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Direct numerical simulations of the flow past a low-aspect-ratio revolving wing are performed. The wing

undergoes an impulsively started 180 deg revolution about a vertical axis at angles of attack 15, 30, and 45 deg and

chord-based Reynolds number 1000. The root cutout is varied at a fixed wing radius, R � 4 chords, and the

effects on the flow structure and aerodynamic performance of the wing are evaluated. It is shown that an

optimum in aerodynamic efficiency exists at low root cutout. Results suggest that this optimum is due to the

competition between lowReynolds number effects at the wing root and root vortex effects. In addition, it is shown

that a large root cutout can inhibit leading-edge vortex burst that occurs at high angles of attack. However,

despite the associated recovery in pressure forces near the wing tip, this inhibition has no significant impact on

aerodynamic performance.

Nomenclature

b = wing span, m
Cp = sectional pressure coefficient
CQ = torque coefficient
Cs = sectional shear coefficient
CT = thrust coefficient
c = wing chord, m
Fp = sectional pressure force, N ⋅m−1

Fs = sectional shear force, N ⋅m−1

PL = power loading, N ⋅W−1

Q = torque, N ⋅m
R = wing radius, m
r = local wing radius, m
r� = nondimensional local wing radius
rco = wing root cutout, m
rg = wing radius of gyration, m
T = thrust, N
α = wing angle of attack, deg
ϕ = revolving angle, deg
ω = revolving speed, rad ⋅ s−1

I. Introduction

NANODRONES constitute a class of very small (unmanned)
autonomous or semi-autonomous aircraft. Their maximum

dimension is on the order of the centimeter, which makes them
stealthy and well suited to missions of reconnaissance in confined
spaces. Such missions further require hovering or low-speed flight
capacity. Thus, nanodrones preferably rely on rotating- and flapping-
wing concepts, rather than fixed-wing concepts. One of the most
elegant examples of these types of aircraft is the flapping-wing
RoboBee developed by Wood at the Harvard Microrobotics Lab [1].

The RoboBee has a maximum dimension (wing span) of 3 cm and
weighs approximately 60 mg.
Because of their small dimensions, nanodrones operate at very

low Reynolds numbers, on the order of O�102�–O�103�. Yet the
aerodynamic performance of an airfoil decreases with decreasing
Reynolds number [2]. It is, for example, more difficult to keep the
aircraft aloft at these scales because the lift coefficient is reduced
with respect to that at larger scales. The underlying question is then
how can the reduction in lift coefficient be compensated for at a
given wing span (maximum dimension)? One of the solutions
consists of increasing the wing chord, which leads to low-aspect-
ratio wings.
The aerodynamics of low-aspect-ratio wings is rather complex in

that it is driven by three-dimensional effects. For instance, Ringuette
et al. [3] and Jardin et al. [4] showed that the tip vortex (TV) that
develops on a translatingwing at lowReynolds numbers significantly
affects the flow in a region that can extend from the wing tip to
approximately 1.5 chords away from it. This three-dimensional effect
is clearly nonnegligible for low-aspect-ratio wings and becomes
predominant for wings with aspect ratio lower than 2, where the flow
can be stabilized at high angle of attack [5].
Furthermore, in the specific case of a wing revolving about a

vertical axis (span is oriented horizontally), Kruyt et al. [6] showed
that the leading-edge vortex (LEV) that develops at high angle of
attack is robust (in that it does not eventually shed into thewake) in a
region that extends from the axis to approximately four chords away
from it. Although initially put into evidence by Ellington et al. [7],
and largely held responsible for the good aerodynamic performance
of insects [8] and autorotating seeds [9], this phenomenon was not
until then clearly associated with a specific region along the span,
hence with aspect ratio. Explanations of LEV robustness are still
subject to controversy (see for example [10–14]), and wewill not go
into details here, but it is evident that this robustness arises from
three-dimensional effects. Overall, two main classes of three-
dimensional effects that derive from revolving motion and that may
promote LEV robustness can be identified: 1) spanwise gradient of
the local wing speed, and 2) rotational accelerations (centrifugal,
Coriolis).
Recently, several studies have focused on analyzing the

dynamics of the LEV with regard to previous hypotheses on its
robustness (e.g., [12,15,16]). These studies address issues related
to LEV behavior by varying a specific scaling parameter (global
Reynolds number, Rossby number, and aspect ratio) while
keeping others constant. However, because scaling parameters are
here defined as global parameters, most studies do not address
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constant distribution in local scaling parameters (along the span).
It is believed that local scaling parameters are the key element in
local LEV behavior and are crucial for the study of low-aspect-
ratio wings, where the LEV can transition from a stable to an
unstable state along the span. This approach has recently been
addressed by Garmann and Visbal [12], who analyzed the role of
aspect ratio at fixed root cutout and fixed root Reynolds number,
matching both distributions in local Reynolds number and local
Rossby number, from the wing root toward the wing tip, of all
configurations. Yet another case should be considered to complete
the picture, that where both distributions in local Reynolds number
and local Rossby number, from the wing tip toward the wing root,
are matched. This case can be analyzed by investigating root
cutout effects. The latter can be viewed as an aspect ratio effect
mediated by variations in root vortex (RV) strength. Although
intrinsically present in the previously cited studies, root cutout
effects were only briefly addressed by Schlueter et al. [17] using
lift measurements performed on a revolving flat plate at angle of
attack α � 45 deg andReynolds number (based on thewing chord
and the wing speed at 75% span) of 10,000. In particular, there is
no evidence of how the dynamics of the LEV is affected, how the
loads distribution along the wing span is altered, or even if
increasing the root cutout has a beneficial impact on the
aerodynamic performance of a revolving wing.
This paper proposes to answer these questions using direct

numerical simulations (DNS) of the flow past a revolving flat plate at
Reynolds number (based on thewing chord and thewing speed at the
tip) of 1000. Thewing aspect ratio is varied from 4 to 1 by increasing
the root cutout and keeping the radius constant (R � 4 chords) for
angles of attack α � 15, 30, and 45 deg.Cases addressed in this study
are highly relevant to the development of nanodrones where thewing
radius, which is usually the maximum dimension of the vehicle, is a
primary constraint. In addition, they stand as intermediary cases
between common cases addressed in the literature (i.e., zero root
cutout rotating wing cases where root vortex effects are minimized
and translating wing cases where root vortex effects are maximized).

II. Numerical Setup

We consider a rectangular wing, with a 4% thick flat plate profile,
undergoing a ϕ � 180 deg impulsively started revolution about a
vertical axis (Fig. 1a). The wing tip is located R � 4 chords away

from the axis. The root cutout (or location of the wing root from the

axis) is set to rco � 0, 1, 2, and 3 chords, leading to aspect ratio

AR � b∕c � 4, 3, 2, and 1 and Rossby numbers Ro � rg∕c � 2.3,
2.6, 3, and 3.5, respectively. Recall that b, c, and rg are the span,

chord, and radius of gyration of thewing.Also recall that the radius of

gyration is defined as

rg �
��������������������������
1

A

Z
tip

root

r2c dr

s

where A and r are the area and local radius of the plate,

respectively. The angle of attack is set to α � 15, 30, and 45 deg. The
Reynolds number based on thewing chord c and thewing speed at the
tip ωR is set to 1000. Reynolds number and Ro are global quantities
defined with respect to the wing radius R and radius of gyration rg
respectively. Their local counterpartsRe�r� andRo�r� can be defined
using the local radius r.
The wing is embedded in a cylindrical computational domain of

diameter 30c and length 40c (Fig. 1b). The flow in the domain is

computed by directly resolving the Navier–Stokes equations (DNS),

in their incompressible form, following a finite volume approach.
The size of the cells in the vicinity of thewing (refinedmesh region on

Fig. 1b) is set to Δs � 0.02c in all three spatial directions. The total
number of cells is approximately 10 million. The time step Δt used
for time marching of the equations corresponds to a Δϕ � 1 deg
revolution. Second-order schemes are used for both spatial and

temporal discretizations.
Time step and cell size are chosen such that convergence in time

and space is achieved while minimizing the computational time.

Convergence is defined as a variation in instantaneous and mean
aerodynamic loads (both wing thrust T and torque Q), with respect

to a reference solution, lower than 2 and 0.5%, respectively. Table 1

provides an example of the variations in thrust obtained for various
time step Δt (expressed in revolution angle Δϕ) and cell size Δs
(characteristic size in the refined mesh region; the total number of

cells is indicated in brackets) for the baseline case α � 45 deg and
rco � 0. In addition, Fig. 2 depicts the time histories of the thrustCT

and torque CQ coefficients for various cell size. CT and CQ are

obtained by nondimensionalizingT andQ by thewing surface c × b
and the wing speed at the radius of gyration ω × rg. As found in

Fig. 1 Geometry of a) revolving wing, and b) computational domain.

Table 1 Variations in instantaneous/mean thrust with time step and cell size

Δϕ∕Δs, deg 0.01c (72 million) 0.015c (22 million) 0.02c (10 million) 0.025c (5 million)

0.25 Reference 0.92%/0.04% 0.92%/0.10% 1.87%/0.52%
0.5 — — — — 1.05%/0.16% — —

1 — — — — 1.07%/0.10% — —



previous works, aerodynamic loads roughly reach a steady-state
value for angle of revolution typically above 120 deg (and before a
full revolution is reached) [16]. For the sake of comparison, the

steady-state value obtained experimentally by Carr et al. [16] for a
similar case at a Reynolds number (based on the wing chord and the

wing speed at the tip) of 5780 is depicted by the dashed line. The
latter is approximately 2% away from that obtained using the
present numerical approach. Additional tests were also performed

to ensure that the results are also converged with respect to the size
of the computational domain and that of the refined mesh region.
Increasing the size of the computational domain up to 50c × 60c
and doubling the size of the refined mesh region, for Δϕ � 1 deg
andΔs � 0.02c, results in negligible changes in both instantaneous
andmean thrust (i.e., below 0.03%) for a significant increase in total

number of cells, on the order of 18 million.

Furthermore, the results obtained using the present numerical
approach (with Δs � 0.02c, Δt � 2π∕360) are compared with those
obtained in [18] for a revolving wing with aspect ratio AR � 1 and
root cutout rco � 0.52c (i.e., radius R � 1.02c). The Reynolds
number based on the wing speed at midspan is 500, which is close to
that considered in the present paper. Figure 3 shows this comparison in
termsofmean lift �CL (ormean thrust �CT) anddrag �CD coefficients over
angles of attack ranging from 0 to 60 deg, which encompass angles of
attack tested here. Note that mean values are computed by integrating
instantaneous values over revolution angles ϕ ∈ �45 deg−315 deg�.
It can be seen that relatively good agreement is achieved between both
approaches.
Finally, it should also be mentioned that the finite volume

method employed here has already proven its ability to accurately
predict the occurrence of flow instabilities at low Reynolds
numbers [19].

III. Results

A. Flow Structure

Figure 4 shows a snapshot sequence of λ2 isosurfaces obtained for
the baseline case α � 45 deg and rco � 0. Rapidly after the
impulsive start (ϕ � 30 deg), the flow is characterized by the
development of a starting vortex (SV), a leading-edge vortex (LEV),
a tip vortex (TV), and a root vortex (RV). These structures connect
into a coherent vortex loop, where coherency is here defined in the
large-scale sense (i.e., a structure composed of multiple small-scale
structures is said to be noncoherent). Afterward, the LEV in the
outboard region of the wing lifts off the wing surface (ϕ � 60 deg)
and eventually bursts into a noncoherent structure (ϕ � 90 deg).
The initial bursting phase exhibits a clear upward eruption of the
noncoherent structure in the wake of the wing tip (ϕ � 120 deg).
Two distinct regions can then be identified: 1) the inboard region
characterized by the development of a coherent and robust conical

Fig. 2 Time histories of thrust (CT) and torque (CQ) coefficients obtained for various cell size: Δs � 0.01c (�), 0.015c (⋄), 0.02c (□), and 0.025c (∘).

Fig. 3 Comparison between mean lift and drag coefficients obtained
using the present approach with those obtained by [18] for a wing with
aspect ratio 1.

Fig. 4 Snapshot sequence of λ2 isosurfaces obtained for the baseline case α � 45 deg and rco � 0. Nondimensional λ2 values 1 (opaque) and 0.1
(transparent).



LEV, and 2) the outboard region characterized by the merging of the
LEV and TV and their bursting into a noncoherent structure that is
advected into the wake.
The scenario pertaining to LEV burst is usually described as a

sudden expansion of the LEV that is correlated with deceleration of
its axial core flow, subsequently leading to an overall loss of
coherency. Thewhole process from impulsive start to vortex burst is
relatively well documented in the literature (e.g., [12,15,16,20–25])
and will therefore not be further detailed here. Rather, we ask to
what extent does the root cutout affect this dynamics? Figure 5
shows snapshots of λ2 isosurfaces obtained at ϕ � 120 deg for
rco � 0, 1c, 2c, and 3c and α � 15, 30, and 45 deg. Similar
snapshots for ϕ � 180 deg are provided in the Appendix. Overall,
the flow exhibits a roughly similar structure for all cases, in the
sense that it consists of the prominent ingredients previously put
into evidence (i.e., the SV, LEV, TV, and RV). However, the vortex
dynamics, and in particular the bursting phase, is significantly
affected by both rco and α.
First, it appears that the extent of the outboard bursting region

decreases with decreasing α and even vanishes at α � 15 deg (e.g.,
Figs. 5a–5c). At α � 15 deg, the flow retains coherency throughout
the whole motion, regardless of rco (Figs. 5a, 5d, 5g, and 5j). At
α � 30 deg, vortex burst ismore confined toward thewing tip than at
α � 45 deg (Figs. 5b and 5c) but is found to occur at similar instants.
In particular, vortex burst is found to extend over a portion of thewing
on the order of rb � 1.3 and rb � 1.7 chords in the α � 30 deg and
α � 45 deg cases, respectively (see λ2 isosurfaces expansion on
Figs. 5b, 5c, 5e, and 5f), and occurs around ϕ � 90 deg for both
angles of attack.
Second, as expected, an increase in RV strength is observed with

increasing rco (e.g., Figs. 5a, 5d, 5g, and 5j).Despite this increase, the
root cutout effects do not seem to have a major impact on LEV
dynamics and vortex burst for rco � 0, 1c, and 2c (Figs. 5b, 5c, 5e,
5f, 5h, and 5i). However, root cutout effects completely inhibit vortex
burst for rco � 3c (Figs. 5k and 5l). In a rather similar way to what
can be observed on a translating wing [4], the RVand TV dominate

the flow that subsequently tends toward a coherent and nearly steady

state (Figs. 5j–5l). We also note in passing that, as rco increases and
the RV gains strength and gets closer to the TV, mutual induction
between the counter-rotating RVand TV seems to be responsible for

the kink observed in the root vortex trail (e.g., Figs. 5h and 5i). In

some cases, this may lead to the formation of vortex loops farther

downstream (Figs. 5k and 5l), which has also been observed on low-

aspect-ratio translating wings (e.g., [26]).

B. Loads Distribution

How do these interactions affect loads distribution on the wing?

Figures 6a, 6b compare the nondimensional pressure Cp and shear

Cs force distributions, as a function of the nondimensional radial

position r�, obtained at the end of the motion ϕ � 180 deg for

rco � 0, 1c, 2c, and 3c and α � 15 deg.Cp andCs are obtained by
nondimensionalizing Fp and Fs by �1∕2�ρ�ωR�2c, where Fp and

Fs are the sectional pressure and shear forces acting

perpendicularly to the wing span. That is, combining and

integrating Fp and Fs (and r × Fp and r × Fs) along the wing span
gives the wing thrust (and rotational torque). Note that Fp and Fs

are computed over 50 × AR overlapping sections of width R∕20.
r� is obtained by nondimensionalizing the radial position r by the
wing chord c. We focus on the quasi-steady-state regime

(ϕ > 120 deg) for two main reasons. First, results are less
dependent on the wing acceleration profile (which is here infinite)

than during initial transients and are, in that sense, more universal.

Second, they are believed to be representative of the flow after

multiple rotations, albeit with a different effective angle of attack
(downwash due to multiple rotations tends to reduce the effective

angle of attack).
The sectional pressure coefficient Cp (Fig. 6a) increases with

increasing spanwise position r� following a parabolic trend,
according to the increase of the local wing speed ωr, until the
influence of the TV is felt. Toward the wing tip, the downwash

Fig. 5 Snapshots of λ2 isosurfaces obtained for all cases at α � 15 deg. Nondimensional λ2 values 1 (opaque) and 0.1 (transparent).



induced by the TV mitigates the effective local angle of attack,
which counteracts the effect of an increasing local wing speed. As a
result, a local maximum ofCp is observed at approximately 0.8–0.9
chords from the wing tip for cases where rco � 0, 1c, and 2c. In the
inboard region, Cp decreases with increasing rco for a given radial
position r�. This trend highlights the influence of the RV induced
downwash whose strength increases with increasing rco. The
interaction between the RV and the TV is not significant for cases
where rco � 0 and 1c and is still very limited when rco � 2c, as
indicated by roughly similar position and amplitude of the
maximum Cp. This is no more true in the case where rco � 3c, for
which downwash effects from both RV and TV combine, thereby
significantly reducing the maximum value of Cp and pushing it
toward the wing tip.
In a similar way, according to the increase of the local wing speed

ωr, the sectional shear coefficient Cs (Fig. 6b) increases with
increasing spanwise position r�. However, the RV and TV have an
opposite impact on Cs from that observed on Cp, in that they do not
counteract but combinewith the effect of increasing localwing speed.
In the outboard region, Cs strongly increases due to TV induced
shear. In the inboard region, Cs increases with increasing rco (i.e.,
increasing RV strength and associated shear) for a given radial
position r�, leading to local Cs minima for sufficiently strong RVs
(rco � 2c and 3c). TVand RV footprints are therefore clearly visible
on both Cp and Cs distributions.
Figures 6c, 6d compare Cp and Cs distributions for α � 45 deg.

Here again, the sectional pressure coefficient Cp (Fig. 6c) obtained
for rco � 3c stands out from that obtained for rco � 0, 1c, and 2c.
However, these changes in Cp trend with rco have a fundamentally
different origin from that highlighted when α � 15 deg. As
previously mentioned, when α � 45 deg, cases where rco � 0, 1c,
and 2c experience vortex burst. This phenomenon balances the
increase in Cp due to increasing local wing speed even before
downwash effects from the TV can be felt. As a result, the maximum
local value ofCp is pushed toward thewing root. The displacement of
local Cp maxima with vortex burst was also recently put into
evidence by Garmann and Visbal [12]. Conversely, no such
mechanism can be observed for rco � 3c. Rather, the trend in Cp

distribution resembles that observed when α � 15 deg. It is
therefore possible to correlate the absence of premature Cp drop
along the span with the absence of vortex burst. As such, although at

α � 15 deg, the rco � 3c case exhibits a decrease in Cp (at a given
r� and with respect to rco � 0, 1c, and 2c cases) due to RVand TV
downwash, the rco � 3c case at α � 45 deg exhibits an increase in
Cp. In other words, root cutout effects become locally beneficial
because of their influence on coherency recovery.
The distribution in sectional shear coefficient Cs is more complex

(Fig. 6d). For the rco � 0 and 1c cases, an overall increase inCs with
r� can be observed, yet with a local minimum that seems to coincide
with the frontier between the inboard coherent and outboard
noncoherent regions on Figs. 5c and 5f. In the rco � 2c case, there is
no clear evidence of such a minimum because the frontier nearly
coincides with the wing root. Through which specific mechanisms
the transition between coherent and noncoherent regions reduces Cs

remains unclear at this point. What is more, the strong interaction
between the RV and TV and the absence of vortex burst in the
rco � 3c case also seem correlated with a local reduction in Cs.
Finally, it is noteworthy to mention that, contrary to α � 15 deg
cases, there is no clear evidence of the RV increasing local Cs at a
given r� as rco increases.

C. Aerodynamic Performance

Cp and Cs distributions help link the flow physics to the
aerodynamic performance displayed on Fig. 7. From a practical
perspective, we first look at the dimensional power loading PL �
T∕ωQ versus thrust T map in Fig. 7a. Reported values are
instantaneous values obtained at the end of the revolving motion
(ϕ � 180 deg) where aerodynamic loads reach a quasi-steady
value. It can be seen that a single wing (c � 0.01 m and
ω ≈ 40 rad∕s) can produce a thrust on the order ofO�101� mg for an
efficiency on the order of O�102� mg∕mW. For comparative
purposes, two wings at α � 45 deg and rco � 1c approximately
produce a 60 mg thrust, which can be correlated with the weight of
the RoboBee [1], at similar scales.
Obviously, T decreases with increasing rco, according to the

reduction in wing surface. In the α � 15 deg cases, the torque Q
mainly arises from shear forces. Although shear forces also tend to
decrease with increasing rco because of a reduction in wing surface,
they tend to locally increase because of RV effects. Therefore, the
effect of the RVon shear forces and torque balances the effect of wing

Fig. 6 Cp (Figs. 6a, 6c) andCs (Figs. 6b, 6d) as a function of r
� for rco � 0 (∘), 1c (⋄), 2c (□), and 3c (×), with α � 15 deg (Figs. 6a, 6b) and α � 45 deg

(Figs. 6c, 6d).



surface. As a result, PL also decreases with increasing rco. In the
α � 45 deg cases, the torque mainly arises from pressure forces,
which equally contribute to thrust. Therefore, the decrease in thrust
with increasing rco is accompanied by a decrease in torque, hence
only weak changes in PL.
T also increases with increasing α, together with the increase in

LEV strength and associated pressure forces. In addition, because
pressure forces are an order of magnitude higher than shear forces,
and because pressure forces have a decreasing contribution to T and
an increasing contribution toQwith increasing α, PL decreases with
increasing α.
However, revealing which of these cases is the more

aerodynamically efficient is not straightforward using dimensional
quantities. In particular, different revolving wings should not be
compared at a given revolving speed ω, but at a given thrust T,
which is computationally much more expensive. This issue can
partly be tackled by analyzing the nondimensional power loading
CT∕CQ versus thrust CT map, where CT and CQ are obtained by
nondimensionalizingT andQ (orωQ) by thewing surface c × b and
the wing speed at the radius of gyration ω × rg. Figure 7b shows
that, although maximum CT is obtained at minimum rco for all α,
rco � 1c cases lead to maximumCT∕CQ values. Note that a similar
result is obtained if the mean wing speed along the wing span rather
than the wing speed at the radius of gyration is used for
nondimensionalization.
As such, in terms of aerodynamic performance, there is no

significant interest in increasing rco to inhibit vortex burst at high α.
Rather, the impact of the RV in its own is detrimental to
aerodynamic efficiency. On the other hand, introducing a small root
cutout seems beneficial, particularly at low α values. This suggests
that the very inboard part of the wing is detrimental to aerodynamic
efficiency, which can be correlated with the decrease in local
Reynolds number toward the revolving axis. In other words, present
results suggest that maxima in aerodynamic efficiency arise from
the relative importance of low Reynolds number effects and root
vortex effects.

IV. Discussion

Flows past low-aspect-ratio rotating wings involve complex
three-dimensional effects that are known to significantly alter the
behavior of the LEV, with respect to that observed on two-
dimensional translating wings. A ubiquitous feature observed in
nature, and which arises from three-dimensional effects, concerns
LEV robustness (i.e., the ability of the LEV to remain attached to
the wing for very long time travels). Local LEV robustness along
the span of a rotating wing is believed to be driven by local scaling
parameters. In this regard, the approach addressed in the previous
section allows to keep constant the distributions in both local
Reynolds and Rossby numbers, from the wing tip toward the wing
root. This approach is rather similar to that addressed by Garmann
and Visbal [12] where distributions in both local Reynolds and
Rossby numbers are kept constant from the wing root toward the

wing tip. Together with the study by Garmann and Visbal [12],
results shown in the previous section are complementary to
previous workswhere global scaling parameters (rather than local)
are chosen as fixed parameters and constitute a missing step in our
understanding of low-aspect-ratio rotating-wing aerodynamics.
In this section, we further discuss the role of local scaling

parameters on LEV behavior. The latter can be revealed by
comparing cases addressed in the previous section with cases at
similar tip Reynolds number (Re � 1000) and with similar aspect
ratio but with zero root cutout (Fig. 8). The striking feature here is
that, contrary to cases where rco ≠ 0 (Figs. 8a–8c), the extent of the
regionwhere vortex burst occurs is significantly reduced as the aspect
ratio is reduced for zero root cutout cases (Figs. 8g–8i). In particular,
the rco � 0 andAR � 2 (Fig. 8h) case does not show clear evidence
of vortex burst, which appears to be confined in the very tip region,
over a portion of the wing on the order of rb � 0.7 chord (as
compared to rb on the order of 1.2 for AR � 3). This is
fundamentally different from what can be observed in the rco � 2
and AR � 2 case (Fig. 8b), where vortex burst occurs along most of
the wing span. Such a difference seems to indicate that local Rossby
number drives vortex burst. It should be emphasized that the local
convective time is intrinsically related to the local Rossby number,
which obviously suggests differences between cases with different
distribution in local Rossby number at a given revolution angle ϕ.
However, comparing flows at similar local convective times shows
similar differences in the occurrence of vortex burst (Fig. 9).
Moreover, the prominent role of the local Rossby number can further
be highlighted by comparing nonzero root cutout cases at tip
Reynolds numberRe � 1000 (Figs. 8a–8c) with nonzero root cutout
cases at Re � 1000∕rco (Figs. 8d–8f) as well as zero root cutout
cases at Re � 1000 (Figs. 8g–8i) with zero root cutout cases at
Re � 250 × AR (Figs. 8j–8l). Note that setting Re � 1000∕rco
ensures a similar root Reynolds number, hence similar root vortex
strength, for nonzero root cutout cases shown in Figs. 8d–8f. Besides,
setting Re � 250 × AR ensures similar distribution in local Re�r�,
from root to tip, for cases shown in Figs. 8j–8l. Corresponding
distributions of local Re�r� are displayed in the Appendix. Overall,
because cases with similar rco and AR (i.e., similar distribution in
local Ro�r�) but different Reynolds number show very similar flow
behavior, yet with a decrease in vortex strength as Re decreases, the
comparison (between Figs. 8b, 8e, Figs. 8c, 8f, Figs. 8g, 8j, Figs. 8h,
8k, andFigs. 8i, 8l) indicates that the local Reynolds number is not the
mediating factor in the occurrence of vortex burst (at least within the
range of Reynolds number tested), thereby further supporting the
idea that the local Rossby number is the key element. This is
consistent with previous works on LEV robustness over rotating
wings [10,14].
Root cutout effects can beviewed as an aspect ratio effectmediated

by the presence of a root vortex and asymmetry between root and tip
vortex strengths. The preceding comparisons show that aspect ratio
effects depend onwhether or not vortex burst occurs and are therefore
dependent on local Rossby number distribution. Besides, the Rossby
number reflects the asymmetry in root and tip vortex strengths. As
such, cases addressed in this study represent intermediary cases

Fig. 7 a) Dimensional, and b) nondimensional PL vsTmap obtained for rco � 0, 1c, 2c, and 3c (symbol size increases with rco); α � 15 deg (×), 30 deg
(□), and 45 deg (∘).



between 1) zero root cutout rotating wing cases where root vortex
effects are minimized, asymmetry is maximized, and the flow is
mostly stable; and 2) translating wing cases where root vortex effects
are maximized, asymmetry is minimized, and the flow is mostly
unstable. A particular drawback though in analyzing such cases is
that, although root vortex effects clearly appear for larger aspect
ratios, they can hardly be distinguished from aspect ratio effects for
lower aspect ratios.

V. Conclusions

DNSs of the flow past a low-aspect-ratio revolving wing at
angles of attack α � 15, 30, and 45 deg were performed. The wing
motion consists of a α � 180 deg revolution about a vertical axis
(wing span is directed along a horizontal axis) at a wing tip speed
and chord-based Reynolds number of 1000. The root cutout has
been varied at fixed wing radius R � 4 chords, and the effects on
the global flow structure and aerodynamic loads have been
evaluated.
At low α, the flow structure is fully coherent. On one hand, the root

vortex (RV) resulting from root cutout tends to increase local shear
forces and decrease local pressure forces due to induced downwash
and reduction in local effective angle of attack near thewing root. The
RV is therefore detrimental to aerodynamic performance. On the
other hand, reduction in local Reynolds number near the wing root,
due to the reduction in local wing speed, makes the very inboard part
of the wing inefficient. As such, increasing root cutout tends to both

increase aerodynamic performance by avoiding low Reynolds
number effects near the root and decrease aerodynamic performance
by generating a RV. Results suggest that the competition between RV
effects and low Reynolds number effects leads to an optimum root
cutout in terms of aerodynamic efficiency.
At high α, the flow structure is locally noncoherent near the wing

tip due to leading-edge vortex (LEV) burst. The latter is associated
with a drop in local pressure forces toward the wing tip. Results
show that root cutout effects can inhibit LEV burst at sufficiently
large root cutout, hence recovering the associated drop in local
pressure forces. However, at large root cutout, the flow is dominated
by three-dimensional effects arising from root and tip vortices. It
appears that the recovery in local pressure forces due to the
inhibition of LEV burst does not compensate for the detrimental
effect of root and tip vortex downwash. Therefore, there is no
significant interest in inhibiting LEV burst through root cutout
effects in terms of aerodynamics performance. Yet for the same
reasons as described previously (competition between RV effects
and low Reynolds number effects), an optimum root cutout can be
found at high α, similar to that observed at low α.
From a practical perspective, it is further interesting to note that

root cutout also tends to reduce the wing weight. Although weak for
nanodrones, thismass effect combineswith aerodynamic effects such
that low root cutout is found to be a relevant approach for the
enhancement of nanodrone endurance.

Appendix: Flow Structure and Distribution in Local
Reynolds and Rossby Numbers

Additional snapshots of λ2 isosurfaces shown in Figs. 5 and 8 are
here provided for ϕ � 180 deg, in Figs. A1 and A2, respectively.
These snapshots allow direct comparison with data provided in
Figs. 6 and 7 and show that flowfields atϕ � 120 deg (Figs. 5 and 8)
and ϕ � 180 deg (Figs. A1 and A2) are very similar, which
illustrates quasi-steadiness of the solution for ϕ > 120 deg.
In addition, for cases shown in Figs. 8 andA2, distributions in local

Reynolds and Rossby numbers are provided in Fig. A3.

Fig. 9 Snapshots of λ2 isosurfaces obtained for rco � 2 and rco � 0
cases at ϕ � 90 deg and ϕ � 180 deg respectively. AR � 2 and Re �
1000 in both cases.

Fig. 8 Snapshots of λ2 isosurfaces obtained for rco � 0 cases atϕ � 120 deg. Comparisonwith rco ≠ 0 cases. Dimensional λ2 values are similar to those
used in previous figures.



Fig. A1 Snapshots of λ2 isosurfaces obtained for all cases at ϕ � 180 deg. Nondimensional λ2 values 1 (opaque) and 0.1 (transparent).

Fig. A2 Snapshots of λ2 isosurfaces obtained for rco � 0 cases at ϕ � 180 deg. Comparison with rco ≠ 0 cases. Dimensional λ2 values are similar to
those used in previous figures.
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