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The quantum mechanical counterpart of the famous Stoner-Wohlfarth model—an easy-axis magnet in a
tilted magnetic field—is studied theoretically and through simulations as a function of the spin size S in a
sweeping longitudinal field. Beyond the classical Stoner-Wohlfarth transition, the sweeping field-induced
adiabatic change of states slows down as S increases, leading to a dynamical quantum phase transition. This
result gives us new insights to describe the collapse of the metastability from the viewpoint of a critical
phenomenon associated with the Landau-Zener tunneling gaps. Furthermore, a beating of the amplitude of
the magnetization (the spin-length fidelity) is discovered after the Stoner-Wohlfarth transition. The period
of the beating, confirmed analytically, arises from a new type of quantum phase factor.
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The Stoner-Wohlfarth (SW) model [1] is a classical
model giving the field values at which a spin with uniaxial
anisotropy switches under a tilted magnetic field applied in
the opposite hemisphere. This is a discontinuous metastable
to stable transition, in the limit of infinite spin. The
quantum counterpart of this model has been studied from
the viewpoint of quantum tunneling by making use of the
WKB approach in zero longitudinal field [2,3]. The well-
known phenomena of the stepwise magnetization curves
observed in the single molecule magnet Mn12-ac demon-
strated quantum tunneling at avoided crossings of opposite
magnetization levels [4,5]. Observed discreteness was a
result of the finite value of the molecule spin (S ¼ 10). The
phenomena have been studied from the viewpoint of
quantum tunneling, including theoretical approaches based
on the Landau-Zener (LZ) transition [6,7], which was also
observed in experiments [8]. Some quantum aspects of the
spinodal transition have been studied in the transverse Ising
chain with a sweeping longitudinal field [9] in which a
relatively fast sweeping case was studied.
The present study gives a more direct quantum effect on

the collapse of the metastable state. We study the quantum
SWmodel numerically in the presence of a fixed transverse
field and a sweeping longitudinal field in the limit of large
spins (going from S ¼ 20 to 320). When S increases, we
find, from a microscopic viewpoint, how the densification
of the energy level structure, leading to a suppression of
discreteness, affects the collapse of metastability and
modifies the spin dynamics. We study more particularly
the quantum critical properties appearing near the end of
metastability of the classical model. Furthermore, a pre-
cession beating is discovered which is confirmed analyti-
cally and interpreted in terms of a new type of quantum
phase factor.

In order to catch the properties of our model in the
S → ∞ limit properly, we introduce the normalized quan-
tum spin operators with a modified commutation relation:

sα ¼
Sα
S
; ðα ¼ x; y; zÞ; ½sα; sβ� ¼

i
S
ϵαβγsγ: ð1Þ

The corresponding SW Hamiltonian, with uniaxial
anisotropy, transverse field (fixed), and longitudinal field
(sweeping at the time rate c), is written as [10]

H ¼ −Ds2z −Hxsx −Hzsz; Hz ¼ Hð0Þ
z − ct: ð2Þ

In Eqs. (1) and (2) and hereafter, we set gμB ¼ 1 and ℏ ¼ 1.
The time evolution of the normalized quantum spin

operators is given by

dsx
dt

¼ 1

S
fDðsysz þ szsyÞ þHzsyg;

dsy
dt

¼ 1

S
f−Dðszsx þ sxszÞ −Hzsx þHxszg;

dsz
dt

¼ −
1

S
Hxsy: ð3Þ

The corresponding time evolution of the usual (classical)
SW model comes from the torque equation for a unit
vector of magnetization m, dm=dt ¼ −m ×Heff with the
effective field Heff ¼ −∂ESW=∂m ¼ ðHx; 0; 2Dmz þHzÞ.
Comparing this with Eq. (3), we find that the dynamics
becomes the same if we ignore the commutation relations
among spin operators in Eq. (3). But the time in the
quantum system should be rescaled as

τ≡ t=S ð4Þ
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to study correspondence with the classical dynamics. Then,
the sweeping rate cmust be rescaled as c ¼ v=S, where v is
the sweeping rate of the corresponding classical model.
The motion of a spin of the classical SW model mðtÞ

draws a trajectory on the unit sphere. IfHz andHx are weak
compared to the anisotropy D, the system has a metastable
state in whichmz is antiparallel to the direction ofHz. IfHz

and Hx increase and the SW condition ð2DÞ2=3 ¼
ðHxÞ2=3 þ ðHzÞ2=3 is satisfied, the metastable state becomes
unstable.
Figure 1 shows the classical motion of magnetization

(mxðtÞ; myðtÞ; mzðtÞ) under a sweeping longitudinal field.
It starts from the metastable point at Hzð0Þ ¼ 4 (arrow 1 at
t ¼ 0). The motion in this process is adiabatic up to the SW
point (arrow 2 at t ¼ tSW). At t ¼ tSW the irreversible
magnetization jump takes place. It is followed by a
precessionlike motion around the effective field HeffðtÞ.
To characterize the quantum SW transition of a large spin

S, we first investigate the energy-level structure as a
function of Hz. The example for S ¼ 20 is given in
Fig. 2, in which 2Sþ 1 levels with positive and negative
magnetization slopes intercept at avoided-level crossings
with gaps. Under the sweeping field Hz ¼ 1 − ct (applied
at Hz ¼ 1, t ¼ 0), the ground state remains fully occupied
until Hz ¼ 0, where the first avoided-level crossing
(between S and −S) is reached. If the reciprocal sweeping
timewas much smaller than the gap at this point, the motion
would be adiabatic and the spin reversal ðS → −SÞ would
take place. However, in practice, this change hardly occurs
because, with realistic parameters, the gap is vanishingly
small for a large S, and thus only a very small fraction of the
population scatters from þS to −S. The rest remains on the
line continuing the Hz > 0 ground state into the Hz < 0
region. This Hz < 0 line corresponds to the classical
metastable state (trajectory between points 1 and 2 in
Fig. 1) and is called here the metastable branch. This
branch crosses the levels of slopes M ¼ −S;−Sþ 1;
−Sþ 2;…;−Sþ k;…, successively (see Fig. 2). At each
crossing, some population of the metastable branch scatters
to the state of negative magnetization. For a finite value of
S, say S ¼ 10 for Mn12 and Fe8, the so-called resonant

tunneling takes place at each crossing depending on the
energy gap at the crossing. For the one-way sweeping of the
field from the ground state, the scatterings at the successive
anticrossings can be regarded as the sum of independent LZ
events [11]. In addition, the events are independent because
the gap of a given anticrossing ΔE is much smaller than the
separation of two anticrossings D=S. The reduced LZ
probability of remaining in the metastable state at the
kth avoided level crossing is given by

pðSÞ
k ¼ exp

�
−
πðΔEðSÞ

k Þ2

2ℏcΔmðSÞ
k

�
; ð5Þ

where ΔEðSÞ
k is the energy gap at the field Hk

z resulting
from the mixing of the spins S (metastable branch) with

−Sþ ðk − 1Þ (intercepted branches), and ΔmðSÞ
k ≃

ð2S − kÞ=S is the reduced difference of magnetization
slopes of the two states. As S becomes larger, the spectrum
associated with a normalized spin densifies because the
number of the eigenvalues (2Sþ 1) increases. For example,
if we increase S from S to 2S, a new eigenvalue appears
between two consecutive eigenvalues of the initial spec-
trum of S. In the continuous limit, the amount of scattering
within a given field interval must be nearly the same,

leading to the condition pð2SÞ
2k pð2SÞ

2kþ1 ≃ pðSÞ
k for successive

LZ transitions, i.e., to the expression of the scaled gap

ΔEscaled ¼ SΔEðSÞ
k (see the Supplemental Material [12]), a

quantity which remains finite in the classical limit. The
scaled gap ΔEscaled, plotted vs Hz in Fig. 3, is always
nonzero for finite values of S. However, as S increases, it
tends to zero when jHz=HSWj < 1. At an infinite S, the
reversal is prohibited and the metastable state remains, as

mx

my

mz

O

1

2

FIG. 1. A classical trajectory under the sweeping field Hz ¼
4 − ct (c ¼ 0.01) for D ¼ 1, Hx ¼ 1. Arrow 1 indicates the
starting point which is a metastable fixed point for Hz ¼ 4, and
arrow 2 the point of the SW transition followed by precession
around the magnetic field.

FIG. 2. Energy spectrum for S ¼ 20 withD ¼ 1 andHx ¼ 1 as
a function of Hz. The field is swept from right to left
(Hz ¼ 1 − 0.004t). For each value of Hz there are 2Sþ 1 ¼
41 eigenvalues which are plotted by blue lines. The brown
vertical line indicates the SW field at which the metastable to
stable transition takes place. The red circle denotes populations
jcnðtÞj2 with ΨðtÞ ¼ P

ncnðtÞψnðtÞ, where ψnðtÞ are eigenstates
of the time-dependent Hamiltonian. The radius of each circle
denotes the population of the state.
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expected in the classical limit. For jHz=HSWj > 1, ΔEscaled
becomes nonzero with a maximum slope near the classical
switching field value HSW. Such behavior, related to the
transition of the classical SW model (Fig. 1), results from
criticality of the scaled gaps.
The S dependence of the field variations of the scaled

gaps will now be rapidly investigated. In the mean-field
approach of a spinodal phase transition, the probability of a
classical system of size N near the spinodal point H ¼ Hsp

follows the scaling plot pðNÞ ¼ N−1=3g(ðH −HspÞN2=3)

[13]. Our present spin S could be regarded as the sizeN of a
spinodal system in which single-spin reversals during
the spin-diffusion process correspond to the spin transitions
at the different crossings of the metastable branch (spin
S) with the intercepted branches (spin −Sþ k). This
suggests that the data of Fig. 3 should be plotted accord-
ing to the scaling form: pðSÞ ¼ S−1=3g(ðH −HSPÞS2=3),
where pðSÞ ¼ 1 −

Q
exp½−πðΔEðSÞ

k Þ2=2ℏcðSÞΔmðSÞ
k � (see

the Supplemental Material [12]). For a large spin, the gaps
are vanishingly small and the exponential can be expanded,
leading to ðSΔEÞ2 ∝ S−1=3g(ðH −HSPÞS2=3). This is pre-
cisely the scaling form for which the numerical data
collapse (see the inset of Fig. 3), showing that the quantum
SW transition obeys a spinodal phase transition.
We now switch to the last part of this Letter, which

relates to magnetization beatings. When the applied field is
swept from right to left in Fig. 2, after the SW points,
beatings of magnetizations are observed (see Fig. 4). The
fast oscillations are simple precessions (as in Fig. 1),
whereas the beatings are modulations of these precessions.
The amplitude of szðtÞ decreases as the field becomes large
because a large Hz induces a tilt of the precession plane
towards the xy plane. The xy components keep the same
amplitude representing the rotation around the z axis.
Here, we find that all three of the magnetization compo-
nents show the same beating period, which means that the
spin length sfðtÞ≡ hsxðtÞi2 þ hsyðtÞi2 þ hszðtÞi2, which

we call spin-length fidelity, also beats in contrast to the
spin modulus SðSþ 1Þ, which is, of course, conserved.
This beating is a new characteristic of large, but not infinite,
spin systems. As will now be shown, it originates from a
new type of quantum phase factor.
The time evolution of the state is given by the time-

dependent Schrödinger equation idΨ=dt ¼ HΨ, where H

is the scaled Hamiltonian (2), with Hð0Þ
z ¼ 0 for simplicity.

Introducing the unitary transformation U,

Ψ ¼ Uϕ; with U ¼ exp

�
i

�
Ds2zt −

1

2
cszt2

��
; ð6Þ

the time evolution is given by

i
∂
∂tϕ ¼ −HxU†sxUϕ≡H0ϕ; ð7Þ

where

H0 ¼ −Hxfsx cosΘðτÞ − sy sinΘðτÞge−iDτ=S; ð8Þ

with

ΘðτÞ≡ 1

2
vτ2 − 2Dszτ; ð9Þ

(see the Supplemental Material [12]). The Hamiltonian (8)
consists of the Zeeman term of a rotating field with the
classical-like phase given by expression (9) (see the
Supplemental Material [12]), multiplied by a quantum
phase term e−iDτ=S (or e−iDt=S2 in the t representation).
The first term, simply the function of the scaled spins
sx; sy; sz, is independent of S and thus tends to the classical
model in the S → ∞ limit. It represents the classical fast
precession motion of Fig. 1. The second term, e−iDτ=S,
depends on S and tends to unity in the S → ∞ limit. It is of
a genuine quantum origin and is responsible for the
observed beatings. Its time (Tτ or Tt) or field (THz

) period
are given by

FIG. 3. Normalized energy gaps at avoided-level crossings
plotted vs the sweeping magnetic field for S ¼ 20 (green), 40
(blue), 80 (purple), 160 (cyan), and 320 (red) with Hx ¼ 1,
D ¼ 1. (Inset) Scaling plot showing a mapping of the LZ
transition to a dynamical spinodal phase transition.

FIG. 4. Beating observed after the SW point. The red line
shows the fidelity sf and the green, blue, and orange lines show
hszi, hsxi − 1.5, and hsyi − 2.5, where the parameters are S ¼ 20,
Hx ¼ 1, D ¼ 1, and v ¼ 0.08.
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Tτ ¼
2πS
D

≡ Tt

S
≡ THz

v
: ð10Þ

This dependence is confirmed in the simulations (see
Fig. 5), showing unambiguously that the beatings are
due to the factor e−iDτ=S. Physically, this period is under-
stood as follows. At a given Hz, ignoring the transverse
field, the spin components oscillate at the frequencies
ΔEðkÞ ¼ H=SþD=S2 þ 2Dk=S2 given by the energy
difference between neighboring levels with Sz ¼ k and
(kþ 1). The difference jΔEðkþ 1Þ − ΔEðkÞj ¼ 2D=S2

gives the above mentioned period.
Finally, we should note that even if the sweeping of the

field is stopped and kept constant (see Fig. 6, left panel), the
beating persists in the same way. If the field sweeps back,
the beating disappears when the field goes beyond the SW
point (see Fig. 6, right panel).
In conclusion, we have studied the dynamics of the

classical and quantum SW models, showing surmountable
and impassable bridges between the two and their

identification when S → ∞. The two most important results
consist of the following. (i) The description of the quantum
SW model in terms of a dynamical spinodal phase
transition with a scaling of the tunneling gaps (or, equiv-
alently, of the time associated with the tunneling proba-
bility) vsHz −HSW. A spinodal scaling (see Fig. 3) gives a
synthetic representation of this complex physics, paving the
way for more general studies on the quantum to classical
transition. (ii) When the sweeping field is larger than the
critical SW field, the spin motion, classically described by a
time-dependent precession about its slowly moving local
field, becomes modulated in time, leading to a beating of
the three spin components and of the spin-length fidelity,
with the characteristic period 2πS=D obtained analytically
thanks to a unitary transformation, allowing one to decom-
pose the classical motion and the quantum mechanical
phase terms. These new findings should be instructive in
finding new directions of research on general aspects of
quantum nanomagnetism beyond molecular magnets; see,
e.g., Ref. [14].

FIG. 5. Dependence of SzðtÞ for different values of (left panel) spin S ¼ 20 (red curve), 30 (green curve), 40 (blue curve), and ∞
(orange curve) for v ¼ 0.08 and D ¼ 1.0, and (right panel) anisotropy constant D ¼ 1 (red curve), 2 (green curve), and 3 (blue curve)
for S ¼ 20 and v ¼ 0.08.

FIG. 6. Beating of the spin-length fidelity, and of the three spin components in a sweeping field above the SW transition for S ¼ 20 for
D ¼ 1, Hx ¼ 1 with the sweeping velocity v ¼ 0.08 until HzðtÞ ¼ −12. (Left panel) Beating is not altered after the field (the brown
curve) is set constant. (Right panel) Beating is suppressed after the field (the brown curve) is increased again and reenters above jHSWj.
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