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APPLICATION OF OPTICAL FLOW FOR RIVER VELOCIMETRY
Musaab Khalid Lionel Pénard Etienne Mémin

Yrstea, UR HHLY, centre de Lyon-Villeurbanne, F-886Villeurbanne, France
%Inria, Campus universitaire de Beaulieu, F-35048riRs Cedex, France

ABSTRACT based velocity estimation technique. It minimizes a
energy function that consists of data and regudtion
We present a new method for the application of erag terms. The data term is based on theghtness
based river velocimetry. Our method is dedicated ta@onstancyassumption, i.e. it is supposed that points
high velocity river flows and it is based on aniogt keep their color intensity value while moving irsmall
flow scheme. Unlike traditional Particle Image time interval. The regularization term serves tpdase
Velocimetry (PIV) methods, optical flow provides spatial coherency constraints on the recoveredowect
dense estimations and it is highly adaptable tedifit  field. A strictly positive weighting parameter is
applications. We therefore propose a new physisgda introduced in-between to determine the importance o
optical flow derived from scalar transport equateoxd  one term against the other. Unless a very smoothed
augmented with a weighted diffusion term. The rssul vector field is needed, where in this case a laajae
are evaluated on a Lagrangian basis by means &br this parameter is used, it is not in generaisane to
trajectories reconstruction. The trajectories ofwv fe find a suitable value. The regularization term p&m
passive particles of interest are reconstructesedb@n addinga priori information about the expected vector
the successive estimated vector fields. Our methofield. This turns out to be of great importancepoorly
outperformed traditional PIV-based and originalicgdt seeded areas. It helfif-in where no motion could be
flow methods. observed. Contrary to PIV, optical flow producessie
velocity vector fields. This is generally a desifedture
Index Terms— Optical flow, river velocimetry, for vector field analysis when one aims for ins&uat

PIV, image sequence processing extracting vorticity fields or mixing criterion. Eh
variational formulation permits high adaptabilitp t
1. INTRODUCTION different situations. Image restoration for insemas a

similar structure to optical flow but it is a tdal
Estimating velocities of moving objects using imagedifferent application.
sequences is an old (but still ongoing) area ofaeh
and it serves many applications. In river velociyet 2. OPTICAL FLOW
one technique stands out due to the seminal work of
Fujita et al [1], short-named LSPIV (Large-Scale The brightness constancy assumption leads to thie we
Particle Image Velocimetry). Based on PIV [2], thisknown optical flow constraint equation OFCE:
technique establishes  correspondences  between ?_,_ Vi.w =0 )

t

windows in successive ortho-rectified images, engbl ¢ . . .
the recovery of real world velocity vector fielgly ~ "hereV! = [L, I,]" is the spatial gradient of the image

despite its popularity in fluids research is lirditén intensity function I, the subscripts denote partial

many aspects. Firstly, it favors well-seeded flowsderivatives andw = [u,v]" represents the velocity
Otherwise, it is difficult to compute unique comebn components. It. is an ill-posed problem since weehav
peaks between tracked image windows. In addition®nly One equation in two unknowns. One could ats® s
choosing a suitable window size is important beba ~ that in the case of zero gradient (uniform image
tricky task. One needs a bigger window to computdltensity values), an infinite set of would satisfy
better correlation score but then a bigger windaghtn ~OFCE. This underdetermined system is solved by
contain multiple motions. Furthermore, PIV is nasbd ~ 2dding another term in form of regularization tokea
on any physical principle that is related to fluidsture. ~ the problem well-posed. The regularization ternoals
Optical flow on the other hand showed great poabiti helps avoiding spurious solutions when the gradient
replace PIV. Introduced first in computer vision Vanishes. Hom and Schunck (HS) [3] proposed to

community [3], optical flow is a well-developed ige ~ Minimize the norm of velocity gradienVw as



regularization. This imposes that the velocity wect Authors in [7] considered to be related to turbulent

field should vary smoothly on the entire imageother  viscosityr = —D, V€ whereD; is a turbulent diffusion
words, this states that neighboring points tendhtve  coefficient and suggested a model to estimate hiflew
together. The final energy function reads: in [8] authors took a different route and proposed
2 : ; .
[ (%+ VI.w) + a|[Vwl|2dx @) model T directly. Both models considerably improved

the results. For high velocity river sequences,opted

wherea is a strictly positive weighting factor. Many o 4 simpler derivation to estimaik based on Prandtl
improvements to the original model have been pre@os ixing-length model. This model uses the streanewis

over the years to deal with different possible afidns. velocity  and the mixing length to estimate the

Quadratic functions for example, known for their bul . ) — 219 Turbul . o
sensitivity to outliers, were replaced by robustdiipns ~ turbulent viscosityv, = I%. |22 Turbulent viscosity is

for more robustness [4]. Furthermore, the abovealin relevant to the computation 6§ as they are related by
model assumes small displacements. A coarse-to-fing, = Y wheresc, is the turbulent Schmidt number

. e . . SCt
s'grategy Is utilized to deal with large displacetsen (different from above mentioned Schmidt numliSe)
Simply put, at the coarsest level, only a small

displacement is sought and the vector field is ther%hat has an empirical value normally determined

propagated to the finer level where only Sma”experlmentally. It has been reported thet, . has
increment field is estimated. This process is rtgmka widespread values betwgen 0.2 and 3 [10] whilerethe
until the finest level (original image). Howevertiaal §uggested 0.85 tq be optimal for Watgr.flows. Ifmzlge
flow was mostly developed for image sequenceét to be 1.0 them,is equal tov,. The mixing lengtH is

involving rigid motions and not necessarily dirgctl 3:?fgrg?122||dienrer?atjunrzy;r?dca;sssir%%iczlrrfgjlrvmr%?i%eir;?h
applicable to fluids. In recent years it has betso a

adopted in experimental fluid mechanics. New prgssic MY not be more than one pixel (coarse-to-fine,

based data terms and/or regularizers have been thgrsa_duated non-convexity and warping) [1.1][12]' To
derived for the special case of fluids motions (f&e estl_mateDt, we take ad‘.’"’!'?tage c.)f the pyramidal coarse-
for a review) to-fine strategy to get initial estimates for thelocity.

Such scheme introduces an estimation procedure
organized along a multiresolution pyramid of image
data. At the coarser level a first estimate caredsly

. . . 1 = .
Liu et al [6] formally established the relationship Provided. The molecular diffusion term— AC in

between optical flow and fluid flow. Based on theequations (3) and (4) is generally neglected. Aaoth
perspective projection of the transport equationtt@  assumption is made that the incompressibility coonli
2D plane, optical flow is proportional to the path-for water still holds on the 2D plane, no motiongton
averaged velocity field weighted with a relevargldi the third direction is considered. Applying the

quantity. This gave the physical foundation needeghcompressibility condition and substituting equation
since the brightness constancy assumption is regdba (4) becomes:

on any physical principle. ac = _ ~

Following Cassisaet al [7] and Chenet al [8], we T VCw= l_)t(AC) N 0 _ (‘r_’)
propose a data term based on Large Eddy Simulatidin€ can observe that the final equation (5) is\edent
(LES) decomposition [9] of the transport equatidve to the traditional brightness co_nstancy assumpfign
assume that the image intensity functiois related to Plus a new termD,(AC), which shows that the
some passive scalar field concentratibrThe idea is to  traditional optical flow data term already consiléne
model small scales contributions that are normallyncompressibility condition and that it is physigal
filtered out during image acquisition process whociy ~ consistent with the observed fluid. The new term is

captures contributions larger than image pixel.sisee  hothing but a weighted diffusion term. In practive
scalar transport equation reads: use inhomogeneous diffusion coefficients by

ac —_— 1 = considering the mixed length model alsofor

a TV Cw) - AC=0 ) For the regularization par%, Corpetti al [13] showed
whereV. represents the divergenak,is the Laplacian that the traditional regularization term may not be
while the upper bar designates a filtered teRer. and  suitable for fluids in general as it tends to ebual
Sc are Reynolds number and Schmidt numberpenalize divergence and vorticity. However in thase
respectively. The filtered non-linear terfw could be of no or negligible vorticity and incompressibleliéls

3. SGSD MODEL

rewritten as resolved and unresolved paits:= Cw +  like in rivers, such regularization seems plausible
7 which leads to: Firstly, penalizing the divergence is desirablemdorce
€.y CW) + V.7 — L AC=0 4) Fhe mcompress[bllllty. Secondly., penalizing thetmy
ot ReSc is also beneficial, considering that these image



(a) “ Gaves de Pau ” sequence, (b) “ Gaves de Pau " sequence.
SGSD velocity field.

(c) “Arc” sequence, middle of the trajectories (d) “Arc” sequence, end of the trajectories

Figure 1: Trajectories reconstructed using differaethods and superposed on the first image of seghence. (b).
velocity plot of one SGSD estimation superposetherfirst image of “Gaves de Pau” sequence.

sequences exhibit more translational patterns thammage gradient. Hence, this regularization is very
rotational ones. These translational patterns db na&onvenient in this case.

promote chaotic motions (provided that no out-éf@ In many cases the brightness constancy assumpgion i
components are observed); the notion of pixels nm@vi violated due to light changes or occlusions to aifew.
together, imposed by this regularization is stili¢. In  This is even worse in such image sequences because
high velocity river sequences, it is unlikely tot@ib a  sources/sinks in the flow may cause parts of the fio
uniform intensity zone locally while havingrery appear/disappear on the imaged surface at congecuti
different velocity vectors, more likely a mixing time steps. The data term hence must be relaxed to
phenomenon will occur which will cause imageaccept outliers by using robust penalization. Hoevev
intensity perturbations. In this latter case ithe data we use quadratic penalization for the regularizateym
term that is dominant and guides the optimizatiime  because it promotes smooth vector fields. Evend$tm
same logic could be applied backwards, having umifo of these sequences are turbulent in a sense, theptd
and smooth intensity is likely due to similar vetgc normally exhibit sudden change of velocity direotr
vectors. It is in uniform intensity zones wheremagnitude. Using robust penalization for the
regularization importance prevails due to the Mainig



regularization may introduce non-desired fictional
discontinuities. The final optical flow model reads

Jo (3+ 71.w=D,(AD) + allvwlPdx  (6)

where y is a robust function such thap(x) =

Vx? + €2 ande is a small fixed positive constant that o
assures the function differentiability, typicallgtsto [2]
0.001. We refer to our method as SubGrid Scale
Diffusion (SGSD).

(1]

(3]
4. RESULTSAND DISCUSSION

In comparison to rigid motion optical flow, it isfiicult ~ [4]
to evaluate velocity estimations applied to image
sequences of natural phenomena directly in image
space. To generate a ground truth for such cakes, t[ 1
physical phenomenon should be simulated while takin
into account all the factors and physical proceskat
contribute to its occurrence. We propose to evaltia
estimated vector fields on a Langragian basis tgy th[6]
way of trajectories reconstruction. Using Rungetiut

4" order integration method, trajectories of few pass
particles of interest are reconstructed based air th [7]
successive estimated velocity. These are then amapa

to their manually-reconstructed counterparts. Weawsh

the trajectories of different methods alongside thetg]
manual trajectory to visually evaluate the resulsir
model clearly improved the results over traditional
optical flow and PIV-based method that producessden [9]
estimations). The “Gaves de Pau” sequence in Figure
1(b) is very turbulent and contains 3D motions wher
the water surface goes down and up throughout the
sequence. In addition, it contains many zones WmflO]
uniform intensity. The result on this sequence gis
the merits of the additional diffusion term. Due to
significant velocity gradients, the contribution tife
diffusion term is increased. Consequently, SGSD wagl1]
able to recover better velocity magnitude and dioec

The “Arc” sequence in Figure 1(c), (d) is less gydisan
previous sequence. We track a particle in a weltied

area and we see that SGSD is always superior in (&}2]
which shows the middle of the trajectory and in (d)
which shows the end of the trajectory.

[13]
5. CONCLUSION

Optical flow proved to be very attractive for image
based velocity estimation in hydraulics and
experimental fluid mechanics research. We propased
new optical flow model based on subgrid modelirgt th
adds a weighted diffusion term. The model improved
the results and outperformed traditional PIV and
original optical flow methods (HS). Due to its fibiity

to accept new physics-based models, it could béeabp
to a wide variety of applications.
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