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INTRODUCTION

Hyperspectral imagery offers the possibility of pixellevel analysis, by splitting the electromagnetic spectrum in hundreds of narrow and contiguous spectral bands, typically covering the visible, near-infrared and shortwave infrared spectral domain [START_REF] Vane | The airborne visible/infrared imaging spectrometer (aviris)[END_REF]. The rich spectral content of the data allows to infer physical properties of the materials present in the scene. However, pixels are rarely -if at all -made up of only one material. On the contrary, a given pixel very often contains several different materials and only the mixture of these materials can be observed. Solving the inverse This work was supported by the ANR ASTRID program (Grant no. ANR-16-ASTR-0027-01 -APHYPIS project) and CNRS (Grant no. PICS-USA 263484) problem, i.e. estimating the pure materials present in the image(the endmembers) and their respective proportions in each pixel (the abundances) is referred to as the unmixing problem [START_REF] José | Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches[END_REF]. In a first step, one must find the number of endmembers to use [START_REF] José | Hyperspectral subspace identification[END_REF], as well as their spectral signature [START_REF] José | Vertex component analysis: A fast algorithm to unmix hyperspectral data[END_REF], [START_REF] Li | Minimum volume simplex analysis: A fast algorithm to unmix hyperspectral data[END_REF]. In a second step, one has to recover their abundances, for all pixels in the image. This is usually performed by assuming a linear mixture model (LMM), representing the observed spectrum as a linear combination of the endmembers. This is an ill-posed problem that will be solved by a constrained optimization.

Shortcomings of this traditionnal approach include the following issues: the sprectral variability of the endmembers [START_REF] Drumetz | Blind hyperspectral unmixing using an extended linear mixing model to address spectral variability[END_REF], [START_REF] Henrot | Dynamical spectral unmixing of multitemporal hyperspectral images[END_REF], the noise corrupting the data, the presence of potential nonlinearities ( [START_REF] Halimi | Nonlinear unmixing of hyperspectral images using a generalized bilinear model[END_REF], [START_REF] Altmann | Supervised nonlinear spectral unmixing using a postnonlinear mixing model for hyperspectral imagery[END_REF], [START_REF] Heylen | A multilinear mixing model for nonlinear spectral unmixing[END_REF], [START_REF] Heylen | A review of nonlinear hyperspectral unmixing methods[END_REF]) may result in a wrong estimation of the number of endmembers and of their spectral signatures. Typically, we may end up with an overestimation of the number of endmembers. As a matter of fact, allowing for more endmembers adds flexibility to the model and improves the reconstruction of the observation. However, the pure materials may not be physically present in the scene [START_REF] Heylen | A multilinear mixing model for nonlinear spectral unmixing[END_REF], and the extracted ones may correspond to artifacts rather than physically interpretable components.

In this paper we propose to tackle this problem by enforcing an enhanced sparsity on the abundance maps while preserving a good reconstruction. A previous work aimed at adding robustness to the linear model [START_REF] Drumetz | Blind hyperspectral unmixing using an extended linear mixing model to address spectral variability[END_REF] . In this work, each pixel of the data is linearly explained, but the set of endmembers used is location-dependent. In other works, the endmembers are allowed to vary according to some constraints [START_REF] Henrot | Dynamical spectral unmixing of multitemporal hyperspectral images[END_REF] [START_REF] Thouvenin | Online unmixing of multitemporal hyperspectral images accounting for spectral variability[END_REF].

Our method also aims at providing robustness to the LMM, in light of the difficulty of estimating the pure materials in the scene. We propose a proof of concept for a new functional for the inversion of linear unmixing model, which includes enhanced sparsity scheme to reduce the impact of the poorly estimated endmembers.

The new functional is minimized using a fast proximal splitting method.

The remaining sections of this paper are organized as follows. Section 2 introduces the formulation of the robust unmixing problem and associated functional. It also provides details on the implementation and the primaldual algorithm. Results on both synthetic and real world datasets can be found in Section 3, with a critical discussion. Conclusions are drawn in section 4.

PROPOSED METHOD

Problem Formulation

A hyperspectral image Y with S bands and N pixels in vectorized form, is represented by a matrix of size S × N. Let D be a matrix of size S × M whose columns are the spectral signatures of the endmembers. Linear unmixing consists in finding the matrix A of size M × N of abundances: its element a m,n is the proportion of endmember number m assigned to pixel number n.

We propose the following formulation for Robust Linear Unmixing (RLU):

minimize A (1 -α) D A -Y 2 +α A,C + R ( A) s.t. a •,n ∈ ∆ M , ∀n = 1, . . . , N (1) 
where ∆ M is the simplex over R M , a •,n is the n-th column of A. R is a spatial regularization functional, e.g. a vectorial form of the total variation applied to the abundances A. Note that without the spatial regularization term, the problem becomes separable: a quadratic minimization over the simplex can be carried out for every pixel, independently. •,• is the usual Frobenius inner product. The elements of C are :

c m,n = d •,m -y •,n 2 (2) 
c m,n is a measure of how far, spectrally, the pixel y n is from the endmember d m . Hence, A,C will tend to binarize the output : if c m,n is large, the abundance of d m in the reconstruction will decrease progressively to 0, depending on the value of α. Parameter α ∈ [0,1] hence appears as a tuning parameter. Varying α leads to a variety of results progressively ranging from the standard LMM (α = 0, low sparsity) to a hard classification (α = 1, high level of sparsity: only one endmember is selected for each pixel). The optimal solution lies between these two extreme situations (see section 3).

While the first term in (1), along the spatial regularization, is the classical LMM, the second term can be understood as the convex relaxation of a hard classification. Indeed, hard classification aims at assigning only one endmember at every pixel:

minimize A D A -Y 2 +R ( A) s.t. a •,n ∈ B M , ∀n = 1, . . . , N (3) 
where B M is the set of binary vectors of R M ; that is, with only null elements, but one element equal to one. Note that without the spatial regularization term, the solution is trivial: pixel number n is represented by one single endmember, the endmember d •,m (the m-th column of D) which minimizes (2). However, when the spatial regularization term is introduced, the nonconvex problem (3) becomes NP-hard, so one wants to replace it by a convex problem. It turns out that considering the convex envelope of this problem consists in replacing the constraint of binarity by the constraint of belonging to the simplex. Consequently the convex envelope of ( 3) is not the linear model, but the following expression:

minimize A A,C + R ( A) s.t. a •,n ∈ ∆ M , ∀n = 1, . . . , N (4) 
using the previous definitions of A,C and C. Indeed,

D A -Y 2 = N n=1 Da •,n -y •,n 2 = N n=1 ( M m=1 a m,n d •,m ) -y •,n 2 (5) 
and

A,C = N n=1 M m=1 a m,n d •,m -y •,n 2 (6) 
and one can check that the cost functions in 5 and 6 are equal if a •,n is binary for every n.

On the other hand, for a •,n in the simplex instead of binary, the cost function in (5) takes a lower value than the one in [START_REF] Halimi | Nonlinear unmixing of hyperspectral images using a generalized bilinear model[END_REF], which is penalizing: one wants the cost function to take a large value for nonbinary abundance vectors, so that when the cost function is minimized, binary vectors are favored.

In order to solve the optimization problem (1), we propose to use the primal-dual algorithm presented by Condat in [START_REF] Condat | A primal-dual splitting method for convex optimization involving lipschitzian, proximable and linear composite terms[END_REF] and detailed in the following section.

Primal dual algorithm

We provide in this section some background information for the optimization. Let H be a Hilbert space with its inner product •, • and norm • = •, • 1/2 . We denote by Γ 0 (H ) the set of proper, lower semicontinuous, convex functions from H to R ∪ +∞. Let J belong to Γ 0 (H ). Its domain is dom(J ) = s ∈ H : J (s) < +∞. Its Fenchel-Rockafellar conjugate J * ∈ Γ 0 (H ) is defined by J * (s) = sup s ∈H [ s, s -J (s )] and its proximity operator by prox J (s) = argmin s ∈H [J (s ) + 1 2 ss ]. The strong relative interior of a convex subset Ω of H is denoted by sri(Ω). Let X and Y be two Hilbert spaces. The method aims at solving the following primal problem :

Find x ∈ argmin x ∈X [F (x) + G(x) + H (Lx)] (7)
where:

• F: X → R is convex, differentiable on X and its gradient ∇F is β-Lipschitz continuous, for some β ∈ [0, +∞[, that is :

∇F (x) -∇F (x ) ≤ β x -x , ∀(x, x ) ∈ X 2 (8) 
• G ∈ Γ 0 (X) and H ∈ Γ 0 (Y) have proximity operators which can be solved efficiently with high precision (or have a closed-form representation).

• L : X → Y is a bounded linear operator with adjoint L * .

• The set of minimizers of ( 7) is supposed nonempty

The corresponding dual formulation of the primal problem ( 7) is :

Find ŷ ∈ argmin y ∈Y [(F + G) * (-L * y) + H * (y)] (9)
where (F + G) * (-L * y) is an infimal convolution.

Another formulation of problems ( 7) and ( 9) is to combine them into the search of a saddle-point of the Lagrangian:

Find(x, ŷ) ∈ argmin x ∈X max y ∈dom(H * ) [F (x) + G(x) -H * (y) + Lx, y ] (10) 
If the following holds:

0 ∈ sri L(dom(G)) -dom(H)) (11) 
The set of solutions to (9) is nonempty, and for every primal solution x to [START_REF] Henrot | Dynamical spectral unmixing of multitemporal hyperspectral images[END_REF] and solution ŷ to (9), then (x, ŷ) is a solution to [START_REF] Heylen | A review of nonlinear hyperspectral unmixing methods[END_REF]. This also holds if :

1 τ -σ L 2 ≥ β 2 (12) 
where β is as defined in [START_REF] Henrot | Dynamical spectral unmixing of multitemporal hyperspectral images[END_REF]. Note that all of these requirements are satisfied for our problem.

Implementation

The spatial regularization functional in (1), R ( A) used here was in the form of a total variation over the abundances A, with a tuning coefficient λ. For the primaldual iterations, we set ρ = 0.9 ∀n ∈ N (see Algorithm 1). We calculate the 2-norm of the spatial gradient operator L, and then set:

• τ = 10 -2.5

• η = 0.49

• σ = ( 1 τ -β η )/ L 2 2
so as to satisfy the conditions in [START_REF] Condat | A primal-dual splitting method for convex optimization involving lipschitzian, proximable and linear composite terms[END_REF]. We want to find the solution to [START_REF] Altmann | Supervised nonlinear spectral unmixing using a postnonlinear mixing model for hyperspectral imagery[END_REF]. Let:

F ( A) = (1 -α) D A -Y 2 +α A,C (13) 
then

∇F ( A) = (1 -α)(Y -AD)D + αC (14) 
We minimize the following functional:

E( A) = F ( A) + δ ∆ M ( A) + λTV ( A) (15) 
for some parameter α ∈ [0,1].

where the spatial regularization corresponds to R ( A) in [START_REF] Altmann | Supervised nonlinear spectral unmixing using a postnonlinear mixing model for hyperspectral imagery[END_REF]. δ ∆ M is the indicator function on the Msimplex.The notation for δ ∆ M ( A) in ( 15) is used to make the expression lighter, it is actually evaluated columnwise. We can then use the primal dual algorithm to solve the saddle-point problem described in [START_REF] Condat | A primal-dual splitting method for convex optimization involving lipschitzian, proximable and linear composite terms[END_REF]. The initialization doesn't impact the output (since the problem is convex), therefore we set x 0 = 0 and y 0 = 0. The maximum number of iterations is set to maxiter = 300, and a convergence criterion is set as tol A = 5 × 10 -4 .

Algorithm 1 Primal-Dual iterations for hyperspectral images Iterate, for every 0 ≤ n ≤ 300 or while A n+1 -A n > tol:

1: Ãn+1 = prox τδ ∆ M ( A n -τ(∇F ( A n ) + e F,n ) - τL * S n ) + e δ ∆ M ,n ) 2: Sn+1 = prox σH * (S n -σL(2 Ãn+1 -A n )) + e H,n ) 3: ( A n+1 , S n+1 ) = ρ( Ãn + 1, Sn + 1) + (1 -ρ)( A n , S n )
where the error terms e F,n ∈ X, e G,n ∈ X, e H,n ∈ Y model the inexact computation of the operators ∇F, prox τG , prox σH * , respectively.

Convergence is reached within 150 iterations and within 200s for large datasets (250x190x188), with average runtimes around 120-150s (MATLAB implementation). For the Synthetic dataset, made up of 40,000 pixels and 162 bands (described in the next section), the runtime was within a minute for 6 endmembers.

RESULTS

The algorithm was tested on several datasets, both synthetic and real.

Synthetic Dataset

A synthetic dataset was created, using six endmembers. First, the abundance maps were generated as a mixture of Gaussians, each map containing 1 pure pixel, for five of the endmembers. The sum-to-one constraint over the abundances holds for these 5 endmembers. The sixth endmember was added in a second step, with an abundance ranging from 0 to 0.1. This additionnal endmember mimics common situations where the unmixing algorithm overfits the data and considers non-existing endmembers to optimize the reconstruction. Such endmembers usually come with small abundances. The abundances and endmembers were then mixed, without normalization (see figure 1). The ground truth for the figure is displayed in figure 1a. All the results are provided with λ = 10 -2 . As α increases the abundances of the 6th endmember quickly drops to zero, which is the desired outcome. Naturally, as α increases, the error on the other abundances -corresponding to the "true" endmembers -also increases. Overall, there is a non-zero value of α which minimizes the Root-Mean-Squared-Error (RMSE) computed on the abundances:

RM SE = ( N k=1 ( A(k) -A true (k)) 2 N ) ( 16 
)
where A is the recovered abundance, A true corresponds to the abundance of the ground truth and N is the number of pixels. These results demonstrate the interest of the model (the optimal value does not correspond to any of the two extreme situations previously described). At this stage, determining the optimal value of α automatically is still an open problem, to be solved in future work. However, this paper provides the theoretical foundation of the method, and demonstrates the proof of concept. Parameter α can be tuned manually using a simple grid search. In our experiments, we found that setting the value of α is not critical, with a reasonable range of val-ues leading to the optimal solution. We cannot present these extensive tests due to space limitations.

Real Dataset

The algorithm was also tested on real data, we present here a frame from a gas plume hyperspectral video sequence. The unmixing was performed with 5 endmembers, which is a reasonable value, as seen in [START_REF] Merkurjev | Graph mbo method for multiclass segmentation of hyperspectral stand-off detection video[END_REF], [START_REF] Zhu | Unsupervised classification in hyperspectral imagery with nonlocal total variation and primal-dual hybrid gradient algorithm[END_REF]. The results are shown for λ = 10 -2 (Figure 2). The endmembers are obtained using VCA. Out of the 5 endmembers present in the scene, the endmember corresponding to the gas plume is the most impacted by the different values of α. The plume is diffuse and semi-transparent, and therefore the background endmembers (the mountains, ground and sky) all influence the unmixing of plume pixels. As was noted in [START_REF] Heylen | A review of nonlinear hyperspectral unmixing methods[END_REF], [START_REF] Merkurjev | Graph mbo method for multiclass segmentation of hyperspectral stand-off detection video[END_REF], [START_REF] Zhu | Unsupervised classification in hyperspectral imagery with nonlocal total variation and primal-dual hybrid gradient algorithm[END_REF] these are causes of nonlinearities. The horizontal trail observed is due to noise and corresponds to the mountain/sky interface. We can see that this error progressively disappears as α increases. However, the "hole" in the middle of the plume actually corresponds to gas that isn't as dense as its surroundings, but there still is gas present ( [START_REF] Merkurjev | Graph mbo method for multiclass segmentation of hyperspectral stand-off detection video[END_REF]). As α increases, the hole becomes more important, and therefore our error increases. 

CONCLUSION

In this paper, we introduced a simple yet effective robust linear model and demonstrate its versatility. The theoretical foundation of the method and its solution using primal-dual optimization are discussed. The proof of concept is demonstrated by testing the method on both synthetic and real world datasets. The importance of errors in prior modeling, that are made when estimating the nature and number of endmembers, is diminished in the reconstruction, as are errors due to nonlinearities. Thanks to a very fast implementation, this technique is very competitive with respect to the regular linear model. Future work will have to provide theoretical bounds for the selection of the optimal value of α.

  (a) Ground truth. (b) α = 0. (c) α = 0.1. (d) α = 0.2.
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 1 Figure 1: Recovered abundance maps for different values of α. Synthetic dataset with no normalization. The values range from 0 (blue) to 1 (yellow).

  (a) α = 0.3 (b) α = 0.7
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 2 Figure 2: Abundances for the plume dataset with different values of α and λ = 10 -2 .