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Distributed Control Design for Balancing the
Grid Using Flexible Loads

Yue Chen, Md Umar Hashmi, Joel Mathias, Ana Bušić, and Sean Meyn

Abstract Inexpensive energy from the wind and the sun comes with unwanted
volatility, such as ramps with the setting sun or a gust of wind. Controllable gener-
ators manage supply-demand balance of power today, but this is becoming increas-
ingly costly with increasing penetration of renewable energy. It has been argued
since the 1980s that consumers should be put in the loop: “demand response” will
help to create needed supply-demand balance. However, consumers use power for a
reason, and expect that the quality of service (QoS) they receive will lie within rea-
sonable bounds. Moreover, the behavior of some consumers is unpredictable, while
the grid operator requires predictable controllable resources to maintain reliability.
The goal of this chapter is to describe an emerging science for demand dispatch
that will create virtual energy storage from flexible loads. By design, the grid-level
services from flexible loads will be as controllable and predictable as a generator or
fleet of batteries. Strict bounds on QoS will be maintained in all cases. The poten-
tial economic impact of these new resources is enormous. California plans to spend
billions of dollars on batteries that will provide only a small fraction of the balanc-
ing services that can be obtained using demand dispatch. The potential impact on
society is enormous: a sustainable energy future is possible with the right mix of
infrastructure and control systems.
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1 Introduction

As more wind and solar energy come online, the system operators who run the
power grid are faced with a problem: how do they compensate for the variable nature
of the sun and wind?

Low frequency variability from solar gives rise to the famous “duck curve” an-
ticipated at CAISO [8]: It is predicted that ramps of 30% of the load over a few
hours may be commonplace. In 2011, they introduced new market rules for pric-
ing flexible ramping products to help combat this volatility. Fig. 1 is taken from a
2014 presentation at the Southwest Power Pool (SPP) working group meeting.1 The
net-load on March 8, 2014 shows the emergence of the CAISO duck-curve. The
price data illustrates that insufficient ramping resources can cause enormous spikes
in wholesale power prices.

Impact of wind and solar on net-load at CAISO
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Fig. 1 Interaction between power & price dynamics at CAISO.

MISO (an ISO in central North America) recently alerted FERC to the need for
new market rules to incentivize ramping products. They argue that the need for these
services is increasing with the introduction of renewable energy: “under its current
market structure, short-term Net Load variations could create a situation where dis-
patchable resources have sufficient capacity, but there is a short-term scarcity event
because MISO has inadequate ramp capability to respond to unexpected variations
in Net Load ... such ramp capability shortages could result in ... dispatch intervals
during which the price of energy can increase significantly due to scarcity pricing,
even if the event does not present a significant reliability risk”2. MISO is not con-
cerned about energy: they are lacking responsive resources, even though there is
sufficient capacity.

The control systems diagram in Fig. 2 provides a simple view of how the grid is
operated today, in which wind and solar are viewed as sources of disturbances. In
North America, the GRID block is in fact a subset of the grid called a balancing
region. The block denoted Compensation represents a balancing authority (BA).

1 From Tony Delacluyse of PCI, with permission.
2 http://tinyurl.com/FERC-ER14-2156-000
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The grid-level measurements obtained by the BA are summarized as a scalar func-
tion of time called the area control error (ACE). It is a linear combination of two
error signals: the deviation of local grid frequency from the nominal 60 Hz, and
the tie-line error — defined as the mismatch between scheduled and actual flow of
power out of the balancing region. Command signals are broadcast to resources such
as controllable generators so that the ACE signal is kept within desired bounds.

The compensator Gc is designed by the BA in a particular region. For example,
PJM (an RTO in the Eastern U.S.) creates their RegA and RegD signals by passing
the ACE signal first through a PI compensator, and then through a bandpass filter. In
this case the compensator Gc in Fig. 2 is taken to be a PI controller, and the bandpass
filters are embedded in the block denoted Actuation. The decomposition “H =Ha+
Hb + · · ·” represents many resources acting in parallel to provide actuation, which
may include controllable generation and batteries.

It is anticipated that the basic architecture illustrated in Fig. 2 will remain in
place for many decades to come. The grid will become more adaptable to persistent
disturbances or crisis through a combination of control techniques and hardware.

Compensation

+

Disturbances

Measurements

GRIDActuation

Gc H Gp
∆

P
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liv
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= Ha + Hb + · · ·

Y (t)U(t)

Fig. 2 Power Grid Control Loop. A question addressed in this chapter: where do we find H?

The term ancillary service refers to resources required to maintain supply-
demand balance in the grid, but do not necessarily supply energy. While control-
lable generation is the most common source of most ancillary services today, other
technologies such as flywheels and batteries are increasingly popular because of
their performance, and because of new state and federal policies. The FERC re-
port [37, pp. 23-24] contains a survey of experiments conducted by Beacon Power
and Primus Power on the value of highly responsive resources for ancillary service.
Primus claims approximately 76 percent more ACE correction compared with what
can be obtained from generation sources. This is because a slower “... resource lags
to the point of working against needed ACE correction.” In addition to their poorer
performance, the use of generation for ancillary service may be costly in terms of
fuel and emissions because the generators are not running at their ideal conditions,
and in fact may be online only to help regulate the grid.

The California Public Utilities Commission has encouraged utilities to invest bil-
lions of dollars on batteries, and many have responded. Southern California Edison
(SCE) recently announced the “largest battery in the world.” It is capable of stor-
ing 32 MWhs (megawatt-hours) of energy. It is not a single battery, but a 6,300
square-foot facility that houses an enormous array of lithium-ion batteries.
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Purpose of this chapter. Batteries may be a clean source of ancillary service, but
currently they are an expensive solution. In addition to the large space required for
large systems, batteries have finite life time, and waste energy as they are charged
and discharged to service the grid [17].

Distributed control architectures are described in this chapter to create virtual en-
ergy storage (VES) based on the inherent flexibility in power consumption from a
majority of loads. The ancillary services that can be obtained include regulation
(such as automatic generation control, or AGC), smooth peaks in load, address
ramps from wind or solar generation, and help to recover gracefully from contin-
gencies such as generation faults. It is believed that VES is a low-cost complement
to batteries and power plants, and may in the future provide the majority of required
ancillary services.

The term Demand Dispatch is a convenient alternative to Demand Response; the
latter is defined by policy makers and regulatory bodies (such as FERC) as load-
shedding in exchange for some monetary reward. Load shedding is not the goal
of the technology surveyed here. In applications to both regulation and ramping
services, the distributed control algorithms are designed so that power consumption
is increased and decreased over time, while keeping the total energy deviation over
time at zero — just like charging and discharging of a battery.

The control architectures described in this chapter are based on a series of papers
on distributed control [35, 36, 13, 11]. The proposed frequency decomposition of
VES resources was first introduced in [20, 19] in the context of commercial build-
ings, and generalized in [1]. The key novel contribution in all of this work is the
focus on “intelligence at the load”, manifested by local control loops. There are
many benefits:

(i) Communication infrastructure requirements are reduced, which hopefully leads
to both improved security, and higher consumer confidence regarding privacy.

(ii) A simple control problem at the BA, since the single-input / single-output sys-
tem is highly controllable.

(iii) Strict bounds on quality of service (QoS) to the consumer are guaranteed.

This chapter does not consider market issues. It is assumed that consumer engage-
ment will be achieved through contractual agreements and periodic credits, such as
those offered by Florida Power and Light in their OnCallr program.

Some history and further reading. In the early eighties, Schweppe wrote a series
of influential articles on the value of new architectures for the grid [41, 40], with
an emphasis on demand response based on either automation or prices. Tools for
analysis were lacking at the time, but many researchers came to fill the void. An in-
fluential example is the paper [29], that introduced ideas from statistical mechanics
to model a large population of thermostatically controlled loads (TCLs).

There is substantial literature on indirect load control, where customers are en-
couraged to shift their electricity usage in response to real-time prices (several pa-
pers in this volume survey this literature, including the articles authored by Spence
and by Moye). Dynamic prices can introduce uncertain dynamics, such as cyclical
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price fluctuations and increased sensitivity to exogenous disturbances, and present
a risk to system stability [39, 9, 15].

Randomization is an essential element of the distributed control architecture de-
scribed in this chapter. Its value has been widely recognized in academia as well as
industry [42].

On the academic side, Matheiu’s dissertation [32] and references [33, 34] were
highly influential, motivating in part the research surveyed in this chapter and oth-
ers [16, 26, 46, 48]. The control model in [32] is based on the mean-field setting of
[29], with the introduction of a control signal from a central authority: at each time
slot, a BA or aggregator broadcasts probability values {p⊕τ , p	τ : τ ∈ R} where p⊕τ
(p	τ ) denotes the probability of turning the device on (off) when the temperature of
the device is τ . The temperatures are binned to obtain a finite state-space aggregate
model. This model is bilinear and partially observed, where the state x is the his-
togram of load temperature and power consumption. The bilinear control system is
transformed to a linear model by defining products of probability and state as an in-
put. The resulting linear state space model has the same state, but the vector-valued
input is now defined as products of the form uk = pm

τ x j for some τ(k), j(k), and
m(k) ∈ {⊕,	}. Feedback control design is performed based on LQR. However, it
is still necessary to recover the probability vector {pm

τ }. In this prior work, this is
defined as the ratio of components of the input u(t), and components of the esti-
mate of the state at time t (see e.g. eq. (11) of [34]). It is assumed that estimates
are computed by the BA based on measurements of aggregate power consumption.
A current challenge with this approach is the creation of sufficiently accurate state
estimates for an inherently infinite-dimensional system. Challenges to state estima-
tion are discussed in [13], where it is shown that the linearized mean field model
may not be observable. Robustness of this approach to bilinear control systems is
another important area for future research.

The approach to distributed control surveyed in Sections 2 and 3 involves an en-
tirely different approach to local control at each load. One example is the Individual
Perspective Design (IPD) described in Section 3.2. This can be regarded as an appli-
cation of the MDP technique of Todorov [44], but only in one special case: the con-
struction of [44] can be applied only if there is no exogenous stochastic disturbance
in the load model. Contained in Section 3.2 are techniques to extend this design to a
broader class of load models. These ideas were first applied to demand-dispatch in
[35], and have seen many extensions since. For more history the reader is referred
to [36, 14], in addition to the papers surveyed in Section 3.2. While beyond the
scope of this article, it is important to note that Todorov’s ‘linearly solvable’ MDP
model [44] is similar to prior work such as [24], and the form of the solution could
have been anticipated from well-known results in the theory of large-deviations for
Markov chains [7]. It is pointed out in [45] that this approach has a long history in
the context of controlled stochastic differential equations [18].

The remainder of the chapter consists of six sections organized as follows. Sec-
tion 2 contains a high-level description of the control architecture, with details on
distributed control contained in Section 3. The next three sections contain examples
of distributed control of a large collection of resources in three settings: Section 4



6 Yue Chen, Md Umar Hashmi, Joel Mathias, Ana Bušić, and Sean Meyn

concerns TCLs, Section 5 presents application to a population of residential pool
pumps, and Section 6 describes application of similar methodology to a spatially
distributed population of batteries. Conclusions and discussion of future research is
contained in Section 7.

2 Distributed Control Architecture

This section contains a list of specific goals, and general control design techniques
that offer solutions.

Problem statement. The grid operator requires resources to balance the grid at
all times. The hypothesis of this chapter is that a large proportion of the needed re-
sources can come in the form of virtual storage from flexible loads. Reliable grid
services can be obtained from loads, but this requires a well-designed control archi-
tecture.

A particular hierarchical control architecture is developed in this chapter. One
realization is illustrated by the feedback structure shown in Fig. 2, in which the
actuation block is composed of many resources acting in parallel, including genera-
tion, batteries, and virtual energy storage.

Assumptions regarding this control structure include

(i) Local control: This will be based in part on randomized decision rules. This
provides necessary degrees of freedom in shaping aggregate dynamics. Random-
ization also helps to prevent synchronization of the response from loads.

(ii) Information flow from loads: Two-way information exchange between the BA
and individual loads is not a component of this architecture. In [36] it is assumed
that the BA measures aggregate power consumption from the loads under its au-
thority. Alternatively, each load broadcasts its power state several times per day,
and aggregate power consumption is estimated at the BA [13].
In [30, 31] it is argued that it is possible to create a reliable control system in
which direct information flow from loads to BA is entirely absent. This requires
more complex control at each load, and hence is beyond the scope of this chapter.

(iii) Information flow from the BA: A single regulation signal is broadcast to each
collection of loads of the same class, as illustrated in Fig. 3. This signal is designed
based on grid level measurements, and a model of the aggregate behavior of the
loads in each class.

The value of “local intelligence” at each load is vital for the envisioned architec-
ture. Feedback loops at each load are used to ensure that QoS constraints are met,
and also so that the aggregate of loads will appear to the grid operator as a reliable
resource – much like a battery system, or a controllable generator.

Consumer choice will be an input to any VES system, and a monetary reward
may be part of the arrangement. A contract for services can be established so that
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the consumer is rewarded for participation, without exposing him or her to the com-
plexity and uncertainty of the grid. In this way the BA or aggregator can design the
system so that highly reliable grid services are obtained, while respecting the QoS
constraints of the consumer.

In the future it is possible that some loads will be grid-friendly by design; the
consumer will never know that their refrigerator is helping to regulate the grid.

Fig. 3 Control architecture: a
common command signal is
transmitted to each load in a
particular class. The resulting
input-output system from ζ

to power consumption y is
regarded as virtual energy
storage.

...

Load 1

Load 2

Load N

+
ζ y

Aggregate
Power
Consumption

Command
from BA or
aggregator

Local control The lowest level of control in the proposed architecture is at an
individual load, such as a water heater, refrigerator, agricultural water pump, or air-
conditioner. The load is equipped with sensors. For example, the microprocessor in
a water heater receives measurements of water temperature at one or more locations
in the unit. It is also assumed that the load receives measurements from the grid.
This could be purely local, such as the grid frequency measured locally [30, 31].
Theory is best developed in the setting where each load receives a signal from the
BA.

The local control loop is designed to meet these potentially conflicting goals: 1.
Ensure that the load is providing the desired services to the consumer, respecting
strict bounds on QoS, and 2. Ensure that the aggregate of loads responds to a signal
from the BA in a manner that is both predictable and beneficial to the grid.

One obvious challenge: the degrees of freedom are extremely limited for a typical
load of interest. For example, a residential water heater or refrigerator can be in
only one of a small number of power states. Contained in Section 3 are several
design techniques for local control that result in smooth aggregate behavior. This
is possible without the introduction of complex scheduling rules, or the solution of
real-time optimization problems at the BA.

Macro control This high-level control layer may be a part of the traditional BA,
or through a load aggregator. The balancing challenges are of many different cate-
gories, on many different time-scales:

(i) Automatic Generation Control (AGC): time scales of seconds to 20 minutes.
(ii) Balancing reserves. In the Bonneville Power Authority, the balancing reserves

include both AGC and balancing on timescales of many hours.3

(iii) Contingencies (e.g., a generator outage)
The final two challenges are observed in Fig. 1:

3 Balancing on a slower time-scale is achieved through real time markets in some other regions of
the U.S., and in every region under the jurisdiction of an RTO.
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(iv) Peak shaving.
(v) Smoothing ramps from solar or wind generation.

In this chapter it is assumed that these high-level control problems are addressed
as they are today: the BA receives measurements of the grid, and based on this
information sends out signals to each resource in its domain. In many cases control
loops are based on standard PI (proportional-integral) control design.

The difference here is that some resources are virtual, such as a collection of
water heaters. A large collection of batteries distributed across the region might be
regarded as a single resource – in this case, local control loops will be installed in
each battery system so that the aggregate behaves as a single massive battery.

3 Mean-Field Control Design

Standard approaches for solving a stochastic control problem include stochastic dy-
namic programming and Markov decision processes (MDP) [38]. The future power
grids will contain millions of smart components, which prohibits centralized deci-
sion making using these techniques as they do not scale well with the number of
different components in the system (both the state space and the control space of the
model grow exponentially with the number of components). The extension of MDP
models to the case of optimization problems involving many agents that are making
decisions based on partial knowledge of the system is called DEC-POMDP (decen-
tralized partially observable MDP). These problems are NEXP-hard for the finite
horizon optimization case [2], and undecidable in the infinite horizon case [28].

In physics and probability theory, mean field theory (MFT) approximates the be-
havior of a large number of small individual components which interact with each
other. The effect of all the other individuals on any given individual is approxi-
mated by a single averaged effect, thus reducing a many-body problem to a one-
body problem. The mean-field ideas first appeared in physics in the work of Pierre
Curie and Pierre Weiss to describe phase transitions [23, 47]. Approaches inspired
by these ideas have seen applications in epidemic models [3], computer network
performance and game theory [27, 22]. In power systems, they were first used to
model the aggregate dynamic of the collection of water-heaters in [29], and more
recently in [25, 46, 43]. However, the global objective optimization under mean-
field interactions remains very challenging and an exact analysis is possible only
under restrictive assumptions on the local dynamics and the cost structure. There is
still a significant gap between the theoretical assumptions and the applications, and
the results may be sensitive to the modeling errors.

The approach in [11, 13, 6] combines the mean-field theory with classical feed-
back control. The main idea consists in defining a parametrized family of random-
ized local decision rules that lead to an aggregate behavior with desirable control
properties (e.g. passivity for the linearized aggregate input-output system).

This section provides an overview of key concepts and results of this approach.
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3.1 Mean-field model

A nominal Markovian model for an individual load is created based on its typical
operating behavior. This is described as a Markov chain with transition matrix de-
noted P0, with state space X = {x1, . . . ,xd}. For example, a water chiller turns on
or off depending upon the temperature of the water. In this case, a state value xi

encodes water temperature as well as the power state (on or off).
A family of transition matrices {Pζ : ζ ∈ R} is then constructed to define local

decision making. Each load evolves as a controlled Markov chain on X, with com-
mon input ζζζ = (ζ0,ζ1, . . .). It is assumed that the scalar signal ζζζ is broadcast to
each load. If a load is in state x at time t, and the value ζt is broadcast, then the load
transitions to the state x′ with probability Pζt (x,x

′). Letting X i
t denote the state of

the ith load at time t, and assuming N loads, the empirical pmf (probability mass
function) is defined as the average,

µ
N
t (x) =

1
N

N

∑
i=1

1{X i
t = x}, x ∈ X.

The mean-field model is the deterministic system defined by the evolution equa-
tions,

µt+1 = µtPζt , t ≥ 0, (1)

in which µt is a row vector of dimension d. Under general conditions on the model
and on µ0 it can be shown that µN

t is approximated by µt .
In [11, 13, 36] it is assumed that average power consumption is obtained through

measurements or state estimation: Let U (x) denote power consumption when the
load is in state x, where U : X→ R+. The average power consumption is denoted

yN
t =

1
N

N

∑
i=1

U (X i
t ) ,

which is approximated using the mean-field model:

yt = ∑
x

µt(x)U (x), t ≥ 0. (2)

The next subsection describes the linearized dynamics. Sections 3.2–3.3 provide
an overview of design techniques for the parametrized transition family {Pζ : ζ ∈
R}, to ensure that the linearized input-output model has desirable properties for
control at the grid level.

Linearized mean-field model The mean-field model (1) is a state space model that
is linear in the state µt , and nonlinear in the input ζt . The observation equation (2)
is also linear as a function of the state. Assumptions imposed in [11, 13, 36] imply
that the input is a continuous function of these values. The design of the feedback
law ζt = φt(y0, . . . ,yt) is based on a linearization of this state space model.



10 Yue Chen, Md Umar Hashmi, Joel Mathias, Ana Bušić, and Sean Meyn

The linearized input-output model requires additional notation. The derivative of
the transition matrix is also a d×d matrix, denoted

Eζ =
d

dζ
Pζ (3)

Denote Ũ ζ = U − Ū ζ , with Ū ζ = πζ (U ).
The invariant pmf πζ for Pζ is regarded as the equilibrium state for the mean-field

model (1), with respect to the constant input value ζt ≡ ζ . The linearization about
this equilibrium is described in Prop. 1. The proof can be found in [36, Prop. 2.4].

Proposition 1. Consider a family of transition matrices {Pζ : ζ ∈ R} that are con-
tinuously differentiable in ζ . Assume also that Pζ is irreducible and aperiodic for
each ζ . The unique invariant pmf πζ is an equilibrium for (1) when ζζζ takes on this
constant value. The input-output model with state evolution (1), input ζζζ , and output
(2) admits a linearization about this equilibrium. It is described as a d-dimensional
state space model with transfer function,

Gζ (z) =C[Iz−A]−1B (4)

in which A = PT
ζ

, Ci = Ũ ζ (xi) for each i, and

Bi = ∑
x

πζ (x)Eζ (x,x
i), 1≤ i≤ d (5)

3.2 Local control design

It is assumed throughout this chapter that the family of transition matrices used for
distributed control is of the form,

Pζ (x,x
′) :=P0(x,x′)exp

(
hζ (x,x

′)−Λhζ
(x)
)

(6)

in which hζ is continuously differentiable in ζ , and Λhζ
is the normalizing constant

Λhζ
(x) := log

(
∑
x′

P0(x,x′)exp
(
hζ (x,x

′)
))

(7)

Each Pζ is irreducible and aperiodic under the assumption that this is true for P0.

Myopic design and the exponential family. A simple choice is the myopic design.
This is obtained by setting hζ (x,x′) = ζU (x′),

Pmyop
ζ

(x,x′) :=P0(x,x′)exp
(
ζU (x′)−Λζ (x)

)
(8)
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with the normalizing constant Λζ (x) := log
(

∑x′ P0(x,x′)exp
(
ζU (x′)

))
. This corre-

sponds to a tilted probability transition matrix, favoring the transitions to states with
lower power consumption when ζ < 0, and to states with higher power consumption
when ζ > 0.

Advantages of this design include ease of implementation, and the straightfor-
ward generalization to the continuous state space case. This generalization will be
illustrated in Sections 4 and 6.

It is possible to consider any other family of functions, linear with respect to ζ ,
leading to an exponential family for {Pζ : ζ ∈ R},

hζ (x,x
′) = ζ H0(x,x′). (9)

The choice of H0 will typically correspond to the linearization of a more advanced
design around the value ζ = 0 (or some other fixed value of ζ ). One example is
given in Section 3.3.

Individual Perspective Design. Consider a finite-time-horizon optimization prob-
lem: For a given terminal time T , let p0 denote the pmf on strings of length T :

p0(x1, . . . ,xT ) =
T−1

∏
i=0

P0(xi,xi+1) ,

where x0 ∈ X is assumed to be given. The scalar ζ ∈R is interpreted as a weighting
parameter in the following definition of total welfare. For any pmf p, this is defined
as the weighted difference,

W T (p) = ζEp

[ T

∑
t=1

U (Xt)
]
−D(p‖p0) (10)

where the expectation is with respect to p, and D denotes relative entropy:

D(p‖p0) := ∑
x1,...,xT

log
( p(x1, . . . ,xT )

p0(x1, . . . ,xT )

)
p(x1, . . . ,xT )

It is easy to check that the myopic design is an optimizer for the horizon T = 1,

Pmyop
ζ

(x0, ·) ∈ argmax
p

W 1(p).

The infinite-horizon mean welfare is denoted,

η
∗
ζ
= lim

T→∞

1
T

W T (p∗T ) (11)

The two terms in the welfare function (10) represent the two conflicting goals: To
provide service to the grid and to reduce deviation of the load’s behavior from the
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nominal. If the controlled probability p is chosen to be different from p0, it poten-
tially reduces the QoS to the consumer, which is modeled by the term “−D(p‖p0).”

Recall that U (Xt) is equal to the power consumption of the load at time t. If
the grid operator desires lower power demand than the nominal value, this goal is
modeled through the first term in (10) whenever the parameter ζ is negative.

A solution to the infinite horizon problem is given by a time-homogenous
Markov chain whose transition matrix is obtained following the solution of an eigen-
vector problem, based on the d×d matrix,

P̂(x,x′) = exp(ζU (x))P0(x,x′) , x,x′ ∈ X . (12)

Let λ > 0 denote the Perron-Frobenious eigenvalue, and v the eigenvector with non-
negative entries satisfying,

P̂v = λv (13)

The proof of Prop. 2 is contained in [36, Section II], following [44].

Proposition 2. If P0 is irreducible, an optimizing p∗ that achieves (11) is defined by
a time-homogeneous Markov chain whose transition probability is defined by,

P̌ζ (x,x
′) =

1
λ

1
v(x)

P̂(x,x′)v(x′) , x,x′ ∈ X . (14)

3.3 Uncontrolled dynamics

In many cases it is not possible to apply the IPD solution in the form (14) because
a portion of the stochastic dynamics are not directly controllable. Consider a load
model in which the full state space is the Cartesian product X= Xu×Xn, where Xu

are components of the state that can be directly manipulated through control.
In prior work [7, 6], the following conditional-independence structure is as-

sumed: for each state x = (xu,xn), and each ζ ∈ R,

P̌ζ (x,x
′) = Rζ (x,x

′
u)Q0(x,x′n) ,

Rζ (x,x
′
u) = R0(x,x′u)exp

(
hζ (x,x

′
u)−Λhζ

(x)
) (15)

where ∑x′u Rζ (x,x′u) = ∑x′n Q0(x,x′n) = 1 for each x and ζ . The matrix Q0 is out of
our control – this models load dynamics and exogenous disturbances. For example,
it may be used to model the impact of the weather on the climate of a building. The
matrices {Rζ} are a product of design.

It is reasonable to assume that U is a function only of Xu; the power state is
directly controllable. In this case the myopic design (8) is unchanged, hζ (x,x′u) =
ζU (x′u).

The formulation of the IPD optimization problem is unchanged, but its solution
is not in the form (14). A computational ODE approach is introduced in [7, 6]: for a
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vector field V whose domain and range are functions on X×Xu,

d
dζ

hζ = V (hζ ) , ζ ∈ R , h0 ≡ 1 .

Besides its computational value, this approach provides a useful alternative to
the myopic design. The function H0 = V (h0) can be used in the exponential family
design (9). It is shown in [7] that this function is a solution to Poisson’s equation for
the nominal model: P0H0 = H0− Ũ 0.

Motivation for the IPD design or its exponential family approximation is in part
empirical. In nearly every numerical experiment conducted to-date, it is found that
the resulting input-output mean field model appears nearly linear over a large range
of ζ , and also minimum phase. Moreover, in nearly all cases the linearization (4) is
passive when the delay is removed. That is, the transfer function zC[Iz−A]−1B is
strictly positive real.

Passivity can be established mathematically for a restricted class of models [5],
or using a different ODE called the system perspective design (SPD) [6].

3.4 Quality of service and opt-out

In analysis of QoS it is convenient to consider a steady-state setting: the state process
for each load is assumed to be a stationary process on the two-sided time interval.
It is also useful to consider a functional form for QoS – the following conventions
were introduced in [11].

Several QoS metrics may be considered simultaneously, but each are assumed to
be of the following form. Assumed given is a function ` : X→ R, defined so that
Li

t := `(X i
t ) describes a “snap-shot” indication of QoS for the ith load at time t. The

function ` may represent the temperature of a TCL, cycling of an on/off load, or
power consumption as a function of x ∈ X.

Second is a stable transfer function denoted HL . The QoS of the ith load at time
t is defined by passing LLLi through the transfer function HL . Two classes of transfer
functions HL are considered in prior research and examples in this chapter:

(i) Summation over a finite time horizon Tf :

L i
t =

Tf

∑
k=0

`(X i
t−k). (16)

(ii) Discounted sum, with discount factor β ∈ [0,1):

L i
t =

∞

∑
k=0

β
k`(X i

t−k) . (17)
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When β is close to unity, or Tf is very large, then these QoS metrics can be approxi-
mated by Gaussian random variable by appealing to the Central Limit Theorem [11].
A Gaussian distribution indicates that QoS for some individuals in the population
will sometimes take on unacceptable values.

QoS can be constrained by imposing an additional layer of control at each load.
A simple mechanism is opt-out control.

The opt-out mechanism is based on pre-defined upper and lower limits, denoted
b+ and b−. A load ignores a command from grid operator if it will result in L i

t+1 6∈
[b−,b+], and takes an alternative action so that L i

t+1 ∈ [b−,b+]. This ensures that
the QoS metric of each load remains within the predefined interval for all time.

Numerical examples are presented in [11] for both residential pools and TCLs.
Some of these results are surveyed in Section 5. Negative impact on tracking perfor-
mance is observed in numerical experiments only when the QoS interval [b−,b+] is
small (e.g., b+ is less than the mean plus one standard deviation of the distribution
without opt-out control).

4 Example: Thermostatically Controlled Loads

This special case is dominant in much of the literature on demand dispatch. Exam-
ples of thermostatically controlled loads (TCLs) include refrigerators, water heaters
and air-conditioning. Each of these loads is already equipped with primitive “lo-
cal intelligence” based on a deadband (or hysteresis interval): there is a sensor that
measures the temperature of the unit, and turns the power on when the measured
value reaches one end of this deadband.

The state process for a TCL at time t will be of the form

X(t) = (Xu(t),Xn(t)) = (m(t),Θ(t)) , (18)

in which m(t) ∈ {0,1} denotes the power mode (the value “1” indicating the unit
is on), and Θ(t) the inside temperature of the load. Exogenous disturbances that
directly influence ΘΘΘ include ambient temperature, and usage: the inside temperature
of a refrigerator is impacted by an open door, and the temperature of water in a water
heater is influenced by the rate of flow of water out of the unit.

The remainder of this section is restricted to a residential water heater (WH). This
will simplify discussion, and extensions to other TCLs are often straightforward.

Nominal model. The standard ODE model of a water heater is the first-order
linear system:

d
dt Θ(t) =−λ [Θ(t)−Θ

a(t)]+ γm(t)−α[Θ(t)−Θ
in(t)] f (t) , (19)

for constants (λ ,γ,α), in which Θ(t) is the temperature of the water in the tank,
Θ a(t) is ambient temperature, Θ in(t) is temperature of the cold water entering the
tank (degrees Fahrenheit), f (t) is flow rate of hot water from the WH (gallons/s), and
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m(t) is the power mode of the WH (“on” indicated by m(t) = 1). The corresponding
power consumed by a WH when m(t) = 1 is denoted Pon.

The upper and lower temperature limits that define the deadband are denoted Θ−,
Θ+, respectively. A standard residential water heater in the U.S. has the following
typical behavior: At the moment that Θ(t) reaches the lower limit Θ−, the unit turns
on, and remains on until the time t+ at which Θ(t+) = Θ+. The unit then turns off
and begins to cool. It may take 6 hours to once again reach the lower limit, while
the time to heat the water is much shorter.

The nominal model used for local control design is based on an approximation of
this typical behavior, in which with some probability the unit turns on before Θ(t)
reaches Θ−, and the unit may also turn off before reaching the maximum temper-
ature Θ+. The definition of the nominal model is based on the specification of two
cumulative distribution functions (CDFs) for the temperature at which the load turns
on or turns off, denoted F⊕ and F	. Random variables with these CDFs are denoted
Θ̃⊕ and Θ̃	, so that

F⊕(θ) = P{Θ̃⊕ ≤ θ}, F	(θ) = P{Θ̃	 ≤ θ} , θ ∈ R .

It is always assumed that Θ̃⊕ and Θ̃	 take values in the interval [Θ−,Θ+], which
implies that F⊕(θ) = F	(θ) = 1 for θ ≥Θ+ and F⊕(θ) = F	(θ) = 0 for θ <Θ−.

A particular design for F	 is obtained on fixing three parameters θ
	
0 ∈ [Θ−,Θ+],

and constants ρ ∈ (0,1) and κ > 1:

F	(θ) = (1−ρ)
[θ −θ

	
0 ]κ+

[Θ+−θ
	
0 ]κ

, θ ∈ [Θ−,Θ+) ,

where [x]+ :=max(0,x) for x ∈ R. In a symmetric model, the other CDF is defined
by the transformation,

F⊕(θ) = 1− lim
θ ′↓θ

F	(Θ++Θ−−θ
′)

Fig. 4 illustrates a particular special case of the symmetric model.
It is assumed that the local control operates in discrete-time. By choice of time-

units, without loss of generality it is assumed that the sampling interval is 1 unit.
At time instance k, if the water heater is on (i.e., m(k) = 1), then it turns off at time
k+1 with probability,

p	(k+1) =
[F	(Θ(k+1))−F	(Θ(k))]+

1−F	(Θ(k))

If Θ(k+1)≤Θ(k), then this probability is zero. Similarly, if the load is off, then it
turns on with probability

p⊕(k+1) =
[F⊕(Θ(k))−F⊕(Θ(k+1))]+

F⊕(Θ(k))
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The nominal behavior of the power mode can be expressed

P{m(k) = 1 | θ(k−1),θ(k),m(k−1) = 0}= p⊕(k)

P{m(k) = 0 | θ(k−1),θ(k),m(k−1) = 1}= p	(k)
(20)

The IPD and SPD designs were obtained in [6] based on a similar nominal model
for a residential refrigerator.

Fig. 4 Nominal model for a
water heater: an instance of
the symmetric model.
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The myopic design (15) is obtained through an exponential tilting:

p⊕
ζ
(k) :=

p⊕(k)eζ

p⊕(k)eζ +1− p⊕(k)
, p	

ζ
(k) :=

p	(k)
p	(k)+(1− p	(k))eζ

If p⊕(k)> 0, then the probability p⊕
ζ
(k) is strictly increasing in ζ , approaching 1 as

ζ → ∞; it approaches 0 as ζ →−∞, provided p⊕(k)< 1.

System identification. Power, temperature, and usage data from residential water
heaters was obtained through our partners at ORNL.4 The constants (λ ,γ,α) were
estimated using least squares. The parameter values listed in Table 1 reflect the range
of values observed in actual data.

A testbed was created to simulate a collection of N = 100,000 water heaters with
usage. Each evolves according to the ODE (19), but parameters were different for
each of the N loads: parameters were chosen via uniform sampling of the values in
Table 1. A simulation model for usage at each load was created, based on sampling
from historical usage of actual water heaters.

The mean-field model is a nonlinear input-output system with input ζζζ and
output equal to power deviation, yyy. An approximate linear model was obtained
through least squares, in which the input ζζζ was taken to be the swept-sine: ζ (t) =
1.5sin(10−7t2) for 0 ≤ t ≤ 432× 105 sec. (5 days). Fig. 5 shows results from the
estimation experiment for two different model orders. The Bode plots shown repre-
sent the approximate model in continuous time. The 5th order model predicts that
the gain of the linearization vanishes as the frequency tends to zero (DC). This is a
physical reality for this example.

4 Water heater data provided by Ecotope, Inc., with funding from the Northwest Energy Efficiency
Alliance (NEEA) and the Bonneville Power Administration (BPA).
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Temp. Ranges ODE Pars. Loc. Control

Θ+ ∈ [118,122] F λ ∈ [8,12.5]×10−6 Ts = 15 sec
Θ− ∈ [108,112] F γ ∈ [2.6,2.8]×10−2 κ = 4
Θ a ∈ [68,72] F α ∈ [6.5,6.7]×10−2 ρ = 0.8
Θ in ∈ [68,72] F Pon = 4.5 kW θ0 =Θ−

Table 1 Parameters for nominal model for water heaters.

The linearization is minimum phase and stable. Its gain is approximately constant
in the frequency range [5×10−4,10−2] rad/s. It is expected that a collection of water
heaters can accurately track signals in this frequency range.
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Fig. 5 Least square estimates of the transfer function for water heaters.

Tracking. Design at the macro level is most easily performed for a model in con-
tinuous time. A PI controller Gc(s) = KP +KI/s was designed based on the lin-
earized mean-field model. The values KP = 105 and KI = 500 result in a crossover
frequency ωc = 0.03 rad/s (corresponding to a time period of approximately 3.5
minutes), with a 75◦ phase margin.

The balancing reserves signal from the Bonneville Power Administration (BPA)
was used in the tracking experiments described in this section. A typical windy day,
February 19, 2016, was chosen for the experiments described here. The signal was
filtered using a second-order Butterworth high pass filter with a cut-off frequency at
8×10−4 rad/s (corresponding to a sine wave with period of approximately 2 hours).

Fig. 6 shows results from several numerical experiments. The three rows are dif-
ferentiated by the regulation signal: In the first row rrr≡ 0, in the second the absolute
value of the regulation signal takes a maximum value of about 8 MW, and in the fi-
nal row the prior regulation signal was multiplied by 4. Exact tracking is not feasible
over the entire period for the largest regulation signal (results shown in the bottom
left plot), but the performance remains nearly perfect over time periods for which
|rt | does not exceed about 90% of the nominal power consumption.

The second column shows evolution of temperature and the power mode for a
typical load in the three cases. The seed for the random number generator was iden-
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Fig. 6 Tracking results with 100,000 water heaters, and the behavior of a single water heater in
three cases, distinguished by the reference signal rrr. The morning peak in nominal power consump-
tion is consistent with typical water usage included in the simulation experiments.

tical in each of the three experiments. It is amazing to see that the evolution of
temperature and power mode is hardly impacted by local control.

These loads are equally valuable for contingency and ramping services. Fig. 7
shows recent results that illustrate the potential. In these experiments the water flow
was set to zero; in this case, the nominal power consumption for 100,000 loads is
approximately 8 MW. Each plot is a particular saw-tooth wave, scaled to reach the
maximum lower limit of −8 MW.
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Fig. 7 Tracking a pair of saw tooth waves with 105 water heaters.

5 Example: Residential Pools

The paper [36] and its sequels [11, 13, 12] consider this system architecture in which
the loads are a collection of pools. The motivation for considering pools is the in-
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herent flexibility of pool cleaning, and because the total load in a region can be very
large. The maximum load is approximately 1 GW in California or Florida.

The state space for the discrete-time model is the finite set: X = {(m, j) : m ∈
{0,1}, j ∈ {1,2, . . . ,I }}. The first variable indicates the power mode, with m = 1
indicating the power is on. The second integer component is interpreted as follows:
The load samples the grid signal periodically (the sampling increments are assumed
to be deterministic, or i.i.d. and distributed according to a geometric distribution).
At the time of the t-th sample, if X i

t = (0, j) then the load has remained off for the
past j sampling times, and was turned off at sampling time t− j; the interpretation
of X i

t = (1, j) is symmetrical.
A nominal model can be constructed in a manner similar to the case of TCLs.

In this application, each CDF models the time at which the power mode changes.
The IPD solution obtained using Prop. 2 is considered in [36] for a model without
geometric sampling, and in [13] for the present model. The linearized mean-field
models obtained in [36, 13] are minimum phase and have a resonance at a frequency
corresponding to a period of approximately 24 hours.

The numerical results that follow are based on a stochastic simulation of a large
number of pools. Each pool consumes 1 kW when in operation. Both 12 and 8 hour
nominal daily cleaning cycles are considered. Tracking results with a heterogeneous
population of loads are described in [36, 13].
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Fig. 8 Tracking is nearly perfect with reference scaled to the theoretical limit.

Tracking and contingency reserves. The first set of experiments concern track-
ing of the balancing reserves deployed over one week at BPA. The sampling time
is taken to be every five minutes. The signal was filtered to remove the highest
frequency components. Tracking the original signal is possible, but with reduced
overall capacity [10]. In each example, the number of loads is equal to N = 104.

A theoretical limit on capacity is obtained by considering the fraction of pool
pumps that are operating in nominal steady-state:

π
⊕
0 = ∑

i
π0(1, i) where π0 is invariant for P0.

Upper and lower bounds on power deviation are defined as follows, in units of kWs:

{+Demand∗,−Supply∗} :={(1−π
⊕
0 )×N,−π

⊕
0 ×N}
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This is approximately {+5,−5}MW for 12 hr/day cycling, and {+6.6,−3.4}MW
for 8 hr/day. Results from simulation experiments shown in Fig. 8 show that these
limits are nearly attainable in each case.

Fig. 9 Range of services pro-
vided by pools: contingency
reserves and balancing can be
supplied simultaneously.
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The potential for virtual energy storage goes far beyond tracking a balancing
reserve signal. Experiments were conducted in [10] to investigate the potential for
providing contingency reserves in conjunction with balancing reserves. A reference
signal was constructed based on the one used in the previous experiments, with two
changes: during the period [40,64] hours, the reference signal was replaced by a
4 MW power reduction and during the period [100,124] hours the reference signal
was augmented with a 3 MW power reduction. The PI control parameters were
unchanged. Fig. 9 shows again nearly perfect tracking.

In practice, the signal ζζζ should be transformed so that it is zero energy over the
week — this will help to ensure that QoS constraints are not violated.
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Fig. 10 Improvement of QoS with the introduction of local opt-out control.

Quality of service and opt-out. The grid is receiving nearly perfect services –
what about the service offered by each load to its owner?

In the experiments conducted to produce either of the plots in Fig. 8, a histogram
of total operation hours over the time horizon appears approximately Gaussian with
mean value 78 hours (consistent with the 12hrs/day cleaning cycle for each pool.)
The Gaussian approximation can be used to estimate the fraction of pools that are
over-cleaned or under cleaned over the week [12].

To investigate the impact of opt-out control on QoS and capacity, consider a
family of models parameterized by 0 ≤ ε ≤ 1. The reference signal is obtained by
scaling: rε

t = εr1
t , where rrr1 is the reference signal considered in prior experiments.

Consider the following two QoS metrics suitable for this application:
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(i) Normalized power consumption of a load, `(X i
t ) = U (X i

t )−y0, where y0 is the
nominal steady-state mean (under ζζζ = 0).

(ii) On/off cycling:

`c(X i
t ,X

i
t+1) =

∣∣∣∑
j

(
1{X i

t+1 = (1, j)}−1{X i
t = (1, j)}

)∣∣∣ (21)

The discounted sum (17) was used to define L i
t in the experiments surveyed here.

The discount factor β = 2779/2880 was chosen so that the discounted sum (17) is
similar to the moving window QoS metric (16) with Tf corresponding to 10 days
(recall the sampling period is five minutes).

Fig. 10 illustrates an example of QoS improvement based on a 15% constraint
on both QoS metrics, using the reference signal rrr1. The opt out rate is very small in
this case (much smaller than predicted by the corresponding tails of the histogram
without opt-out), and the tracking is nearly perfect.

Four QoS intervals were considered corresponding to constraints of, respectively,
5%, 10%, 15%, and 20%. For example, a cleaning QoS constraint of 5% corre-
sponds to ±3 cleaning hours — a very tight constraint over a 10-day time horizon.
No lower bound was imposed on cycling QoS.

A normalized root mean square error (NRMSE) was adopted as the metric for
grid level tracking performance:

NRMSE =
1
ε

RMS(eee)−RMS(eee0)

RMS(rrr1)
, (22)

where eee, eee0 are error signals with and without the reference input, and RMS( fff ) =√
1
T ∑

T
k=1 f 2

k for any signal fff over a time horizon T .

Fig. 11 Tracking perfor-
mance with two QoS con-
straints — total cleaning
hours and cycling. Opt-out
control has little impact on
tracking error over a large
range of opt-out intervals.
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Tracking performance for a range of opt-out parameters is summarized in Fig. 11
using 16 colored bars, distinguished by each pair of QoS constraints. Each bar rep-
resents tracking errors for different reference signal scaling factors, 0.1≤ ε ≤ 1. The
darkest color represents NRMSE (22) of 10% or greater, and lighter colors represent
smaller values of NRMSE (indicated on the color bar label). This shows that opt-out
control based on the two QoS metrics has little impact on tracking error over a large
range of opt-out intervals.
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6 Example: Battery Systems

Many believe that there will be a battery revolution over the next decade – small
battery systems will be distributed across the grid at residential homes, and in racks
at gas stations where owners of electric vehicles can exchange their old battery.

Coordination of the population can be performed as described for residential
loads, even though the physics and QoS constraints are very different. Longevity of
a battery requires constraints on the state of charge (SoC), as well as ramping and
temperature constraints.

A demand dispatch architecture is proposed in [4], in which the state space for
an individual battery is again a Cartesian product: a particular state is denoted x =
(m,s), where m ∈ {ch, dis, id} denotes charging mode, and s ∈ [0,1] denotes the
SoC. The power delivery at state x depends only on charging mode: U (ch,s) =
U ch < 0, U (id,s) = 0, U (dis,s) = U dis > 0.

The design of the family of transition matrices {Pζ} on the state space X =
{ch, dis, id}× [0,1] is based on the myopic policy. The main difficulty compared
to loads is that there is no obvious nominal model P0 (for loads, this is taken as a
stochastic perturbation of a deterministic model for ζ ≡ 0.) The nominal model P0
for batteries was chosen so that the invariant pmf π0 would have most of its mass
concentrated at SoC near 60%. The randomized decision rule is designed to en-
courage idle time for each battery, and to avoid extreme SoC levels and frequent
switching of modes.

Fig. 12 Design of switching
probability functions for the
battery system. A weighted
coin is flipped to determine
if the battery will stay in its
current power mode. 0

0.5

1
pid idle
pch charging
pdis discharging

0 1SoC 

Let X i
t = (Mi

t ,S
i
t) denote the state of ith battery at time t. The SoC evolves as a

controlled random walk: Si
t+1 = Si

t +hδch, if Mi
t = ch, Si

t+1 = Si
t −hδdis, if Mi

t = dis,
Si

t+1 = Si
t , if Mi

t = id, where h is the time step length, and δch and δdis charging and
discharging rates. The dynamics of the first component are governed by a “two coin-
flip” randomized policy: In state (m,s), a weighted coin is flipped to determine if
the battery will stay in its current power mode. The design of the probability func-
tions pch, pdis, pid : [0,1]→ [0,1] that model the probability to stay in the charging,
discharging or idle mode respectively are shown in Fig. 12. If the outcome of the
first coin flip is “mode change”, then a second coin flip is used to decide which
of the remaining two modes the battery is going to switch to. This choice is done
with the probabilities proportional to the values of the p-functions of the alternative
power modes. For example, in state (ch,s), the battery changes its mode to idle with
probability (1− pch(s))× pid(s)/(pid(s)+ pdis(s))
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The nominal design in Fig. 12 was chosen by setting a target SoC interval to 40
- 80% SoC (to allow ramping capability while avoiding extreme SoC levels): If the
battery is charging, it will remain charging with probability almost 1 until it reaches
40% SoC. The probability to keep charging then decreases and reaches almost 0 at
80% SoC. The design of pdis is symmetrical. The function pid has values almost 1
for 50-70% SoC values and it is almost 0 outside the target interval.

Batteries are ideal for tracking signals of higher frequency – timescales of tens of
seconds to many minutes. An example is the RegD signal used at PJM. It is found
that tracking of this signal is nearly perfect using a combination of local control at
the battery, and a PI compensator at the BA (see [4] for details).

It might be assumed that the randomized control law would lead to excess cycling
of batteries. In fact, the behavior of a typical battery behaved nearly deterministi-
cally. Typical behavior is illustrated in Fig. 13.

A measure of battery activity is mileage [37], which is regarded here as an exam-
ple of a QoS metric. For a time horizon T , mileage for battery k is denoted

L k
T =

T

∑
t=1
|U (Xk

t )| , (23)

and LT denotes the average over k = 1, . . . ,N. The excess operation is the normal-
ized difference:

OT =
LT −L ∗

T
L ∗

T
, where L ∗

T =
1
N

T

∑
t=1
|rt |

It can be shown using Jensen’s inequality that OT ≥ 0 in the ideal case of perfect
tracking. If each battery tracks the reference exactly, then OT = 0. In numerical
experiments the value OT ≈ 3% is typical.
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Fig. 13 Left: Tracking the PJM RegD test signal with N = 103 batteries. Right: comparison of
SoC of an individual and the average of the population.
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7 Conclusions

With appropriate filtering and local control, loads can provide excellent grid services
without two-way communication. While there is some cost to install hardware on
appliances that can receive a signal from a balancing authority, in the long run this
will be far less costly than batteries.

The numerical results presented in this paper, in particular the tracking results
illustrated in Figures 6, 7 and 9, show that VES working in conjunction with tradi-
tional resources can provide balancing services, ramping services and contingency
reserves simultaneously. It is likely that water heaters, pools and agriculture loads
in California can provide the resources required to address their future grid service
requirements.

Current research questions include:

(i) The application of reinforcement learning may be valuable for learning the
local control law, such as an extension of Z-learning [44] to the IPD approach.

(ii) The numerical results presented here concern signals on time scales of tens of
seconds and slower. Ancillary service on faster time-scales correspond to what is
called primary reserves. Control design requires more care in this context because
poor performance can induce grid instability [30, 31].

(iii) Further research is required to better estimate capacity in terms of both energy
and power [21].

(iv) The impact of usage is not entirely understood. Numerical results presented
in Section 4 suggest that this is not an obstacle in the case of water heaters. Air-
conditioning is a greater challenge because variations in load are much greater.

(v) A question posed in [31]: Does the load need to receive a signal from the BA? It
is possible that some VES resources can provide valuable services using only lo-
cal measurements. Frequency (as well as voltage) measurements can be obtained
inexpensively at loads, and these measurements are similar to those used by the
BA to construct analogs of our “ζζζ ” today. The advantage of distributed control is
reduced cost due to reduced communication between a BA and loads.
The BA will continue to regulate tie-line error, and they will continue to regulate
frequency as well. It is hoped that the balancing resources required at the BA will
be reduced through this extra layer of distributed control.
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