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Abstract

In this paper, a new plastic potential for porous solids with von Mises perfectly-plastic
matrix containing spherical cavities is derived using a rigorous limit analysis approach.
For stress-triaxialities different from 0 and ±∞, the dilatational response depends on the
signs of the mean stress and the third invariant of the stress deviator. The classic Gurson
potential is an upper-bound of the new criterion. A full-field dilatational viscoplastic Fast
Fourier  Transform  (FFT)-based  approach  is  also  used  to  generate  numerical  gauge
surfaces for the porous material. The numerical calculations confirm the new features of
the dilatational response, namely: a very specific dependence with the signs of the mean
stress and the third invariant that results in a lack of symmetry of the yield surface.
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1. Introduction

The most widely used yield criterion for isotropic porous solids  containing randomly

distributed spherical voids was developed by Gurson [1]. The derivation was made using

limit analysis, the matrix material being considered rigid-perfectly plastic and obeying

von Mises yield criterion. The expression of Gurson's yield criterion is:
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where  f  is the porosity, Σe is the von Mises effective stress, Σm is the mean stress, and σT

is  the  tensile  yield  stress  of  the  fully-dense  material.  Based  on  results  of  2-D

axisymmetric  finite-element  (FE) studies additional  fitting parameters,  q1,  q2,  q3  = q1
2

were  introduced  in  the  expression  (1)  Gurson’s criterion  by  Tvergaard  [2]  (see  also

Tvergaard and Needleman [3]). Modifications of the Gurson criterion based on the use of

more sophisticated trial velocity fields, e.g. derived from the exact Eshelby solution for

the ellipsoidal inclusion problem in an infinite elastic matrix  have also been proposed

(see Monchiet et al. [4]). It is worth noting that Gurson’s original criterion [1] and all the

Gurson-like criteria [3-4] display symmetry with respect to both the axis (m=0) and the

axis (e = 0), i.e. it is invariant with respect to both transformations   ),(, mm 

and   )).,(-, mm   It is generally accepted that these strong symmetry properties

of  the  yield  surface  and  the  insensitivity  to  the  third  invariant  could  have  not  been

predicted a priori in the context of limit analysis (see Leblond [5]). Yet, the exact plastic

potential of an isotropic porous solid with von Mises matrix should be an even function

in stress (Duva and Hutchinson [6]), so it should be invariant only to the transformation

  ),-(-, mm  . 

Constitutive  potentials  for  porous  solids  with  incompressible  power-law  matrix

containing a dilute concentration of spherical voids or penny-shaped cracks were derived

by  Duva  and  Hutchinson  [6].  The  theory  also  applies  to  rate-independent  perfect

plasticity  (in the limit  when the power law exponent  tends to infinity).  Based on the
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concept of “linear comparison composite”, Ponte Castaneda [7] and later Kaisalam and

Ponte Castaneda [8] developed rigorous upper-bounds of the overall potential of plastic

and viscoplastic solids containing randomly oriented ellipsoidal cavities. 

All the above potentials for porous materials depend only on the mean stress Σm and the

von Mises effective stress Σe. However, FE cell calculations for axisymmetric or general

3-D tensile loading configurations have shown that a given value of the stress-triaxiality

does not define uniquely the yield point and a slight dependence on the third invariant of

the stress deviator  Σ 3
3

1
J

3
tr  Σ  . In the plane (Σm, Σe), the yield points corresponding to

Σ
3J ≥0 (axial stress greater than the lateral stress) are below that corresponding to  Σ

3J ≤0

(axial stress less than lateral stress) (e.g. Richelsen and Tvergaard [9], Kim et al. [10],

McElwain et al. [11]). Within the framework of non-linear homogenization, theoretical

results  by  Ponte  Castaneda  and Suquet  [12]  for  weakly  contrasted  materials,  and by

Danas et al. [13] in the context of the “second-order” method of Ponte Castaneda [14]

adapted to the case of porous materials with von Mises matrix, also show dependence

with the third invariant of the stress deviator. Further evidence of third invariant effects

was also provided by Julien et al. [15] who performed periodic unit cell calculations for

both tensile and compressive stress states using a Fast Fourier Transform (FFT)-based

spectral  formulation  [16,17].  Moreover,  Cazacu  and  Stewart  [18]  conducted

axisymmetric FE cell calculations for both tensile and compressive stress states. In the

plane (Σm, Σe), their results describe two yield curves. For tensile loadings, the yield curve

corresponding  to  Σ
3J ≥0  (axial  stress  greater  than  the  lateral  stress)  is  below  that

corresponding  to  Σ
3J ≤0  (axial  stress  less  than  lateral  stress),  while  for  compressive

loadings  the  reverse  occurs.  Very  recently,  Lebensohn  and  Cazacu  [19]  reported

numerical  results,  obtained  with  Lebensohn  et  al.’s  dilatational  viscoplastic

implementation  [20]  of  the  FFT-based  formulation  for  porous  viscoplastic  fcc

polycrystals with random texture and deforming by slip at single crystal level. A very

specific  dependence of the gauge surfaces with the signs of both the stress-triaxiality

e

mX



  and the third invariant was revealed. Specifically, it was shown that a point of
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the gauge surface for Σ
3J ≥0 corresponding to a given stress-triaxiality X  is symmetric

with  respect  to  the  axis  (m=0)  to  the  point  on  the  other  gauge  surface  ( Σ
3J  ≤0)

corresponding to  X . Given that in these calculations the matrix was a heterogeneous

polycrystalline  aggregate,  this  specific  dependence  needs  to  be  verified  for  porous

materials with homogenous von Mises matrix. Such evidence will be provided in this

paper. The main conclusion from the aforementioned numerical studies is that the yield

behavior  of porous materials  with von Mises matrix  should depend on the combined

effects  of  the  second  and  third  invariant  of  the  stress  deviator  (Lode  parameter

dependence).  Along these lines, phenomenological criteria  for porous solids involving

sensitivity to the Lode parameter have been proposed (e.g. Bao and Wierzbicki [21]). An

approximate plastic potential that involves the third invariant of the stress deviator was

derived  by Cazacu  and Stewart  [18]  in  the  framework of  limit  analysis.  Yet,  in  this

formulation, the isotropic matrix is governed by the pressure-insensitive yield criterion of

Cazacu  et  al.  [22]  that  is  an  odd  function  in  stress  and  as  such  displays  strength-

differential effects. Thus, the third-invariant sensitivity of the dilatational response of the

voided  polycrystal  predicted  by  the  criterion  is  due  to  the  tension-compression

asymmetry of the plastic flow of the matrix. If the plastic flow in the matrix does not

display tension-compression asymmetry, the criterion reduces to Gurson [1] (for more

details, see [18]). 

 In this paper, we demonstrate that the insensitivity of Gurson’s criterion [1] to the third

invariant  and  the  ensuing strong symmetry  properties  of  the  yield  surface  are  direct

consequences of a simplifying hypothesis. Specifically, it is shown that this hypothesis

results in neglecting combined effects of the mean stress and stress deviator on yielding

of the porous solid. Furthermore, a new analytic yield criterion for a porous solid with

matrix obeying the von Mises yield criterion is derived using a rigorous limit-analysis

approach (Section 2). This criterion predicts a combined effect of the third invariant and

mean stress. It is worth noting that this very specific dependence is demonstrated and not

postulated.  Moreover,  the  full-field  dilatational  viscoplastic  FFT-based  approach  of

Lebensohn et al. [23] is used to generate numerical gauge surfaces (Section 3). These

numerical   results  also  reveal  the  same  coupling  between  the  mean  stress  and  third
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invariant, which induces a lack of symmetry of the yield surface with respect to both the

axis e = 0 and m = 0 for stress-triaxialities different from 0 and ±∞.

2. Derivation of the analytic yield criterion

We shall now analytically derive an approximate plastic potential for porous materials

with  isotropic  rigid-plastic  matrix  described  by  the  von  Mises  criterion  containing

randomly distributed spherical voids. For this purpose, as in Gurson [1], we conduct a

limit analysis of a hollow sphere using Rice and Tracey [24] trial velocity field. Let the

inner radius of the hollow sphere be denoted by a, and its outer radius b = 1/3a f  . The

outer boundary (r = b) is subjected to axisymmetric loading such that:

   11 1 1 2 2 33 3 3=Σ + + Σ ,  Σ e e e e e e (2)

where    denotes the average stress field, while the inner boundary is considered to be

traction-free.  In  the  above  equation,  (e1,  e2,  e3)  are  the  unit  vectors  of  a  Cartesian

coordinate system. Rice and Tracey [24] velocity field is given by

3

m r2

b
D ,

r
 v e D x     (3) 

where: m

1
D = tr 

3
D , and D  is the deviator of the macroscopic strain rate tensor, assumed

to be constant.  In Eq. (3) both Cartesian and spherical coordinates have been used. The

principal values (unordered) of the local strain rate field  1

2
T   d v v  corresponding

to the velocity field v given by Eq. (3), are as follows:
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3 6 3
2 2

II 11 m 11 m 11 m

3 6 3
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III 11 m 11 m 11 m
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d  D + D

r
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d = - D + D +  D + D 2D D cos2θ r

2 r 2 r r

1 b 3 b b
 d = - D + D -  D + D 2D D cos2θ

2 r 2 r r

 

, a b.

       


                          


                       

 

Using the associated flow rule, the local plastic dissipation corresponding to Von Mises 

criterion and the local strain rate field d is:

     
6 3

2 2 2 2 2
T T m 11 11 m

2 b b
π 4 D 4D + 2D D 1 3cos2θ

3 r rI II IIId d d                 
d

      (4)

Since the trial velocity field v is incompressible and compatible with homogeneous strain

rate boundary conditions (see Eq. (3)), Hill-Mandel ([25, 26]) lemma applies. Thus, an

upper-bound  estimate  of  the  overall  plastic  potential  of  porous  solid  is  provided  by

 Π , D the average value over the hollow sphere of the local plastic dissipation  π d ,

corresponding to this trial velocity field. Its expression is:

         6 32 2T
m 11 11 m

1
Π π d 4 D b/r 4D + 2D D b/r 1 3cos2θ   d

V V



 

       D d     (5)

with  3V 4πb /3  and Ω is the domain occupied by the matrix.

 Remark: It is important to note that in Gurson [1], the following simplifying hypothesis

was introduced: 
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H1) In  the  expression  (4)  of  the  local  plastic  dissipation   π d ,  the  “crossed  term”

involving m 11D D  can be neglected .

Using this simplifying hypothesis, Gurson [1] proposed the following approximate plastic

potential of the porous aggregate:

 
6

2 2
m 11

Ω

1 b
= 4 D 4D  dV

V r
      D (6)

and calculated the macroscopic stresses associated with ++Π ( )D   as:

11 22
11

= Σ =
D




 and 33
33

=
D




(7)

or:

2 2
m

2

1 2 1
= ln ,

3 3 1T m

u u f

D fu u

       
    

(8a)

2 2 2e = 1
T e

u u f
D

     


. (8b)

In the above equations,  e ij ij 11

2
D D D 2 D

3
     is the macroscopic equivalent strain rate

while  
2def

m

e

D
u

D
 is  the  absolute  value  of  the  strain-triaxiality  given  by  

2def
m

e

D
u

D
 ;

 m

1
= 

3
tr    and  e

3
 

2 ij ij      are  the  mean  macroscopic  stress  and  effective

macroscopic  stress,  respectively.  Equations  (8)  define  Gurson’s [1]  yield  locus  in  a
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parametric form, which can be further cast in the classical form, given by Eq. (1), by

eliminating the parameter u (for details, see [27]).

In  what  follows,  we  show  that  hypothesis  H1)  is  too  restrictive  (see  also  [28]).

Specifically,  we  demonstrate  that  the  insensitivity  of  Gurson’s  criterion  to  the  third

invariant and the ensuing strong symmetry properties of the Gurson’s yield surface with

respect  to  both  the  axis  (e=0) and the axis  (m=0) are  a  direct  consequence  of  this

hypothesis. Furthermore, we obtain explicit expressions for the plastic potential  +Π ( )D

and provide an approximate yield criterion for the porous aggregate in the form:

e
e

1
= 

3 D

= 
D

m
m





  


  

  (9)

     

Furthermore, since  + ++Π ( ) Π ( )D D , Gurson’s criterion is an upper bound of the new

approximate  criterion  (9).  Moreover,  the  new criterion  has  the  following  remarkable

properties:

(i) Yielding depends on the sign of the third invariant of the stress deviator. 

(ii) For stress-triaxialities 
e

mX



  different from 0 and ±∞, yielding depends on the signs

of  Σ
3J   and the mean stress. Specifically, an yield point characterized by  Σ

3J ≥0  and a

given stress-triaxiality  X  
is symmetric, with respect to the axis Σm = 0, to the yield

point characterized by Σ
3J  ≤0  and  X . 
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(iii)  Irrespective  of  the  sign  of  the  third  invariant  of  the  stress  deviator,  for  purely

deviatoric  loading,  yielding  occurs  at   eΣ = 1T f  ,  while  for  purely  hydrostatic

loadings, yielding occurs at:  m

2
Σ ln

3 T f .

Proof: 

For  11D > 0 and  m

1
D = tr 0

3
D , the overall plastic dissipation is:

   
6 3

2 2T
m e e m

Ω

b b
Π 4 D D + D D 1 3cos2θ   dΩ

V r r

            D (10)

so 
11 33D D

  
 

 and 
Dm




>0 . Hence, the stress state at yielding is such that 11 33    so

0J3   and mΣ 0 . On the other hand, for 11D < 0 and  m

1
D = tr 0

3
D :

   
6 3

2 2T
m e e m

Ω

b b
Π 4 D D - D D 1 3cos2θ   dΩ

V r r

            D (11)

so 
33 11

 > 
D D

  
 

 and 
Dm




>0  which corresponds to  Σ
m 3Σ 0 and  J 0  . 

Moreover, the overall plastic dissipation   Π D is invariant under the transformation:

(Dm,
11D )

  (-Dm,
11-D ), so the expression of  Π D for stress states corresponding to (

Σ
m 3Σ 0 and  J 0  )  is  identical  with  that  corresponding  to  stress  states  for  which  (

Σ
m 3Σ 0 and  J 0  ). Thus, according to the new criterion (9) yielding depends on the sign

of the third invariant of the stress deviator. Moreover, for stress-triaxialities different from
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0 and ±∞, (for which  e mD D 0 ), yielding also depends on the sign of the mean stress

(which has the same sign as  mD ). Furthermore, Eqs. (10) and (11) show that an yield

point characterized by Σ
3J ≥0  and a given stress-triaxiality X  

is symmetric, with respect

to the axis Σm = 0, to the yield point characterized by Σ
3J  ≤0  and  X .  Obviously, for

the special cases of purely hydrostatic ( D = 0), or purely deviatoric loading (Dm  = 0),

+ ++Π ( ) = Π ( )D D , so the new criterion (9) coincides with Gurson [1]. 

In what follows, we provide the explicit parametric representation of the yield surface

(9). The details of the calculations, i.e. substitution of Eqs. (10) and (11) into Eq. (9) and

further integration, are given in Appendix 1. 

The new approximate criterion for the porous aggregate is given by:

a) For  Σ
3J 0 , mΣ 0 , and any value of 

2 m

e

D
u

D
 :

 

2 2

2 2

2 2 2

3/23/2

1 1 1

1 1 1 1
ln

9 3 1

31 9 3 1 3 1 9 3 1
ln ln

18 3 3 18 3 3 1

2 2
tan 2 3 tan 2 3 tan 2 3

18 3 18 3

m

T

f u uf f

u u u f

u uf f u uf f u u u u

uu uf f u f u u

u u
u

f f



  

         
                                   

    
                 

  

   

1

2 2

2

tan 2 3

31 1 3 1
  1 ln ln

2 4 3 3 1 3
e

T

u

u uf f u uf ff u u
u u

u u u f u uf f










  



                                


(12a)

b) For  Σ
3J 0  and mΣ 0 :

b1) If  u f :

10



     
2 2

2 2 1 2 1

2 2 3

1 1 1 1

31 1 1 3
ln 9 3 tan 9 3 1 tan

9 3 11 9 3

2 22 2 1 2 1
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9 3 3 3 3 3

m

T
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2 2 3
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(12b)

b2)  If   1f u  :

     

   

2 2 2

2

2 2 2

3

12 2 1 2 1
ln 3 ln

3 18 9 33

31 3
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19 3
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m

T
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u f
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(12c)

b3) If  1u  :
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(12d)

Based on the property (ii) demonstrated earlier, the parametric representation of the yield

locus corresponding to Σ
3J 0  can be easily obtained from Eqs. (12):

c) For  Σ
3J 0  and mΣ 0 :

Σ
3

Σ
3

J   0,  0

J   0,  0

m m

mT T

e e

mT T

 

 

      


      

(13a)

where the right-hand expressions are given by Eqs. (12b-d).

d) For  Σ
3J 0  and mΣ 0 :

Σ
3

Σ
3

J   0,   0

J   0,   0

m m

mT T

e e

mT T

 

 

      


      

(13b)
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where the right-hand expressions are given by Eq. (12a).

It can be easily seen that for u    (purely hydrostatic loading) in Eq. (12a), we obtain:

m

2
Σ ln

3 T f ,  and  eΣ = 0 ;  and  for  u  0  (purely  deviatoric  loading),  mΣ = 0,  and

 eΣ = 1T f  , irrespective of the sign of the third invariant of the stress deviator. As

already  mentioned,  this  is  to  be  expected  since,  for  the  respective  stress  states,  the

proposed criterion and Gurson [1] coincide.  

For illustration of the features of the new criterion (Eq (12)), in what follows we present

plots  of  the  resulting  yield  surface  in  the  plane  (Σm,  Σe).  For  axisymmetric  loading,

   11 1 1 2 2 33 3 3=Σ + + Σ ,  Σ e e e e e e
 von Mises  equivalent  stress  is  11 33e     ,

the mean stress is   11 332 / 3m     , and the third invariant of the stress deviator is

  3

3 11 33

2
J

27
      , so  Σ

3J 0  corresponds to stress states for which  11 33    while  

Σ
3J 0 corresponds to stress states for which 11 33.  

Figure 1 shows the representation in the plane (Σm, Σe) of the yield surface corresponding

to  Σ
3J 0  (Eqs. 12) for a porosity f =0.05. Clearly, for triaxialities different from 0 and

±∞, the yield surface according to the new criterion is no longer symmetric with respect

to either the axis Σm= 0 or Σe= 0 . For a given absolute value of the strain-triaxiality u,

there are two yield  points  on the surface  with  different  absolute  value  of  the  stress-

triaxiality. For example,  in Fig. 1 are shown the yield points A (Σm/σT = 1.861, Σe/σT

=0.400) and B (Σm/σT = -1.867, Σe/σT =0.381), which correspond to u = 0.935. 

For the same porosity f = 0.05, the yield surface corresponding to Σ
3J 0  (stress states for

which  
11 33)    

is plotted in Fig.  2.  An yield point  corresponding to a given stress-

triaxiality X  is symmetric, with respect to the axis Σm= 0, to the point on the other yield
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surface ( Σ
3J  ≤0) corresponding to   X .  For example,  yield point C (Σm/σT = -1.861,

Σe/σT =0.400 and Σ
3J /σT  = 0.004741 ) has the same absolute value of stress-triaxiality as

the yield point A (Σm/σT = 1.861, Σe/σT =0.400 and Σ
3J /σT  = -0.004741) (see Fig. 1).  In

other words, the yield locus is invariant to transformations: (Σm, Σe, Σ
3J )

  (-Σm, Σe, - Σ
3J )

or   ).,(-, mm 

Figure 3 shows the yield curves according to the proposed criterion corresponding to

Σ
3J 0  and Σ

3J 0 , respectively, and Gurson yield surface, for the same porosity (f = 5%).

It is clearly seen that Gurson [1] is an upper-bound of the proposed criterion. 

While Gurson [1] is invariant to both    ),(, mm   and    )),(-, mm 

(i.e. it is symmetric to both the axis (Σe  =0) and the axis (Σm  =0) ), the new criterion is

invariant only to      ),(-, mm  and is insensitive to the sign of  m only for

purely deviatoric states (m =0). Note that according to the proposed criterion for mΣ 0 ,

the response is softer for Σ
3J 0  than for Σ

3J 0  (see also Fig. 4, showing different zooms

on the yield surfaces in the tensile quadrant). For purely deviatoric loading, the response

is the same, and the effect of Σ
3J  becomes noticeable with increasing triaxiality (see Figs.

4a-b). The normal to the yield surfaces are clearly different, determining distinct plastic

flow directions and resulting damage evolution. For triaxialities approaching infinity, the

effect of Σ
3J  starts to decrease, and both yield surfaces coincide at the purely hydrostatic

point (see Fig. 4c).

For completion, Fig. 5 shows the yield surface in the plane (11-33, m) according to the

new criterion and Gurson [1], for several porosities, 1%, 5%, and 15%. All yield surfaces

show the same trends described above. Irrespective of the porosity, the intersection of the

curves corresponding to Σ
3J 0  

( 11 33)   ) and Σ
3J 0 ( 11   33) belong to the axis m=
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0 (i.e. the yield surface is continuous at  m= 0); the proposed criterion coincides with

Gurson [1] only for the purely hydrostatic (11=22=33) or purely deviatoric  loadings

(m= 0).

 

In conclusion, it was demonstrated that for porous solids with homogeneous von Mises

matrix and spherical voids, the dilatational response displays a very specific dependence

on the signs of the mean stress and third invariant. Although the effect of Σ
3J  is small, it

affects not only the onset of plastic flow of the porous solid, but also void evolution.

Small changes in the direction of the normal to the yield surface affects plastic flow of

the aggregate and lead to changes in the rate of the damage growth. 

It is worth noting that while the analysis was performed for axisymmetric loadings and

Rice and Tracey [24] trial velocity field, the same symmetry properties of the dilatational

response of porous aggregates hold true for general loadings. 

Indeed, for a von Mises matrix, the exact overall potential:

   
Ω

Π = inf (v)
K ( )


v D

D d (14)

is  an  even  function  of  the  macroscopic  strain  rate  tensor  D.  In  Eq.  (14),  Ω  is  the

representative  volume  element,  K(D)  is  the  set  of  incompressible  velocity  fields

compatible with uniform strain rate boundary conditions while   denotes the average

value over the representative volume  Ω . It follows that the exact macroscopic plastic

potential 

   F  = sup :Π   
D

Σ Σ D D (15)

is also even in stresses  since:

       F  = sup : Π sup : ( ) Π F-         
D D

-Σ -Σ D D Σ D -D Σ (16)
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In the above equations  “:”  denotes  the double-contracted  product  of  the two tensors.

Since the voids are spherical and randomly distributed in the von Mises matrix, the exact

yield function of the porous solids is isotropic, so it depends on the stress tensor only

through the isotropic invariants, i.e.

   Σ
m e 3F FΣ Σ J, ,Σ  (17)

Since  F Σ  is an even function, it follows that

 Σ
m e 3FΣ Σ J, , =  Σ

m e 3F -Σ Σ J, , , (18)

which  means  that  the  exact  yield  surface  have  the  same symmetry  properties  as  the

approximate yield criterion developed (see Eq. (12-13) and Fig. 5), namely:

Σ Σ
3 3

Σ Σ
3 3

J   0,   0 J   0,   0

J   0,   0 J   0,   0

m m

m mT T

e e

m mT T

 

 

  
       



        

(19)

and that for Σ
3J   0  the exact yield criterion is symmetric with respect to  axis m = 0. 

3. Comparison with periodic unit cell calculations

Lebensohn et al. [23] recently extended a full-field spectral formulation based on Fast

Fourier Transforms (FFT) [16,17,20] to study the influence of different microstructural

features and type of loading on the dilatational viscoplastic behavior of periodic voided

materials (porous polycrystalline and homogenous matrix materials). Full details of the
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formulation  are given in  Lebensohn et  al.  [23]  and will  not  be repeated.  Only  some

essential aspects of the model implementation for porous materials with homogeneous

isotropic matrix are recalled here. A FFT-based calculation requires a discrete description

of  a  periodic  unit  cell  by means of  a  regularly-spaced grid,  which  was generated  as

follows.  A cubic domain was partitioned into a  regular  grid of 128x128x128 Fourier

points. To generate a porous material, the Fourier points were randomly picked to try to

accommodate (accounting for periodicity)  a cavity of radius r1 centered in that point,

surrounded by a "security" zone of radius r1+r2, where no other cavity was allowed. This

random process continued until the target porosity was reached. Setting r1=6 and r2=6.35

(in units of distance between adjacent Fourier points), a 5% porosity unit cell with and

109  voids  was  obtained.  Note  that  a  unit  cell  generated  in  this  way  is  only  an

approximation of a strictly isotropic porous material. To mitigate this concern, we have

verified that the flow stresses corresponding to axisymmetric loadings along the three

orthogonal directions that define the cubic domain are almost identical.   

All  Fourier  points not  belonging to the cavities  were assigned a material  constitutive

behavior      σσ,xx d ,  deriving  from  an  incompressible,  isotropic  power-law

potential of the form (see Duva and Hutchinson [6]):

1n

o

eoo )x(

1n
)σ,x(













 , (20)

where )(e x
 
is the local von Mises equivalent stress, 

o  and 
o  are reference stress

and strain rate, respectively, and  n is the stress exponent. The stress potential inside a

void is 0)σ,x(   if 0σ , and infinity otherwise. The effective viscoplastic behavior

of the aggregate is defined as the relation between the average stress    xσΣ  and

the average strain rate    xdD  over the aggregate. Formally, it is given by:
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)σ,x(min)Σ();Σ(

Σ
D

ΣSσ







(21)

where  )Σ( is the overall stress potential for the porous aggregate and  ΣS  denotes

the set of statically-admissible stress fields with prescribed average  Σ . The local and

effective  potentials  are  homogeneous  functions  of  degree  (n+1)  in  σ  and  Σ ,

respectively (see Duva and Hutchinson [6], Ponte Castaneda and Suquet [12]). Therefore,

the equipotential surface   )Σ( constant, fully characterizes the dilatational response

(see also Leblond et al [29]). Results are reported here in the form of equipotential (or

“gauge”) surfaces given by:
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n
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A more convenient equation can be obtained by writing the effective potential as:

  1n

o

oo Σ

1n
)Σ(













 (23) 

where the so-called gauge factor  Σ  is a homogeneous function of degree 1 in Σ  and

the   ΣΣΣ *  lies  on  the  gauge  surface.  Points  on  the  gauge  surface  can  be

determined by computing the effective stress potential for an applied macroscopic stress

of arbitrary magnitude, and rescaling the latter accordingly. In the limit when the power

law  exponent  tends  to  infinity,  the  theory  also  applies  to  rate-independent  perfect

plasticity with von Mises yield criterion (see Duva and Hutchinson [6], Leblond et al.

[29]).  Figure 6 shows the yield surfaces according to the new analytic yield criterion and

Gurson’s [1] criterion and the gauge surfaces obtained numerically for a stress exponent n

=  20.  The  gauge  surface  of  a  porous  material  with  power-law  matrix  and  n  =  20

viscoplastic behaviour will differ slightly from the yield surface of an analogous rate-

insensitive material, the exact difference depending on porosity and triaxiality. Yet,  the

main observation is that the unusual features of the dilatational response predicted by the

new criterion, namely the sensitivity to the sign of loading for triaxialities different from

0 and ±∞ and the very specific coupling between the mean stress and third invariant

predicted  by  the  new  criterion  are  indeed  confirmed  by  the  full-field  results. The

dilatational response predicted by the FFT-based method is softer than that predicted by

the new analytical criterion. This softer behavior predicted by the full-field calculation is

to be expected since in this approach distributed porosity was considered, which is known

to  imply  stronger  void  interaction,  and  therefore  a  slightly  softer  effective  response,

compared with the hollow sphere solution Ponte Castaneda et Suquet [12]. 
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4. Summary and Conclusions

In this paper, we demonstrated that the insensitivity of Gurson’s criterion to the third

invariant  and  the  ensuing strong symmetry  properties  of  the  yield  surface  are  direct

consequences of a simplifying hypothesis, namely that the “crossed term” m 11D D  in the

expression  of  the  plastic  strain  rate  dissipation  can  be  neglected.  Specifically, it  was

shown that neglecting this term amounts to neglecting the third invariant influence as

well as coupling effects between the mean stress and the stress deviator on yielding of the

porous aggregate. Furthermore, a new yield criterion was developed in closed form (the

parametric representation of the yield surface is given by Eqs. (12-13)). This criterion

predicts that for stress-triaxialities different from 0 and ±∞, the dilatational response is

sensitive to the signs of the mean stress and the third invariant. Gurson criterion is an

upper-bound for the new criterion, only for purely hydrostatic or purely deviatoric states,

the new criterion coincides with Gurson’s.  Specifically ,while Gurson (1977) is invariant

to  both  transformations    ),(, mm   and    )),(-, mm  ,  the  new

criterion is invariant only to   ),(-, mm  , and is insensitive to the sign of  m

only for purely deviatoric states (m =0). Also, according to the proposed criterion for

mΣ 0 ,  the  response  is  softer  for  Σ
3J 0  than  for  Σ

3J 0  (see   Fig.  4).  For  purely

deviatoric loading, the response is insensitive to the sign of Σ
3J  while there is a slight Σ

3J

effect  with  increasing  triaxiality  (see  Figs.  4a-b).  The  normal  to  the  yield  surface

corresponding  to  Σ
3J 0 and  Σ

3J 0 ,  respectively,  are  clearly  different,  determining

distinct  plastic  flow  directions  and  resulting  void  growth  rates.  For  triaxialities

approaching infinity, the effect of Σ
3J  starts to decrease and as expected it is nil for purely

hydrostatic loading (see Fig. 4c).
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In summary, although the effect of the third invariant on yielding is small, its effects on

void evolution may become large, considering that very small changes in the direction of

the normal to the yield surface affect plastic flow of the aggregate and may lead to large

changes in the rate of the damage growth. A full-field dilatational viscoplastic FFT-based

approach  was  also  used  to  generate  gauge  surfaces  for  periodic  viscoplastic  porous

materials with matrix’s response depending only on the von Mises effective stress and

subject to axisymmetric loading conditions. The numerical calculations reveal the same

new  trends  as  the  approximate  yield  criterion  (Eq.  12-13),  namely:  a  very  specific

coupling between the third invariant and mean stress. Furthermore, it was also shown that

the  exact  criterion  for  a  porous  solid  with  von  Mises  matrix  has  the  same  unusual

properties.  This  coupling  and the  resulting  lack  of  symmetry  of  the  yield  surface  of

porous  solids  with  isotropic  matrix  described  by  a  plastic  potential  even  in  stresses

deserve further systematic experimental and numerical investigations. 
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Appendix: Parametric representation of the analytic yield surface

A1) For e
11

D
D

2
  > 0 and  m

1
D = tr 0

3
D :

It follows that 
m m

e e

D D
u = 2 2

D D
  , and the overall plastic potential of the porous solid is

given by  (see Eq. (10)):

   
6 3

2 2T
m e e m

Ω

b b
Π 4 D D + D D 1 3cos2θ   dΩ

V r r

            D (A.1) 

with  3 2V 4πb /3 and dV= r sin θ dθdφdr .  Using  the  change  of  variable,  
3

3

u b
y =

r
 and

 = cosθ , respectively,  the integral (A.1) can be written in the form:

 
 2 2/

1

T e 20

1+ y y 3α 1
Π D  dαdy

y

u f

u

u
 

  D (A.2)

Note that: 

 2 21 2

2 2 5/2 2
0

1+ y y 3α 1 1 31 1
 dα = ln

y 2 2 3 1

y yy y y

y y y y

        
   

 (A.3)

Further integration with respect to y leads to:

  T eΠ D u F( u/f ) F( u )    D (A.4)

with:
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(A.5)

It follows that the parametric representation of the yield surface is:

       

   e

e

F u/f1 2 u
=  F u/f F u F u  

3 D 3 2 f

F u/fu u
= F u  

D 2 f

m

T m

T









             
   


       
 
 

(A.6)

where the prime symbol indicates first derivative. Substitution of (A.5) into (A.6)
leads to Eq. (12).

A2) For   e
11

D
D

2
  > 0 and  

m

1
D = tr 0

3
D

 
:

It follows that 
m m

e e

D D
u = 2 2

D D
   , and the overall plastic potential of the porous solid

(see Eq. (11)) is:

 
 2 2/

1

T e 20

1+ y -y 3α 1
Π D  dαdy
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  D (A.7)

Note that:
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y yy y

y yy


         
 (A.8)

Further integration with respect to y leads to:
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with: 
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Figure Captions

Figure  1: Yield  surface  according  to  the  new  criterion,  corresponding  to  Σ
3J 0 and

porosity f=0.05, showing sensitivity of yielding to the sign of the mean stress.

Figure  2: Yield  surface  according  to  the  new  criterion,  corresponding  to  Σ
3J 0 for

porosity f=0.05.

Figure 3: Yield surface of the porous solid according to proposed criterion for Σ
3J 0 and

Σ
3J 0 , respectively, and comparison with Gurson (1977) for porosity f=0.05.

Figure 4: Zoom on the tensile quadrant of the yield surfaces according to the new yield

criterion, for Σ
3J 0  and Σ

3J 0 , and Gurson (1977) criterion, for porosity f=0.05, within

following ranges: (a) ( mΣ 0 , 0.8 <Σe < (1-f)) ; (b) ( mΣ 0 , 0.3 < Σe < 0.8): (c) ( mΣ 0 ,

0 < Σe < 0.5).

Figure 5: Yield surfaces obtained with the new yield criterion, and with Gurson (1977),

for porosities f=1%, 5% and 15%. The blue lines represent the yield surfaces for Σ
3J 0

and the red lines for Σ
3J 0 . The dashed lines are Gurson’s yield surface.

Figure  6: Yield  surfaces  obtained  with the  new yield  criterion  (solid  lines)  and with

Gurson (1977) (dashed line), and points belonging to gauge surfaces calculated with the

FFT-based model for a periodic until cell. In all cases, porosity f=0.05. The blue line and

symbol correspond to Σ
3J 0 , and the red line and symbol to Σ

3J 0 .
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Figure  1: Yield  surface  according  to  the  new  criterion,  corresponding  to  Σ
3J 0 and

porosity f=0.05, showing sensitivity of yielding to the sign of the mean stress.
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Figure  2: Yield  surface  according  to  the  new  criterion,  corresponding  to  Σ
3J 0 and

porosity f=0.05.
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Figure 3: Yield surface of the porous solid according to proposed criterion for Σ
3J 0 and

Σ
3J 0 , respectively, and comparison with Gurson (1977) for porosity f=0.05.
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(a)

(b)

 (c)
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Figure 4: Zoom on the tensile quadrant of the yield surfaces according to the new yield

criterion, for Σ
3J 0  and Σ

3J 0 , and Gurson (1977) criterion, for porosity f=0.05, within

following ranges: (a) ( mΣ 0 , 0.8 <Σe < (1-f)) ; (b) ( mΣ 0 , 0.3 < Σe < 0.8): (c) ( mΣ 0 ,

0 < Σe < 0.5).
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Figure 5: Yield surfaces obtained with the new yield criterion, and with Gurson (1977),

for porosities f=1%, 5% and 15%. The blue lines represent the yield surfaces for Σ
3J 0

and the red lines for Σ
3J 0 . The dashed lines are Gurson’s yield surface.
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Figure  6: Yield  surfaces  obtained  with the  new yield  criterion  (solid  lines)  and with

Gurson (1977) (dashed line), and points belonging to gauge surfaces calculated with the

FFT-based model for a periodic until cell. In all cases, porosity f=0.05. The blue line and

symbol correspond to Σ
3J 0 , and the red line and symbol to Σ

3J 0 .
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