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Abstract

We consider an order variant of k-additivity, so-called k-maxitivity, and present
an axiomatization of the class of k-maxitive Sugeno integrals over distributive lat-
tices. To this goal, we characterize the class of lattice polynomial functions with
degree at most k and show that k-maxitive Sugeno integrals coincide exactly with
idempotent lattice polynomial functions whose degree is at most k. We also dis-
cuss the use of this parametrized notion in preference aggregation and learning. In
particular, we address the question of determining optimal values of k through a
case study on empirical data.
Keywords: Sugeno integral, k-maxitivity, lattice polynomial, degree, preference
aggregation, preference learning.

1 Introduction
The Sugeno integral was introduced in [27] and it became a widely used aggregation
function in the qualitative approach to decision making since it provides a meaningful
procedure to fuse values within universes where no structure (other than an order) is
considered [5, 10, 16]. Originally, the Sugeno integral was defined over real intervals
but it can be extended to wider domains, namely, distributive lattices, via the notion
of lattice polynomial function (i.e., a combination of variables and constants using the
lattice operations ∧ and ∨). In fact, idempotent lattice polynomial functions coincide
exactly with (discrete) Sugeno integrals (see e.g. [6, 22]). The latter observation is
particularly interesting in the context of multicriteria decision making as it provides a
way of aggregating preferences that are not total orders. In fact, preference aggregation
in the qualitative approach to preference modeling is the problem that motivates the
current paper, and that we now briefly discuss.

We consider a multicriteria framework, where alternatives are described according
to a set of criteria. We denote the set of alternatives by X and we denote the set
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of criteria indices by [n] = {1, . . . , n}. Here, a criterion is a pair consisting of an
attribute Xi together with a utility function ϕi : Xi → L modeling our preference on
Xi. The set L is thought of as an evaluation space. In the qualitative approach that
we consider, L is an ordered set, not necessarily numerical. In fact, throughout this
paper we will assume that L is a bounded distributive lattice. Note that this does not
constitute a serious restriction since any partial order can be embeded into a distributive
lattice, such that the original order is preserved, by Dedekind-MacNeille’s Completion
(see, e.g, [9]).

Let ϕ : X → Ln be a mapping from alternatives to their evaluations on criteria.
For x ∈ X we write

ϕ(x) = (x1, . . . , xn),

where xi is the evaluation of x in the ith criterion. By a preference relation we simply
mean a binary relation 4 over X that is reflexive and transitive. Furthermore we rep-
resent such a preference relation 4 by a utility function U : X → L (for a suitable L)
through the rule:

x 4 y ⇔ U(x) ≤ U(y)[3].

Note that the relation 4 thus defined is transitive, reflexive, but not necessarily anti-
symmetric since x 4 y and y 4 x implies U(x) = U(y) but not necessarily x = y. In
this paper we focus on utility functions that can be defined as

U(x) = A(ϕ(x)) = A(x1, . . . , xn),

where A : Ln → L is an aggregation function that we call the preference aggregation
model. As L is a distributive lattice, the Sugeno integral is the most relevant class
of functions for A [12]. Note that in the case when L is a numerical interval, the
aggregation model of choice is the Choquet integral [16]. In some sense, the Sugeno
integral can be viewed as the ordinal analogue of the Choquet integral.

In this paper we also consider a supervised learning problem, namely that of learn-
ing a Sugeno integral that models a set of examples D ⊆ Ln × L, where each element
is a couple that associates an utility value to a tuple of n criteria values :

D =
{(

x1, y1
)
, . . . , (xm, ym)

}
.

Here, each yj is the utility value of an alternative xj for which we have xj = (xj1, . . . , x
j
n).

Ideally, the result of the learning process would be a model consistent with D , that is
A(xj1, . . . , x

j
n) = yj for each example in D . However the learning set D is typically

inconsistent, and thus the task is to learn a Sugeno integral that gives the least pre-
diction error with respect to D . This is a difficult optimization task, because of the
intrinsic complexity of the Sugeno integral, that grows exponentially with the number
of criteria.

To overcome this prohibitive complexity we consider k-maxitive Sugeno integrals,
and study their properties for learning purposes, in particular, the gain in terms of
complexity. Moreover we aim at finding the best value of k. To this end we provide
a comparative study of k-maxitive models for different values of k on empirical data.
Note that similar studies were presented for k-additive Choquet integrals; see, e.g,
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Figure 1: The two forbidden substructures in a distributive lattice.

[20, 28]. We also provide a theoretical study of these k-maxitive Sugeno integrals,
treated as sub-classes of lattice polynomials.

The paper is organized as follows. In Section 2, we recall basic background on
lattice theory and lattice polynomials. The notion of k-maxitivity is investigated in
Section 3, where we show how it is related to the notion of lattice polynomials with
degree at most k. In fact, we give necessary and sufficient conditions for a lattice
polynomial to have degree at most k and we show that k-maxitive Sugeno integrals
coincide exactly with idempotent lattice polynomials with degree at most k (this result
can be found in [3] presented at LFA 2015). In Section 4 we discuss the problem of
learning a Sugeno integral and describe a method for solving it. In Section 5 we present
a case study where we analyse how the accuracy of k-maxitive Sugeno integrals as
predictive models changes according to different values of k. We discuss issues that
are still to be resolved and indicate directions for future research in Section 6.

2 Preliminaries: Lattices, lattice polynomials and Sugeno
integrals

In this section we recall some basic notions and results on lattice polynomials and
lattice theory. For further background, see e.g. [2, 18, 26].

A lattice is an algebraic structure 〈L,∧,∨〉 where L is a nonempty set, called uni-
verse, and where the two binary operations ∧ and ∨, called infimum and supremum
resp., satisfy the commutative, associative, absorption, and idempotent laws. We will
denote a lattice by its universe L.

A lattice L is said to be distributive if, for every a, b, c ∈ L,

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) or, equivalently, a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

Alternatively, a lattice L is distributive if and only if it does not embed any of the two
sublattices shown in Figure 1 ; see, e.g., [9, 19].

Throughout this paper, L will denote an arbitrary bounded distributive lattice with
least and greatest elements 0 and 1, respectively. For a, b ∈ L, a 6 b simply means
that a ∧ b = a or, equivalently, a ∨ b = b.

For c ∈ L and n > 1, we shall denote tuples of the form (c . . . , c) ∈ Ln by c. For
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x, y ∈ Ln, we also make use of the following short-hand notations

x ∨ y = (x1 ∨ y1, . . . , xn ∨ yn) and x ∧ y = (x1 ∧ y1, . . . , xn ∧ yn) .

Similarly, for x1, . . . , xn ∈ Ln, m ∈ N, m > 1, we write
m∨
i=1

xi = (x11 ∨ . . . ∨ xm1 , . . . , x1n ∨ . . . ∨ xmn ),

m∧
i=1

xi =
(
x11 ∧ . . . ∧ xm1 , . . . , x1n ∧ . . . ∧ xmn

)
.

The class of lattice polynomials functions (or simply lattice polynomials) from Ln

to L, n ≥ 1, can be defined recursively by finitely many applications of the following
rules:

1. For any k ∈ [n] = {1, . . . , n}, the projection (x1, . . . , xn) 7→ xk is a lattice
polynomial from Ln to L.

2. If p, q : Ln → L are lattice polynomials p ∨ q and p ∧ q are lattice polynomials
from Ln to L.

It is well-known [14] that a function f : Ln → L is a lattice polynomial if and only
if it can be represented in disjunctive normal form (DNF), i.e., there is α : 2[n] → L
such that

f (x) =
∨
I⊆[n]

(
α (I) ∧

∧
i∈I

xi

)
. (1)

Note that for a lattice polynomial f : Ln → L there may be several set functions α
that provide different DNF representations of f . For each I ⊆ [n], let eI be the element
of Ln whose ith component is 1, if i ∈ I , and 0, otherwise. Let αf : 2[n] → L be the
function given by αf (I) = f(eI) and consider the function α∗f : 2

[n] → L defined by

α∗f (I) =

{
αf (I), if

∨
J I αf (J) < αf (I),

0, otherwise.

As shown in [6], a function α : 2[n] → L can be used in the DNF representation of f if
and only if α ∈ [α∗f , αf ]. It is thus easy to see that α∗f and αf are unique and that they
give raise to the minimal and maximal, resp., DNF representations of f .

Remark 1 The DNF of a lattice polynomial f is the supremum of weighted terms :

f (x) =
∨
I⊆[n]

gI (x) where gI (x) = αf (I) ∧
∧
i∈I

xi.

Note that if we have

gI
(
x1
)
≥ gI

(
x2
)
∨ . . . ∨ gI

(
xk+1

)
,

for all x1, . . . , xk+1 ∈ Ln and all I ⊆ [n], then

f
(
x1
)
≥ f

(
x2
)
∨ . . . ∨ f

(
xk+1

)
.
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A function f : Ln → L is said to be idempotent if, for every a ∈ L,

f (a, . . . , a) = a.

As observed in [22], (discrete) Sugeno integrals can be thought of as lattice polynomi-
als that are idempotent. or, equivalently, as lattice polynomials f : Ln → L such that
αf is a capacity on [n], i.e., αf (J) ≤ αf (J

′) whenever J ⊆ J ′, and αf (c) = c for
c ∈ {0, 1} ⊆ L. For the sake of clarity, we shall denote capacities on [n] by µ and the
corresponding Sugeno integrals by Sµ : Ln → L, i.e.,

Sµ(x) =
∨
I⊆[n]

(
µ(I) ∧

∧
i∈I

xi

)
.

Remark 2 For a Sugeno integral Sµ, the function α∗Sµ
is called the ordinal Möbius

transform of µ [17].

3 k-maxitive Sugeno integrals and lattice polynomials
with degree at most k

We now focus on k-maxitive capacities, also called k-order possibility measures in
[4, 23]. A capcity is said to be k-maxitive if we have

µ(I) =
∨

J⊆I,|J|≤k

µ(J), for all I ⊆ [n] with |I| > k. (2)

Note that k-maxitive capacities are thus completely determined by their values on sets
with at most k elements.

A Sugeno integral that is defined with respect to a k-maxitive capacity is also said
to be k-maxitive. It is easy to see from (2) that for a k-maxitive Sugeno integral Sµ,
α∗Sµ = 0 for all |I| > k, and thus Sµ can be expressed as a supremum of terms with at
most k variables. As we will now see, in the case of lattice polynomials, k-maxitivity
translates into the the notion of “degree at most k”. The degree of a lattice polynomial
f , denoted deg(f), is defined by

deg(f) = max{|I| : α∗f (I) 6= 0}.

In other words, the degree of f is the size of the longest term in minimal DNF repre-
sentation of f . We denote by C k the class of lattice polynomials with degree at most
k, that is,

C k = {f is a lattice polynomial : deg(f) ≤ k}. (3)

It is now easy to see that k-maxitive Sugeno integrals coincide exactly with those idem-
potent lattice polynomials in C k.

Remark 3 The notion of k-maxitivity is somewhat the ordinal variant of “k-additivity”
for real-valued capacities. Let I be a real interval and µ : 2[n] → I a capacity. The
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Möbius transform mµ of µ is defined by

mµ(I) =
∑
J⊆I

(−1)|I|−|J|µ(J) [21].

It is well known [17] that the Choquet integral w.r.t. µ can then be defined in terms of
the Möbius transform mµ by

Cµ(x) =
∑
I⊆[n]

mµ(I) ·
∧
i∈I

xi. (4)

A capacity µ is said to be k-additive if, for every |I| > k, mµ(I) = 0. Similarly,
a Choquet integral is said to be k-aditive if it is defined with respect to a k-additive
capacity.

The appealing feature of k-additivity becomes apparent from (4) since it implies
that k-additive Choquet integrals can be expressed as sums of weighted terms of size
at most k. In the context of multicriteria decision making, k-additive Choquet integrals
correspond then to aggregation models where interaction indices among more than
k criteria are equal to 0. This fact confirms the analogy between k-maxitive Sugeno
integrals and k-additive Choquet integrals: when |i| > k, we have that α∗Sµ(I) = 0 in
the former case, whereas mµ(I) = 0 in the latter case.

Now it is natural to ask for a criterion to check the whether data can be modeled by
a k-maxitive Sugeno integral. For this purpose, we provide an axiomatization of the
class C k based on existing data.

Theorem 1 Let f : Ln → L be a lattice polynomial. The three following statements
are equivalent :

(i) f ∈ C k,

(ii) for all x1, . . . , xk+1 ∈ Ln :

f

k+1∨
i=1

∧
j 6=i

xj
 ≤ f (x1

)
∨ . . . ∨ f

(
xk+1

)
,

(iii) for all x1, . . . , xk+1 ∈ {0, 1}n :

f

k+1∨
i=1

∧
j 6=i

xj
 ≤ f (x1

)
∨ . . . ∨ f

(
xk+1

)
.

Proof 1 This proof was corrected after reviewing, and is avalaible in the published
version of the paper.

Note that in the particular case when L = {0, 1}, we get the characterization of the
class of nondecreasing Boolean functions with degree at most k in [8].
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Remark 4 Theorem 1 cannot be strengthened by replacing the inequality by an equal-
ity in (ii) and in (iii). Indeed, consider the lattice polynomial

f(x1, x2, x3) = x1 ∨ (x2 ∧ x3).

We see that f is a lattice polynomial with degree 2. Consider x1 = (0, 0, 0), x2 =
(0, 0, 0) and x3 = (1, 1, 1). We have

f

 3∨
i=1

∧
j 6=i

xj
 < f

(
x1
)
∨ f

(
x2
)
∨ f

(
x3
)
.

4 Learning Sugeno integrals from empirical data
In this section we consider the problem of learning a Sugeno integral from a dataset D
containing the feature tuple together with the global utility of each alternative, that is

D =
{(

x1, y1
)
, . . . , (xm, ym)

}
.

where xj = (xj1, . . . , x
j
n) and yj are respectively the criteria values and the utility of

the jth alternative.
We make the assumption that a Sugeno integral is the aggregation model underlying

the preferences expressed D . We want to learn a Sugeno integral Sµ able to predict,
for j ∈ {1, . . . ,m}, the value of yj from the value of xj . As typically the data that D
contains are noisy, it is impossible to find any Sugeno integral such that Sµ(xj) = yj

for all j ∈ {1, . . . ,m} (D is said to be inconsistent [25]). Learning the aggregation
model consists in searching the Sugeno integral which can predict global utility values
with as few errors as possible.

Remark 5 Note that we do not assume any distance between the elements of L, but
that utility values define a partial ordering of the alternatives. This is why a suitable
error measure in this context is the pairwise error, which corresponds to the ratio of
pairs of elements that are wrongly ordered by the aggregation model. Thus, what we
consider to be the best Sugeno integral is the one that gives the most faithful ordering
of the alternatives, that can differ from the one giving the closest prediction for the
utility value, although accuracy in those two tasks are strongly correlated.

Because of the intrinsic complexity of the Sugeno integral, learning an integral with
the least prediction error is a difficult optimization problem. The ordinal nature of the
treated values forbids using classical methods such as gradient decent (which can be
efficiently applied for learning Choquet integrals [15]), and as a capacity is defined by
its value for each subset of [n], 2n variables have to be considered ; thus, for a high
number of attributes, running the optimization process can be costful.

A method that can be applied to this problem is a meta-heuristics such as simulated
annealing (as proposed in [24]). This algorithm considers the space of every solution,
and associates each solution with a cost (a value to minimize). Then it searches for the
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better solution by iteratively modifying the current solution. Modifying a solution cor-
responds to traveling to a close element in the solution space. When the modification
of the current solution leads to an increase of the cost, there is a probability to refuse
the change ; the higher is the increase, the higher is the probability. The probability to
refuse a disadvantageous change also depends on the temperature, a value decreasing
through the iterations ; at the beginning of the process, the probability of accepting a
disadvantageous change is higher and decreases through the iterations, until it becomes
close to 0. The aim of this variation is to avoid being “trapped” in local minima dur-
ing the first iterations. For a more detailed description of simulated annealing, see for
example [13].

We apply a simulated annealing to the problem of learning a Sugeno integral by
associating each possible value of µ to a solution, whose cost is equal to the prediction
error of Sµ on D . For creating a new solution µnew from the current one, a subset of
[n] and a value from L (respectively I and y) are randomly picked, both with respect
to an uniform probability distribution. The generated solution is then equal to the old
one, yet with µnew(I) = y (the values of µnew for other sets are subsequently modified
so that the monotonicity property of the capacity is respected). Note that this general
method can be applied for learning k-maxitive Sugeno integrals simply by restricting
the subsets of [n] that can be picked to those of at most k criteria.

Evaluating the new solution produced at each iteration is in general the most time-
consuming part of the simmulated annealing process. The complexity of computing the
pairwise error is quadratic with respect to the number of elements in the learning set ;
on the contrary the compexity of computing a mean absolute error (MAE) is linear with
respect to |D |. The MAE is fundamentally a measure that makes sense in a numerical
context, since it computes the average absolute difference between predicted and actual
values. The absolute difference can be generalized as a distance ; in our setting, the
value of the MAE is then

1

|D |
∑

(x,y)∈D

distance(Sµ(x), y).

Nonetheless, this expression requires a notion of distance between two elements of L.
For this we state that the distance between two neighbours elements of L is 1, and
we define the distance between any two elements as the the length of the shortest path
between them. By Birkhoff’s Representation Theorem (see [1]), we know that any fi-
nite distributive lattice can be embeded in a Boolean (powerset) lattice. Computing the
length of the shortest path between two elements of L is then equivalent to computing
the cardinality of the symmetric difference of two sets. This operation can be done in a
linear time (with respect to the number of criteria, which is usually very low compared
to the cardinality of D). As this error measure is less time-consuming and is in prac-
tice strongly correlated to the pairwise error, we used it for defining the cost of each
solution in the simulated annealing process.

An interesting point of k-maxitivity is precisely to reduce the inner complexity of
capacities. A k-maxitive capacity is indeed defined by its value on sets of size lower
than or equal to k, that is to say

∑k
i

(
i
n

)
. Therefore, restricting possible solutions to

k-maxitive ones reduces the number of variables of the optimization problem, although
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Figure 2: The evaluation space built from the data, in a non-distributive and distributive
version (resp. left and right).

it can affect the precision of the resulting aggregation model. This will be discussed in
the next section.

5 An case study
The aim of the following application is to illustrate at which extent k-maxitive Sugeno
integrals could be used as preference aggregation models and which precision can be
obtained for each k-values.

Our data set are users’ hotel ratings from Trip Advisor 1. Each rating is made by one
user for one hotel, according to 7 criteria and associated to an overall evaluation. The
rating scale is {1, 2, 3, 4, 5} and, as some values can be missing, the evaluation space
that we use contains an unknown value. Here we suppose that 1 < unknown < 5
without making any further assumption. We obtain a partial order that can be embeded
in a distributive lattice, as shown in Figure 5.

Note that adding the values unknown− and unknown+ to the original set of
values preserves the order relations (and incomparabilities) between the elements of
{1, 2, 3, 4, 5, unknown}. Nonetheless, it does not preserve the infimum and supre-
mum operations, since we have, for example, 2 ∧ unknown = unknown−. The
distributive lattice thus constructed is then used as the evaluation space.

Remark 6 When L is a non-distributive lattice, we could still define aggregation func-
tions on Ln that consist of expressions built with ∧, ∨ and constants. However, without
the distributivity assomption, it may be impossible to represent such functions by a
DNF.

The results are obtained from 30 random samples from the original data set, each
of which were divided in two parts: a learning set containing 250 elements, and a
testing set containing 1000 elements. For each sample, a k-maxitive Sugeno integral
was trained on the learning set, for k = 1, 2, 3, 4, 5, 6. The resulting integrals were
evaluated with respect to the testing set. Figure 5 shows the average pairwise error
among samples, for each value of k.

1Tripadvisor Dataset : http://sifaka.cs.uiuc.edu/˜wang296/Data/index.html.
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Figure 3: Average pairwise error of a k-maxitive Sugeno integral on the testing set.

6 Conclusion and further work
The results presented in Section 5 show that most of the accuracy is gained while in-
creasing k from 1 (a 1-maxitive Sugeno integral that corresponds in fact to a weighted
supremum operation) to 2, although it is not possible to decide whether this phe-
nomenon is particular to our data or could be generalized. This observation could
be compared to those made on k-additive Choquet integrals, that often show good per-
formances when k is set to 2 (see for example [28]). It also seems that the optimal
value of k (from the accuracy point of view) is 4, certainly because higher values tend
to cause over-fitting of the model. Even though more empirical study should be made
in that direction for a better understanding of the behavior of k-maxitive models, our
case study shows that k-maxitivity could be an interesting property for limitating the
inner complexity of Sugeno integrals, but also for preventing over-fitting.

A few problems are still to be investigated. From the application point of view,
it would be interesting to predict the best value of k for a given dataset (for this case
study we trained Sugeno integrals for each value of k, which is of course not a suitable
solution for systems required to be efficient).

The principle of k-maxitivity is to force the values of a capacity µ to depend solely
on the values of µ on subsets of size at most k. Another way of expressing this con-
straint is to state that the sets of cardinality lower than or equal to k are the only possible
focal sets (i.e., sets I for which α∗Sµ(I) > 0 [11]) of the capacity. One could imagine
setting other restrictions on the focal sets, so that the the inner complexity is kept as low
as with k-maxitivity, while allowing more flexibility in the model and greater precision
for practical applications such as preference aggregation.

Furthermore, the results that we have obtained in the current paper should be broad-
ened to the framework of pseudo-lattice polynomial functions [7], that is to say, func-
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tions that can be written as

F (x1, . . . , xn) = Sµ(ϕ1(x1), . . . , ϕn(xn))

with Sµ : Ln → L being a Sugeno integral, and ϕi : Xi → L. These functions of
course allow a greater expressiveness but learning them from data is less straitforward,
since both the ϕi’s and the Sugeno integral have to be learned, while being interdepen-
dent.
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