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ABSTRACT 
 
We present a new method for the application of image-
based river velocimetry. Our method is dedicated to 
high velocity river flows and it is based on an optical 
flow scheme. Unlike traditional Particle Image 
Velocimetry (PIV) methods, optical flow provides 
dense estimations and it is highly adaptable to different 
applications. We therefore propose a new physics-based 
optical flow derived from scalar transport equation and 
augmented with a weighted diffusion term. The results 
are evaluated on a Lagrangian basis by means of 
trajectories reconstruction. The trajectories of few 
passive particles of interest are reconstructed, based on 
the successive estimated vector fields. Our method 
outperformed traditional PIV-based and original optical 
flow methods.  
 

Index Terms— Optical flow, river velocimetry, 
PIV, image sequence processing 
 

1. INTRODUCTION 
 
Estimating velocities of moving objects using image 
sequences is an old (but still ongoing) area of research 
and it serves many applications. In river velocimetry, 
one technique stands out due to the seminal work of 
Fujita et al [1], short-named LSPIV (Large-Scale 
Particle Image Velocimetry). Based on PIV [2], this 
technique establishes correspondences between 
windows in successive ortho-rectified images, enabling 
the recovery of real world velocity vector fields. PIV 
despite its popularity in fluids research is limited in 
many aspects. Firstly, it favors well-seeded flows. 
Otherwise, it is difficult to compute unique correlation 
peaks between tracked image windows. In addition, 
choosing a suitable window size is important but also a 
tricky task. One needs a bigger window to compute 
better correlation score but then a bigger window might 
contain multiple motions. Furthermore, PIV is not based 
on any physical principle that is related to fluids nature. 
Optical flow on the other hand showed great potential to 
replace PIV. Introduced first in computer vision 
community [3], optical flow is a well-developed image- 

based velocity estimation technique. It minimizes an 
energy function that consists of data and regularization 
terms. The data term is based on the brightness 
constancy assumption, i.e. it is supposed that points 
keep their color intensity value while moving in a small 
time interval. The regularization term serves to impose 
spatial coherency constraints on the recovered vector 
field. A strictly positive weighting parameter is 
introduced in-between to determine the importance of 
one term against the other. Unless a very smoothed 
vector field is needed, where in this case a large value 
for this parameter is used, it is not in general an issue to 
find a suitable value. The regularization term permits 
adding a priori information about the expected vector 
field. This turns out to be of great importance in poorly 
seeded areas. It helps fill-in  where no motion could be 
observed. Contrary to PIV, optical flow produces dense 
velocity vector fields. This is generally a desired feature 
for vector field analysis when one aims for instance at 
extracting vorticity fields or mixing criterion. The 
variational formulation permits high adaptability to 
different situations. Image restoration for instance has a 
similar structure to optical flow but it is a totally 
different application. 
 

2. OPTICAL FLOW 
 
The brightness constancy assumption leads to the well-
known optical flow constraint equation OFCE:  
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where �� = 	 [�
, ��]� is the spatial gradient of the image 
intensity function �, the subscripts denote partial 
derivatives and � = 	 [�, �]� represents the velocity 
components. It is an ill-posed problem since we have 
only one equation in two unknowns. One could also see 
that in the case of zero gradient (uniform image 
intensity values), an infinite set of � would satisfy 
OFCE. This underdetermined system is solved by 
adding another term in form of regularization to make 
the problem well-posed. The regularization term also 
helps avoiding spurious solutions when the gradient 
vanishes. Horn and Schunck (HS) [3] proposed to 
minimize the norm of velocity gradient �� as 



regularization. This imposes that the velocity vector 
field should vary smoothly on the entire image. In other 
words, this states that neighboring points tend to move 
together. The final energy function reads: 

 � ���
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Ω  (2) 

where � is a strictly positive weighting factor. Many 
improvements to the original model have been proposed 
over the years to deal with different possible violations. 
Quadratic functions for example, known for their 
sensitivity to outliers, were replaced by robust functions 
for more robustness [4]. Furthermore, the above linear 
model assumes small displacements. A coarse-to-fine 
strategy is utilized to deal with large displacements. 
Simply put, at the coarsest level, only a small 
displacement is sought and the vector field is then 
propagated to the finer level where only small 
increment field is estimated. This process is repeated 
until the finest level (original image). However optical 
flow was mostly developed for image sequences 
involving rigid motions and not necessarily directly 
applicable to fluids. In recent years it has been also 
adopted in experimental fluid mechanics. New physics-
based data terms and/or regularizers have been thus 
derived for the special case of fluids motions (See [5] 
for a review).   

 
3. SGSD MODEL 

 
Liu et al [6] formally established the relationship 
between optical flow and fluid flow. Based on the 
perspective projection of the transport equation on the 
2D plane, optical flow is proportional to the path-
averaged velocity field weighted with a relevant field 
quantity. This gave the physical foundation needed 
since the brightness constancy assumption is not based 
on any physical principle.  
Following Cassisa et al [7] and Chen et al [8], we 
propose a data term based on Large Eddy Simulation 
(LES) decomposition [9] of the transport equation. We 
assume that the image intensity function � is related to 
some passive scalar field concentration �. The idea is to 
model small scales contributions that are normally 
filtered out during image acquisition process which only 
captures contributions larger than image pixel size. The 
scalar transport equation reads:  
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where �. represents the divergence, ∆ is the Laplacian 
while the upper bar designates a filtered term. *+  and 
,- are Reynolds number and Schmidt number, 
respectively. The filtered non-linear term ��!!!! could be 
rewritten as resolved and unresolved parts: ��!!!! = 	�̅�. +
	/		which leads to: 
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Authors in [7] considered / to be related to turbulent 
viscosity /	 = 	−0�	∇�̅ where 0� is a turbulent diffusion 
coefficient and suggested a model to estimate it, while 
in [8] authors took a different route and proposed to 
model / directly. Both models considerably improved 
the results. For high velocity river sequences, we opted 
for a simpler derivation to estimate 0� based on Prandtl 
mixing-length model. This model uses the stream-wise 
velocity � and the mixing length 2 to estimate the 

turbulent viscosity 	3� = 	2�. | 56
5� |. Turbulent viscosity is 

relevant to the computation of 0� as they are related by 
0� =	 78

9(8  where :-� is the turbulent Schmidt number 

(different from above mentioned Schmidt number ,-) 
that has an empirical value normally determined 
experimentally. It has been reported that :-� has 
widespread values between 0.2 and 3 [10] while others 
suggested 0.85 to be optimal for water flows. If we take 
it to be 1.0 then 0�is equal to 3�. The mixing length 2 is 
also considered unity because optical flow modeling is 
differential in nature and assumes small motions that 
may not be more than one pixel (coarse-to-fine, 
graduated non-convexity and warping) [11][12]. To 
estimate 0�, we take advantage of the pyramidal coarse-
to-fine strategy to get initial estimates for the velocity. 
Such scheme introduces an estimation procedure 
organized along a multiresolution pyramid of image 
data. At the coarser level a first estimate can be easily 

provided. The molecular diffusion term 
$

%&	'( 	∆�̅ in 

equations (3) and (4) is generally neglected. Another 
assumption is made that the incompressibility condition 
for water still holds on the 2D plane, no motion thus on 
the third direction is considered. Applying the 
incompressibility condition and substituting /, equation 
(4) becomes:  
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One can observe that the final equation (5) is equivalent 
to the traditional brightness constancy assumption (1) 
plus a new term 0� ∆�̅", which shows that the 
traditional optical flow data term already considers the 
incompressibility condition and that it is physically 
consistent with the observed fluid. The new term is 
nothing but a weighted diffusion term. In practice we 
use inhomogeneous diffusion coefficients by 
considering the mixed length model also for �. 
For the regularization part, Corpetti et al [13] showed 
that the traditional regularization term may not be 
suitable for fluids in general as it tends to equally 
penalize divergence and vorticity. However in the case 
of no or negligible vorticity and incompressible fluids 
like in rivers, such regularization seems plausible. 
Firstly, penalizing the divergence is desirable to enforce 
the incompressibility. Secondly, penalizing the vorticity 
is also beneficial, considering that these image 



 

(a) “ Gaves de Pau ” sequence,  
SGSD velocity field. 

 

(b) “ Gaves de Pau ” sequence. 

 

(c) “Arc” sequence, middle of the trajectories 

 

(d) “Arc” sequence, end of the trajectories 

Figure 1: Trajectories reconstructed using different methods and superposed on the first image of each sequence. (b). 
velocity plot of one SGSD estimation superposed on the first image of “Gaves de Pau” sequence. 

 

sequences exhibit more translational patterns than 
rotational ones. These translational patterns do not 
promote chaotic motions (provided that no out-of-plane 
components are observed); the notion of pixels moving 
together, imposed by this regularization is still valid. In 
high velocity river sequences, it is unlikely to obtain a 
uniform intensity zone locally while having very 
different velocity vectors, more likely a mixing 
phenomenon will occur which will cause image 
intensity perturbations. In this latter case it is the data 
term that is dominant and guides the optimization. The 
same logic could be applied backwards, having uniform 
and smooth intensity is likely due to similar velocity 
vectors. It is in uniform intensity zones where 
regularization importance prevails due to the vanishing 

image gradient. Hence, this regularization is very 
convenient in this case. 
In many cases the brightness constancy assumption is 
violated due to light changes or occlusions to cite a few. 
This is even worse in such image sequences because 
sources/sinks in the flow may cause parts of the flow to 
appear/disappear on the imaged surface at consecutive 
time steps. The data term hence must be relaxed to 
accept outliers by using robust penalization. However, 
we use quadratic penalization for the regularization term 
because it promotes smooth vector fields. Even if most 
of these sequences are turbulent in a sense, they do not 
normally exhibit sudden change of velocity directions or 
magnitude. Using robust penalization for the 



regularization may introduce non-desired fictional 
discontinuities. The final optical flow model reads: 

 � ; <��
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where ψ is a robust function such that ; �" =
	√�� + ?� and ? is a small fixed positive constant that 
assures the function differentiability, typically set to 
0.001. We refer to our method as SubGrid Scale 
Diffusion (SGSD). 
 

4. RESULTS AND DISCUSSION 
 

In comparison to rigid motion optical flow, it is difficult 
to evaluate velocity estimations applied to image 
sequences of natural phenomena directly in image 
space. To generate a ground truth for such cases, the 
physical phenomenon should be simulated while taking 
into account all the factors and physical processes that 
contribute to its occurrence. We propose to evaluate the 
estimated vector fields on a Langragian basis by the 
way of trajectories reconstruction. Using Runge-Kutta 
4th order integration method, trajectories of few passive 
particles of interest are reconstructed based on their 
successive estimated velocity. These are then compared 
to their manually-reconstructed counterparts. We show 
the trajectories of different methods alongside the 
manual trajectory to visually evaluate the results. Our 
model clearly improved the results over traditional 
optical flow and PIV-based method that produces dense 
estimations). The “Gaves de Pau” sequence in Figure 
1(b) is very turbulent and contains 3D motions where 
the water surface goes down and up throughout the 
sequence. In addition, it contains many zones with 
uniform intensity. The result on this sequence highlights 
the merits of the additional diffusion term. Due to 
significant velocity gradients, the contribution of the 
diffusion term is increased. Consequently, SGSD was 
able to recover better velocity magnitude and direction. 
The “Arc” sequence in Figure 1(c), (d) is less noisy than 
previous sequence. We track a particle in a well-seeded 
area and we see that SGSD is always superior in (c) 
which shows the middle of the trajectory and in (d) 
which shows the end of the trajectory. 
 

5. CONCLUSION 
 
Optical flow proved to be very attractive for image-
based velocity estimation in hydraulics and 
experimental fluid mechanics research. We proposed a 
new optical flow model based on subgrid modeling that 
adds a weighted diffusion term. The model improved 
the results and outperformed traditional PIV and 
original optical flow methods (HS). Due to its flexibility 
to accept new physics-based models, it could be applied 
to a wide variety of applications.  
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