-
scriptors, appropriate for the input images content have to be used
in specific applications. i.e., if input images are a microscopic view
of bacteria or cells, a blob detector should be used. On the other
hand, if the images are a city view, a corner detector is more suit-
able to find building structures. In addition, if input images have
high degradation (rotation, orientation or scale changes), complex
and intensive visual descriptors considering the image degradation
are required in order to guarantee stability.

O features
[0 camera views
— feature matching

Figure 1: The feature matching problem: visual features (circles) have to
be matched (lines) across different viewpoints from the same scene/object
(squares).

2. RELATED WORK

In current computer vision systems, several applications use fea-
ture matching as keystone of their mathematical formulations, so a
smart camera that contains feature matching in their self-contained
algorithms is highly desirable. In recent work, there are several
approaches that aim for an embedded feature matching core; sev-
eral FPGA architectures have been developed and several solutions
have been proposed. [24, 17]. In [8] an embedded system ar-
chitecture for feature detection and matching was presented. The
proposed FPGA architecture implements the FAST [15] (Features



from Accelerated Segment Test) feature detector and the BRIEF [5]
(Binary Robust Independent Elementary Features) feature descrip-
tor in a customizable FPGA block. The developed blocks were
designed to use hardware interfaces based on the AMBA AXI4 in-
terface protocol and were connected using a DMA (Direct Memory
Access) architecture. The proposed architecture computes feature
matching over two consecutive HD frames coming from an exter-
nal memory at 48 frames per second. In [26] a FPGA architecture
of SIFT (Scale Invariant Feature Transform) visual descriptor as-
sociated to an image matching algorithm was presented. For an
efficient FPGA-SIFT image matching implementation (in terms of
speed and hardware resources usage), the original SIFT algorithm
was optimized as follows: 1) Upsampling operations were replaced
with downsampling, in order to avoid interpolation operations. 2)
Only four scales with two octaves were used. 3) Dimension of
the visual descriptor was reduced to 72 instead of 128 in the orig-
inal SIFT formulation. This implementation is able to detect and
match features in 640x480 image resolution at 33 frames per sec-
ond. More recently, Weberruss [25] have proposed a FPGA archi-
tecture for ORB [16] (Oriented FAST) descriptor associated to a
feature matching algorithm. An "harris corner" detection [10] was
the feature extractor and ORB visual descriptors were computed at
each "corner". Finally, the previous features (stored in a 2D Shift
Register) and the current features were matched using the hamming
distances as discrimination metric. In 2017, Vourvoulakis [23] pre-
sented an FPGA-SIFT architecture for feature matching. In order
to achieve high hardware parallelism, procedures of SIFT detec-
tion and description were reformulated. At every clock cycle, the
current pixel in the pipeline is tested and if it is a SIFT feature,
its descriptor is extracted. Furthermore, every detected feature in
the current frame is matched with one among the stored features
of the previous frame, using a moving window, without breaking
the "pixel pipeline". False matches are rejected using RANSAC
(Random Sample Consensus) algorithm. The architecture was im-
plemented on Cyclone IV. Maximum supported clock frequency
was set as 25 MHz and the architecture was capable to process 81
frames per second, considering 640x480 image resolution.

In most of cases, previous FPGA-based feature matching formu-
lations, [24, 17, 8, 15, 5, 26, 25, 16, 23] provide relatively good
performance under real world scenarios. Unfortunately, in several
applications and in particular smart cameras applications, these al-
gorithms are not compliant due to their relatively high hardware
requirements and their algorithmic formulation. We can mention
three important limitations affecting the current feature matching
algorithms:

1. Low performance for embedded applications: nowadays com-
puters can process several feature matching algorithms in
real-time. Unfortunately, in embedded applications such as,
smart cameras, mobile applications, autonomous robotics or
compact smart vision systems, the use of computers is dif-
ficult due to their high power consumption and size. The
use of FPGA technology is an alternative, but there are hard
challenges due to previous visual descriptors (SIFT, BIERF,
ORB) and matching techniques were designed for software
implementation, and often, there are several iterative oper-
ations that could not be parallelized. As result, most pre-
vious FPGA architectures have high hardware requirements
and relatively low processing rate.

2. Sparse matching: in order to maintaining high discrimination
between descriptors only features with high thresholding re-
sponse are matching (since it is assumed that these features
have to be associated with high responsive visual descriptor
that has low probability to be similar in other features). In
practice, this assumption ensures consistency in the matching
process, however, there is an important limitation because
only a few image points are matched, then, scene/object in-
formation are available only at certain sparse points of the
image, as shown in Fig. 2.

3. Outliers: In certain cases, the image ambiguities around fea-
tures (color/texture repeatability, occlusion, etc.) generate
similar visual descriptors for two or more different features,
in such scenario the matching techniques deliver wrong re-
sults that can affect the global performance of several com-
puter vision applications (camera calibration, structure from
motion, visual odometry, etc.), see Fig. 2. To solve this prob-
lem, statistically robust methods like RANSAC have to be
applied as outlier filter. In this case, statistical methods re-
move wrong matches, but they increment the matching cost.

view 1 view 2

O outliers  [] correct matches

Figure 2: Feature matching algorithms limitations: most previous formula-
tions work with few image points. Therefore, scene information is limited
to a certain sparse points in the image. On the other hand, most previ-
ous work deliver outliers that effect performance in real world applications.
(Figure modified from [25])

3. THE PROPOSED ALGORITHM

Most previous FPGA-based feature matching formulations pro-
vide relatively good performance under real world scenarios, how-
ever, there are several important limitations (low performance for
embedded applications, sparse matching and outliers) that affect
performance. In this work, we assume that a more efficient solu-
tion consists in addressing the feature matching task as a feature
tracking problem. In this way, we consider that a feature tracking
approach will provide more data parallelism than previous formula-
tions based on SIFT/ORB visual descriptors. In current state of the
art, there are some FPGA architectures for feature tracking [22, 20].
Unfortunately, most previous work addressed the problem via the
KLT (Kanade-Lucas-Tomasi) tracking algorithm, that is highly ex-
haustive and has high hardware requirements for the case of FPGA
implementation.



3.1 Feature matching and Feature tracking.

The basis of feature matching is to extract visual features from
two or more different viewpoints from the same scene/object and
then, match these visual features by comparing visual descriptors
computed around each feature, as shown in Fig. 3. On the other
hand, feature tracking consists in extracting visual features from an
image and then, try to find the same features back in a similar image
(commonly the next frame from a video sequence), as illustrated in
Fig. 4.

B visual feature

visual descriptor

correct matches

— possible outliers

QO features detected only at first view
features detected only at secod view

second view

first view

Figure 3: The feature matching problem: for two or more different view-
points visual features and visual descriptors around each feature are com-
puted. Then, feature matching is computed based on visual descriptors
comparison. Since some features could appear only at one unique view,
high discriminant visual descriptors are desirable in order to avoid outliers.

M visual feature
feature tracking

frame i frame i+1

Figure 4: The feature tracking problem: considering two consecutive
frames from a video sequence, visual features are extracted within the first
frame. Then, it is tried to find the same features back in the next frame.
Since there are several image ambiguities around features (color/texture re-
peatability, occlusion, etc.), complex and intensive pixel similarity metrics
are required in order to guarantee accurate tracking.

In our case, we propose a new feature tracking formulation that

can be extended for feature matching. Our contributions are twofold:

first, we propose a tracking/matching framework that improves most
of the current limitations of the previous feature matching algo-
rithms and that is fully compliant with FPGA architectures. Sec-
ond, we lay down an FPGA architecture, suitable for smart cam-
eras implementation. In Fig. 6 an overview of our algorithmic
formulation is shown. In general, our algorithm first, stores two
consecutive frames from an input video sequence. Visual features
are extracted from the both frames. In addition, curl of the inten-
sity gradient is computed over both frames. In this case, curl of
the intensity gradient aims to remove image ambiguities around
features (color/texture repeatability, pixel similarity, etc.). Then, a
fully parallelized feature tracking algorithm computes preliminary
matches between features in first frame and pixel points in second
frame. For that, curls of the intensity gradient are considered as in-
put since it is assumed that it guarantees consistent tracking around
features. Finally, considering feature points in second frame, a fea-
ture matching steep refines the tracking result by comparing tracked
points in second frame with visual feature coordinates computed at
the same frame.

3.2 Image storage

Considering that in most cases the image sensor provides data as
a stream, a storage is required to get two consecutive frames at the
same t time. More information/details about the storage architec-
ture will be presented in Section 4.1. For mathematical formula-
tion, first frame (frame at ¢ time) is noted I (z, y) while the second
frame (frame at ¢ + 1 time) is I2(x, y).

3.3 Feature extractor

In this work, the Shi-Tomasi feature extractor is used. it pro-
vides a good trade-off between accuracy/robustness, speed process-
ing and hardware requirements. This extractor is based on spatial
gradients such as:

Alw,y) = 2oL 2L
B(z,y) oy oy
Cla,y) =5 - 5,

A gaussian filtering is applied over the A, B, C' matrices in order
to reduce noise and to remove fine-scale structures that affect the
performance of the corner response. Smoothed matrices are defined
by A’, B’, C’. Original Shi-Tomasi corner metric Eq. 1, provides
a high response value for corners and low response otherwise, as
illustrated in Fig. 5b.

D(x,y) = (A'(2,9)+ B (2,9))—\/ (A (2,y) — B'(2,4))? +4C" (z,4)?

()]
In order to determine if a pixel P is a corner or not, maximum
value of the corner response is retained. However, many pixels
around each corner are detected in spite of filtering with a thresh-
old . These pixels are false feature candidates and are difficult
to match/track. A way to remove these false feature candidates
consists in applying a non-maxima suppression step. An appro-
priate FPGA-based non-maxima suppression step could be defined
as follows: Considering D(x,y) as the corner response image and
Q(z, y) as fixed neighborhood size of 3x3 around D(z, y), a "good
features" is computed as :

—_ O =
—

1
B(z,y) = max |Qz,y)* | 1
1

Finally, a thresholding () have to be applied over D(z, y) in order
to select the "good features/corners", see Eq. 2.

1 if Blx,y) >a

corners(x,y) = { 0  if otherwise @

(b) (d)

Figure 5: The Shi-Tomasi feature extractor: (a) Input image. (b) Corner
metric response, Eq. 1. (c) Corner response after our non-maxima suppres-
sion step, B(z, y). (d) Output image considering « = 0.08, Eq. 2



COrners:
> feature cornersz
extraction
video ’_A
sequence image l1 > tracking | tracking matching
_ > » > ———>
storage L —» e step feature
matching
feature Curl 1
—| discrimination [Curl 2

Figure 6: Block diagram of the proposed algorithm.

3.4 Improvement feature discrimination

Previous work [19] demonstrated that simple pixel similarity met-
rics such as SAD (Sum of Absolute Differences), Hamming dis-
tances or NCC (Normalized Cross-Correlation) deliver poor results
over real world scenarios. This is due to several image ambiguities
around features. i.e., due to color/texture repetition, different fea-
tures could have low difference between similarity metrics (close
to zero). To solve these problems, previous feature tracking formu-
lations [22, 20] used more complex approaches such as Eigenval-
ues of the Gradient matrix or Jacobian matrix as similarity metric.
Unfortunately, they require high hardware resources for FPGA im-
plementation.

In this work, we propose to improve the feature discrimination
by using the curl of the intensity gradient % in each point. Let
curl as a vector operator that describes the infinitesimal rotation,
then, at every point the curl of that point is represented by a vector
where attributes (length and direction) characterize the rotation at
that point. In our case, we use only the norm of Curl I(z, y) given
by:

Curll(z,y) = V x % 3)
X

where V is the Del operator.

Curll(z,y) = L 2—|2g,gg
= Oyodxr 0Oxdy) 'Oydx Oz dy

“
3.5 Feature tracking

Tracking process assumes that features displacements between
frames is such as it exists an overlap on two successive "search
regions". A search region is defined as a patch around a feature
to track. This process is illustrated in Fig. 7. Considering that
between I; and I2, the illumination is stable, a similarity-based
metric provides a good accuracy. This similarity is calculated by a
SAD (Sum of Absolute Difference). This process is defined in Eq.
5, where r is the search region size, Curll;(z,y), Curllz(z,y)
are the norm curl images on two consecutive frames from a video
sequence (I1, I> respectively), x,y are the spatial coordinates of
features extracted in I; and, a, b are the spatial coordinates for all
points within the search region constructed in /. Thus, consid-
ering a video sequence, first, the feature extractor (Section 3.3)
obtains g feature points from I; (x, y), defined as cornersi(z,y).
Let z1(g),y1(g) as the x, y are the spatial position for all extracted
features in I;. Then, tracking of extracted features is performed by
applying Eq. 6 and 7; where x2(h), y2(h) are the tracked positions
in I- 2.

uU=r V=T

SAD(a,b) = Z Z |Curll:(x + u,y + v)|

U=—TV=—T

—|Curll; = (z +u+a,y+v+0b)| 5)
h=g
z2(h) =Y x1(h) + minaSAD(a,b) (6)
h=1
h=g
y2(h) = Y1 (h) + minySAD(a, b) (M
h=1
search point (x,y) i search
region size SEams SEEEEEEEEEEEEEmEEEEE 77‘/ region
| §
feature ] N
point (x,y) pixels } }*

I center of two of the n overlapped
l2 regions within the search region

Figure 7: The proposed feature-tracking algorithm formulation. For each
feature point, n overlapped regions are constructed in /2, n region centers
are all points within the search region created in /1. n region center that
minimizes SAD is the tracked position of the feature point (z, y) in I2.

3.6 Feature matching

Our feature tracking algorithm do not consider the occlusion
problem i.e., it tracks any feature extracted from /;, then, some
outliers could be present because some features extracted in refer-
ence image /; could have occlusion at I2. To solve this problem, a
matching technique is used as outlier filtering. Considering x2(h),
y2(h) as reference spatial coordinates for the feature matching (Eq.
6 and 7) and given cornersa (x, y) the feature extraction from Io
(Eq. 2), a pixel tracking is correct only if there is one unique fea-
ture in /> that is located in the region that surrounds the previously
computed tracking localization (see Eq. 8 - 10).



Siltery(z,y) Z Z cornersa(r + u,y + v) (8)

| m2(h) if filterp(z,y) ==1

s (h) = { 0 otherwise ©)
| ya2(h) if filterp(z,y) ==1

yr(h) = { 0 otherwise (10)

4. FPGA ARCHITECTURE

In Fig. 8, an overview of the FPGA architecture for the feature-
matching algorithm is presented. The architecture is centered on
an FPGA implementation where all recursive/parallelizable algo-
rithms are accelerated in the FPGA fabric. In general, the ba-
sis of the proposed architecture is the frame storage unit. In this
block, frames captured by the imager are feed to/from an external
SDRAM memory using a DMA. Two consecutive frames are read
out into the buffers used to hold local sections of the frames that
are being tracked and allow for local parallel access that facilitates
parallel processing.

4.1 Frame storage unit

Images from the image sensor are stored in an external SDRAM
that holds at least 2 frames from the sequence, and later the SDRAM
is read by the FPGA to cache parts of the frames into buffers. The
frame storage unit is responsible for data transfers in segments of
the image (usually several rows of pixels) to/from the SDRAM. The
core of the FPGA architecture are the buffers attached to the local
processors that can hold temporarily as cache, for image sections
from two frames, and that can deliver parallel data to the proces-
sors. For the SDRAM controller, both Xilinx and Altera have IPs
for this proposes. For the buffers, we use a circular buffer schema
in which input data from the previous N rows can be stored us-
ing memory buffers till the moment when a nxn neighborhood is
scanned along subsequent rows. This approach has high hardware
reutilization and high flexibility for computer vision applications.
For more details, see [1].

4.2 Feature extraction unit

Fig. 9a gives an overview of the feature extractor unit. First,

the architecture computes the vertical/horizontal gradients, %,

%, respectively. Then it computes the A(z,y), B(z,y), C(z,y)
variables. After that, a buffer delivers parallel data for the Gaussian
filtering. Then, the reconfigurable convolution units (see [1]) com-
pute the smoothing operation. Finally, the FPGA architecture com-
putes the corner response metric and the non-maxima suppression
step. In order to simplify the square root operation implementation
in the feature extraction step, we adapted the architecture devel-
oped by Yamin Li and Wanming Chu [11]. This architecture uses
a shift register mechanism and compares the more significant/less
significant bits to compute square root from Eq. 1 with relatively
high accuracy and low hardware resources.

4.3 Feature discrimination unit

Fig. 9b, an overview of the feature discrimination unit is shown.
It resuses the gradient computation carried out in the feature ex-
traction unit. Then, curl of the intensity gradient is computed as
illustrated in Section 3.4. Two logical processes compute the curl
of the intensity gradient for I; and /5 in parallel.

input
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\» corner corners (x,y)
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buffer [ convolution I
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4|—> value

buffer [ ax ay

(b)

Figure 9: (a) FPGA architecture for the feature extractor unit. (b) FPGA
architecture for the feature discrimination unit.

4.4 Feature tracking unit

For the feature tracking unit, we consider that the tracking prob-
lem can be seen as a generalization of the dense stereo matching
problem. i.e., stereo matching algorithms track (searching on the
horizontal axis around points in the reference image), all points/pixels
within a stereo pair. Feature tracking aims to track features points
between two consecutive frames from a video sequence (searching
around spatial coordinates of the features in the reference frame).
Then, it is possible to adapt previous stereo matching FPGA archi-
tectures to fulfill with our application domain. In this work, we
adapted the FPGA architecture presented in [14], which has low
hardware requirements and high parallelism. In Fig. 10, the devel-
oped architecture is shown. Considering that feature points for Iy
are known, these are obtained by the feature extraction unit. Then,
the search region modules (see Fig. 7), construct n search regions,
where search regions are constructed via logical pointers under the
input buffer for I>. For each feature point in the reference im-
age ([1), search region centers correspond to all patches within the
search region on frame /2. Once the search regions are constructed,
similarity SAD modules compute the correlation response (apply-
ing the sum of absolute differences as similarity metric response).
i.e., it compares all search regions with the reference region. Fi-
nally, a multiplexer tree can determine the a, b indices that mini-
mize the correlation function, and therefore, the tentative position
in I of the feature points extracted in the reference image (/7).

11
ok refer_ence |
region
1
search similarity
'—F region — SAD
2 %2 (h)
search similarity | [ *| CASE Y2 ()
region —  SAD - | structure
search similarity
—> region L > SAD

Figure 10: FPGA architecture for the feature tracking unit
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4.5 Feature matching unit

The feature matching unit consists in a unique module that com-
pares the feature tracking results with visual features extracted in
I. Then, the feature matching zs{h}, yr{h} (final result) is the
result obtained after comparisons between tracking positions z2{h},
y2{h} and visual features cornersz in frame I5.

S. RESULTS

In order to validate our mathematical formulation, we imple-
mented our feature-matching algorithm in a MatLab R2016b code
that captures video sequences from a web camera. Then, feature
points (corners) are tracked along the video sequence. In all ex-
periments, feature points are obtained by applying the algorithm
presented in Section 3.3. Video sequences of 1920x 1080 pixel
resolution and 800 frames were used. In Fig. 11, results by apply-
ing our algorithm over an outdoor scenario are shown.

Figure 11: Feature matching under outdoor scenarios. Our mathematical
formulation reach: accurate matching (without outliers) and dense matching
(more than 14000 pixels are matched).

5.1 Performance for dataset scenes

For performance comparisons we compared our feature match-
ing algorithm with previous feature matching/tracking algorithms.
For feature tracking, we applied the KLT, KL and Mean-shift algo-
rithms. For feature matching we used three classic feature match-
ing frameworks, based on ORB, SIFT and SUFR visual descriptors,
respectively. We we evaluate the algorithms with several video se-
quences, all videos were obtained from [18]. Two performance
tests were conducted. In Table 1, accuracy comparisons are shown.

To validate the accuracy in numerical form, RMS error is computed
as: € = /22 + y?2; where x is the error in z axis, defined as the av-
erage difference between the ground truth = position in each frame
of the video sequence and the position in same frame computed by
the testing algorithm (visual features ground truth were computed
using the camera localization ground truth provided by the dataset).
y is the error in y axis, it is computed similar to x. In all cases, our
algorithm outperforms the KL and the MS tracking algorithms, and
outperforms feature matching algorithms based on visual descrip-
tors like ORB, SIFT and SURF. This is because the KL algorithm
does not consider the occlusion problem. In addition, the KL al-
gorithm uses simple similarity metrics, that introduces erroneous
measurements under image ambiguities. On the other hand, MS
algorithm was formulated for object-tracking in dynamic scenes,
therefore, performance under rigid scenes is low. For algorithms
that use robust visual descriptors (ORB, SIFT, SURF), occlusions,
ambiguities and perspective changes between frames introduce out-
liers, therefore, accuracy is lower than tracking approaches. Al-
though KLT algorithm outperforms our algorithmic formulation,
KLT is highly exhaustive, processing speed is low, and implemen-
tation in real-time/embedded applications is highly limited.

For density comparisons: traditional feature matching algorithms
extract and match visual features via visual descriptor comparisons.
Unfortunately, in all cases, the maximal number of features that
can be matched varies between 0.5% and 1.0% of all pixels in the
image, depending on the selected descriptor and its particular con-
figuration. In practice, computer vision systems work with config-
urations that allow extracting near 1% of the pixels from an image.
This is illustrated in Table 2, where feature matching based on vi-
sual descriptors reach less than 200 matches per frame. This limits
the real-world applications performance since less than 1% of the
image points are available, thus, the visual environmental under-
standing, high-level descriptors application and objects/structures
recognition in the scene could have low stability under real-world
scenarios. Even the most current and popular feature matching ap-
proaches, for example such based on the ORB descriptor, are lim-
ited to sparse matching. On the other hand, tracking algorithms
such as KLT and KL deliver high density compared with matching
approaches, as shown in Table 2. Both, KL and KLT can track
near 2% of all points in the scene (x44 more than the matching
algorithms). In the case of our feature matching algorithm, it can
track/match near 5% of the points within the scene (X2 more than
previous feature tracking approaches and x85 more than previous



feature matching approaches). This was achieved by applying low
threshold values for the feature extraction process and, due to vec-
tors transformations whose formulation guarantee consistence be-
tween low responsive features. For KL and KLT these low thresh-
olds generate outliers that affect the tracking accuracy. Since the
MS algorithm was formulated for object-tracking, density is low
since this algorithm only track shape features (that are a few of
pixels compared with all the points in the analyzed scenes).

5.2 Performance for real world applications

We implement our feature-matching algorithm in a monocular-
SLAM system. We applied our algorithm to obtain point corre-
spondences across the video sequence. In this case, point corre-
spondences allow fundamental matrix estimation. Finally, using
the fundamental matrix, is it possible to estimate a 3D reconstruc-
tion and camera pose along the video sequence. In this case our
feature matching algorithm is capable to increase the point cloud
density, as shown in Fig. 12. We consider that this could be
highly useful under several computer vision applications that use
feature matching in their mathematical formulations (SLAM, SfM,
3D reconstruction), since more information (x 85 more than previ-
ous feature matching approaches and X2 more than previous fea-
ture tracking formulations) are available. Thus, visual environ-
mental understanding, high-level descriptors application and ob-
jects/structures recognition performance could be improved. For
our FPGA architecture, we consider that our architectural formula-
tion could be implemented within a smart camera fabric. In this
scenario, our feature matching algorithm could be an important
contribution for smart cameras, this because several computer vi-
sion applications uses point correspondences between frames/camera
views as keystone of their mathematical formulation. For more
details about the performance of the proposed algorithm see the
material adjoint to this manuscript, all material can found from
https://1drv.ms/f/s! AgkoNeNXKa6ijF10rKBSLFp30_CP.

6. CONCLUSIONS

In this work, we have introduced a new feature matching algo-
rithm that deliver accurate/dense feature matching under indoor/
outdoor scenarios. We proposed a new mathematical formulation
that addressed the feature matching task as a feature tracking prob-
lem, and we have used the curl of the intensity gradient as fea-
ture discrimination technique. An FPGA architecture was lay down
and, hardware acceleration strategies were discussed. Since several
computer vision applications use feature matching a keystone of
their mathematical formulations, we consider that feature match-
ing within a smart camera fabric could be promising under cur-
rent computer vision applications. We have applied our feature
matching algorithm in a monocular-SLAM system. We have shown
that our algorithmic formulation improves the performance under
SLAM applications. As work in progress we are implementing
our feature matching algorithm inside the DREAMCAM [4], a ro-
bust/flexible smart camera.
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Table 1: The proposed algorithm compared with previous feature matching/tracking algorithms (accuracy). Error is measured in pixels

Dataset SIFT[12] SURF([3] ORBJ[25] KLT[21] KL[13] MS[6] Proposed
fr1/room 67.22 79.38 76.24 0.21 4.81 9.62 1.87
fr2/desk 69.83 81.12 73.63 0.45 4.9 9.81 1.55
fr1/plant 59.29 71.74 75.24 0.39 4.12 8.25 1.7
frl/teddy 75.38 83.53 76.73 0.47 491 9.82 1.71

Table 2: The proposed algorithm compared with previous feature matching/tracking algorithms (density). Density is measures as the feature matches number

per frame
Dataset SIFT[12] SURF|[3] ORBJ[25] KLT[21] KL[13] MSI[6] Proposed
frl/room 167 174 79 7469 7546 85 14286
fr2/desk 183 188 77 7942 7252 1 14598
fr1/plant 124 158 78 6264 6576 74 13547
fr1/teddy 172 183 75 7722 7112 92 14968
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Figure 12: The proposed algorithm applied in a monocular-SLAM system. (a) Feature matching via the BIREF visual descriptor. (b) Feature matching
via the proposed algorithm. For our algorithm, 3D density is increased, then, visual environmental understanding, high-level descriptors application and
objects/structures recognition performance can be highly improved.
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