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aUniversité de Lyon, F-69622, Lyon, France.
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Abstract

The response of a random dynamical system is totally characterized by its probability density func-

tion (pdf). However determining a pdf by a direct approach requires a high numerical cost; similarly,

surrogate models such as direct polynomial chaos expansions, are not generally efficient, especially

around the eigenfrequencies of the dynamical system. In the present study a new approach based on

Padé approximants to obtain moments and pdf of the dynamic response in the frequency domain is

proposed. A key difference between the direct polynomial chaos representation and Padé representa-

tion is that the Padé approach has polynomials in both numerator and denominator. For frequency

response functions, the denominator plays a vital role as it contains the information related to reso-

nance frequencies, which are uncertain. A Galerkin approach in conjunction with polynomial chaos

is proposed for the Padé approximation. Another physics based approach, utilizing polynomial chaos

expansions of the random eigenmodes is proposed and compared with the proposed Padé approach.

It is shown that both methods give accurate results even if a very low degree of the polynomial

expansion is used. The methods are demonstrated for two degree of freedom system with one and

two uncertain parameters.
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1. Introduction

In order to determine the statistics of the random dynamical system response, several methods

may be used such as Monte Carlo simulation (MCS) or polynomial chaos (PC) expansion [1]. It is

well-known that the main drawback of MCS is its numerical cost. The PC method is an alternative

that expands the dynamical response, X, on a set of orthogonal polynomials whose variables are

mutually independent standard normal deviates. However, it turns out that the convergence of a PC

expansion (PCE) around the “deterministic” resonances (i.e. related to the mean mass and stiffness

matrices) is quite poor [2]: the polynomial expression of the solution is perhaps not suitable and can

be improved.

An improvement may come from the numerical convergence acceleration of the probability density

function (pdf): some researchers [3, 4] have already worked on the convergence acceleration [5]

of the moments and the coefficients of the PCE. Even though they demonstrated that Aitken’s

transformation and its generalization were successfully applied to the sequences defined by the first

two moments of the responses, it is still necessary to consider a quite high degree of the PCE in

order to obtain an accurate estimation of the moments. Further improvement can be obtained

by considering the Padé approximants (PA) [6, 7]. Indeed, as the FRF of a random dynamical

system is a rational function of the modal characteristics, which are random, it seems appropriate to

estimate the solution in terms of a rational function that depends on the uncertain parameters [8, 9].

Thereby, the main contribution of the present study is to estimate the probability density function

of the responses with a generalization of the Padé approximants [10], called here “extended” Padé

approximants: they are rational functions where the numerator and the denominator are a linear

combination of polynomial chaos.

The modal analysis together with the principle of mode superposition is a powerful tool widely

used for studying deterministic linear dynamical systems. An extension to uncertain dynamical

linear systems has been developed. The first work on random mode determination in a structural

dynamics framework is probably the paper published by Collins et al. [11]. This work was based on a

perturbation approach and has been used by several authors [12, 13], and extended by Adhikari [14].

Lan et al. [15] used a stochastic collocation method to estimate the eigenpairs. Sall [16], Sarrouy [17],

Ghanem [18], and Ghosh a[19] have estimated the random modes following a method proposed by

Dessombz [20, 21], which relies on a PCE and will be employed in this paper. However, the random
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mode superposition has been used rarely to evaluate the random frequency response function. Hence

the second main contribution of this paper is to investigate the use of the random mode approach in

order to obtain the probability density function of the response of a linear dynamical system with

uncertain parameters.

In summary, the main objective of this work is to derive the pdf of uncertain dynamical responses

by investigating both the Padé approximant and the random mode approaches. The paper is orga-

nized as follows. The random dynamical system is described in the next section. Then the Padé

approximant method is presented in section 3, as well as the polynomial chaos expansion. In section

4 the random modes are described as a PCE. Finally, numerical simulations are performed on a 2-dof

(degree of freedom) system and discussed in sections 5 and 6. These examples are very simple, with

a low number of dofs to make possible closed form expressions of the exact solution, as well as the

estimated solution with the PCE approaches. Further they illustrate the methods very well and show

how it is possible to extend them to systems with more degrees of freedom and with more uncertain

parameters.

2. Random dynamical system

A linear random N -dof dynamical system excited with harmonic force vector, F, is investigated.

The uncertain dynamical system is characterized by the mass, stiffness, and damping matrices

(M, K, and D), which depend on an r-element uncertain parameter vector, Ξ. The dynamical

response, X(ω,Ξ) ∈ IRN , is then the solution of the system

(− ω2 M + ı ω D + K) X(ω,Ξ) = F(ω) (1)

where ω is the circular frequency of the applied forces, and ı2 = −1.

The uncertain matrices are written as

M(Ξ) = M0 +
r∑
i=1

ξiMi (2)

K(Ξ) = K0 +
r∑
i=1

ξiKi (3)

D(Ξ) = D0 +
r∑
i=1

ξiDi (4)

(5)
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where ξi represents the i-th uncertain parameter with zero mean and is the i-th element of the above

defined random vector Ξ. The related so-called deterministic dynamical system is characterized by

the mean matrices (M0, K0, and D0).

3. Polynomial chaos and Padé Approximants

3.1. Polynomial chaos expansion

A brief presentation of the well-known polynomial chaos method will be given in the following,

mainly to define the notation. For the interested reader, an explicit solution with a PCE has been

used for uncertain dynamical systems in refs. [2, 4]. The response of the dynamical system may be

expanded in terms of polynomial chaos Ψj [1] as

X(ω,Ξ) =
∞∑
i=0

Yi(ω) Ψi(Ξ) (6)

with ∀i < j, degree of Ψi(Ξ) ≤ degree of Ψj(Ξ)

In the following, normalized Hermite or Legendre polynomials are used to build the polynomial chaos

set.

In practice, the PC expansion is truncated:

XP (ω,Ξ) =
P∑
i=0

YP
i (ω) Ψj(Ξ) (7)

where P depends on the number of random variables and the PC degree [1]. Coefficients YP
i are

determined by replacing XP by its expansion in Eq. (1) and by using the orthogonality properties

of the Hermite polynomials with respect to the Gaussian weight function. Then the coefficients are

the solution of

H̃P (ω) YP = F̃P (8)

where [2]

Ck ∈ R(P+1)×(P+1), with [Ck]IJ =< k, I, J > (9)

H̃P =
r∑

k=0

Ck ⊗ (−ω2Mk + ı ω Dk + Kk) ∈ RN(P+1)×N(P+1) (10)

YP = [YT
0 YT

1 · · · YT
P ]T ∈ RN(P+1) (11)

F̃P = [µFT 0 0 · · · 0 ]T ∈ RN(P+1) (12)
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⊗ denotes the Kronecker product, (•)T denotes the transpose of (•), µ =
∫

Ξ
Ψ0(Ξ)P(Ξ) dΞ, and

< i1 · · · in > is defined by

< i1 · · · in > = < Ψi1(Ξ) · · ·Ψin(Ξ) > =

∫
Ξ

(Ψi1(Ξ) · · ·Ψin(Ξ))P(Ξ) dΞ (13)

with P(Ξ) =
∏r

α=1 pα(ξα) and pα(ξα) is the pdf of ξα, and dΞ =
∏r

α=1 dξα. When Hermite polyno-

mials are used, a closed-form solution exists for < ijk >, which is given in Appendix A. Note also

that the polynomials are normalized: < ij >= δij (δij is the Kronecker delta).

Once Eq. (8) is solved, the pdf can then be estimated with an MCS directly applied to Eq. (7).

In the following P is dropped for a sake of simplicity.

3.2. Rational function expansion: Padé Approximants

A Padé approximant (PA) of a function F is a rational function derived from the Taylor series of

F . The Padé approximant converges much faster than the Taylor expansion [6, 7] when the function

has poles. In this paper F = X(Ξ), the response of the uncertain system. First the function is

assumed to depend on one variable (i.e., Ξ = ξ). Indeed, the definition of the PA of a multivariate

function is not obvious, for reasons that will be presented later.

Consider that the Taylor series expansion of the response, XTay, is known, up to a given degree,

m. A Padé approximant of Xk (k-th element of vector X) is denoted [Mk/Nk]XTay
k

where Mk is the

degree of the numerator and Nk is the degree of the denominator, and is given by

[Mk/Nk]XTay
k

(ξ) =

∑Mk

i=0 N
PA
k,i (ω) ξi∑Nk

i=0D
PA
k,i (ω) ξi

(14)

The Padé approximant is such that:

XTay
k (ω, ξ) − [Mk/Nk]XTay

k
(ξ) = O(ξMk+Nk+1) (15)

There are Mk +Nk + 2 unknowns, which are defined up to a multiplicative factor: so, usually, DPA
0,k

is set equal to unity [22]. Hence, to calculate the Mk +Nk + 1 coefficients of the PA, m, the degree

of the Taylor series expansion is equal to Mk +Nk, and then Eq. (15) gives Mk +Nk + 1 equations.

This is more difficult for multivariate functions as several definitions may hold [22–26]. For the

general case, a PA involves ]Mk + ]Nk− 1 unknowns (where ]m denotes the number of coefficients of

a multivariate polynomial of degree m), if we decide that the numerator (resp. denominator) must

contain all terms up to degree Mk (resp. Nk). As a consequence a Taylor series that has at least
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]Mk + ]Nk − 1 coefficients is required to determine the PA unknowns. The problem comes from the

relationship between a polynomial degree m, and the number of coefficients involved in the definition

of a multivariate polynomial with r variables, ]m = (m + r)!/(m!r!). Indeed, in general, there does

not exist m such that ]m = ]Mk + ]Nk − 1. If one considers that all the terms up to degree m must

be kept, the problem leads to an over-determined problem, and ]m ≥ ]Mk + ]Nk − 1. However, one

can keep the relation ]m = ]Mk + ]Nk − 1 and accept that some polynomials of degree m are not

included in the PCE. Then, a decision must be made in the choice of the equations. This will be

discussed further in the next subsection and in subsection 6.2.1.

3.3. Rational function expansion: eXtended Padé Approximants (XPA)

In the stochastic finite element context, PC expansion is much more interesting than a Taylor

series. Hence it is suggested to replace monomial ξi, by polynomial chaos Ψi(Ξ). Such generalization

had been defined and studied in many papers [6, 10, 27–30]. Chantrasmi et al. [31] have already

used extended Padé approximants (Legendre-Padé approximants) for uncertainty propagation. They

proposed multivariate approximants based on a definition given by Guillaume et al. [25]. Their

objective was to calculate the statistics (pdf) of the position and the strength of a shock in a fluid

mechanics context, which involves strong discontinuities (shock waves).

In the present study, the interest of the XPAs for calculating the response pdf of a random

dynamical system is twofold. First they had been developed to accelerate the polynomial expansion

convergence rate of a function. This property is important as it had been shown that the PCE has

poor convergence properties around the deterministic eigenmodes [2]. Second, it is expected that

the response of an uncertain dynamical system is a rational function of the uncertain parameters.

Hence, the representation of the response with Padé Approximants seems to be more appropriate

than a polynomial expansion.

The Padé approximants are extended to a rational function such that the numerator and the

denominator are developed in terms of PC as

[Mk/Nk]XPC
k

(Ξ) =

∑nk
j=0N

XPA
k,j (ω) Ψj(Ξ)∑dk

j=0D
XPA
k,j (ω) Ψj(Ξ)

(16)

where nk = ]Mk − 1 and dk = ]Nk − 1; k refers to the k-th dof. Similarly to the previous subsection

DXPA
k,0 is equal to unity.
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NXPA
k,i and DXPA

k,i are derived by comparing Eq. (7) to Eq. (16):

P∑
i=0

Yik(ω) Ψj(Ξ) =

∑nk
j=0 N

XPA
k,j (ω) Ψj(Ξ)

1 +
∑dk

j=1D
XPA
k,j (ω) Ψj(Ξ)

(17)

where P = ]m − 1 and m is the PCE degree of the response. This is transformed and reorganized

as

nk∑
j=0

NXPA
k,j (ω)Ψj(Ξ) −

dk∑
j=1

DXPA
k,j (ω)

(
P∑
i=0

Yk,i(ω)Ψi(Ξ)Ψj(Ξ)

)
=

P∑
i=0

Yk,i(ω) Ψi(Ξ) (18)

The nk + dk + 1 coefficients NXPA
k,j and DXPA

k,j are then calculated by projecting Eq. (18) on Ψl(Ξ)

for l from 0 to P ′: P ′ + 1 equations are obtained:

NXPA
k,l (ω) Indnk(l) −

dk∑
j=1

DXPA
k,j (ω)

(
P∑
i=0

Yk,i(ω) < i j l >

)
= Yk,l(ω) IndP (l) (19)

where Indn(l) is equal to unity if 0 ≤ l ≤ n and to zero otherwise. The factor IndP (l) in the right

hand side of Eq. (19) suggests that P ′ ≤ P otherwise it would mean that ∀ l > P, Yk,l(ω) = 0 in

the “exact” PCE (i.e. with all the terms from 0 to infinity) of the response. Such approximation can

not hold when the PCE does not converge quickly and P is low. As a consequence, in the following,

P ′ is supposed to be lower or equal to P .

Indnk(l) indicates that the coefficients of the denominator are determined first with the following

equations

∀ l / nk + 1 ≤ l ≤ P ′
dk∑
j=1

DXPA
k,j (ω)

(
P∑
i=0

Yk,i(ω) < i j l >

)
= −Yk,l(ω) (20)

To avoid getting an underdetermined system, P ′ ≥ nk + dk. However the last condition does not

provide P and P ′. The choice of P ′ may involve m′, which is the degree of ΨP ′ and then is an integer

such that

m′ ∈ IN,

(
m′ − 1

r

)
< P ′ ≤

(
m′

r

)
(21)

Eq. (18) can be projected on all the polynomials whose degree is lower or equal tom′: P ′+1 = ]m′.

Hence, except if by chance P ′ = ]m′ − 1 = nk + dk, the denominator coefficients are the solution of

an overdetermined system. Further, as P ′ is assumed to be lower or equal to P , then m′ ≤ m. A

further discussion on the choice of P , P ′, m and m′ is given in subsection 6.2.1. The determination

of a multivariate XPA has been discussed in several papers ( e.g. [25, 26, 32]).
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Once the denominator coefficients are determined, the numerator coefficients are obtained directly

as

∀ l / 0 ≤ l ≤ nk NXPA
k,l (ω) =

dk∑
j=1

DXPA
k,j (ω)

(
P∑
i=0

Yk,i(ω) < i j l >

)
+ Yk,l(ω) (22)

Finally, by performing an MCS on [Mk/Nk]XPC
k

(Ξ), the pdf of the response may be estimated.

Note that in the single variate case, the XPA is determined easily: the PCE degree is Mk + Nk,

and P + 1 = P ′ + 1 = nk + dk + 1 = ](Mk +Nk).

4. Random modes

A natural way to obtain the response of an N -dof dynamical system is to expand the solution on

the eigenvectors

X(t) =
N∑
k=1

qk(t) φk (23)

where φk is an eigenvector and qk defines the deterministic modal coordinate for the k-th eigenvector.

The mass and stiffness matrices are random so the eigenmodes, which will be denoted {ω̃k, φ̃k}

are random as well. Then the random mode superposition reads

X(t) =
N∑
n=1

q̃n(t) φ̃n (24)

where modal coordinate q̃n is random and depends on the random eigenmodes. Eq. (24) holds not

only to describe a steady-state response of a dynamical system, but also for the transient response

even if it has not been used in this latter context so far.

When force vector F is harmonic with frequency ω, the steady-state response is

X(ω) =
N∑
n=1

q̃n(ω) φ̃n (25)

Modal coordinate qn(ω) is derived by substituting Eq. (25) in Eq. (1) and by projecting this

latter equation on each φ̃n. Then the n-th modal equation is

(−ω2 + 2η̃n ω̃nω + ω̃2
n) q̃n(t) =

φ̃
T

n F

m̃n

(26)

where η̃n (resp. m̃n) is the damping ratio (resp. the generalized modal mass) of mode n. In the

following, the random damping may be calculated from the damping matrix:

η̃n =
φ̃
T

n D φ̃n
2 ω̃n m̃n

(27)
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Then the modal coordinate reads

q̃n(t) =
φ̃
T

n F

m̃n (ω̃2
n − ω2 + 2η̃n ω̃nω)

(28)

Eq. (28) shows that the response of the random dynamical system is a rational function of the

random parameters, φ̃n, ω̃n, η̃n, and m̃n. This is why the Padé approximant approach is appropriate

as it consists in finding a rational function f the uncertain parameters.

The random eigenmodes can be determined with a MCS or a PCE. Considering the use of a PCE

they are expanded as follows [20, 21]

ω̃2
k = ω2

k

(
P∑
p=0

akp Ψp(Ξ)

)
(29)

φ̃k =
N∑
n=1

λ̃kn φn =
N∑
n=1

(
P∑
p=0

λknp Ψp(Ξ)

)
φn (30)

where (ωk, φk) denotes the k-eigenmode of the deterministic system, defined in section 2.

{akp, {λknp}n=1···N}p=0···P are the PC coefficients related to the PCE of random mode k.

Further the following mass normalization is applied

φTk M0 φ̃k = 1 (31)

where M0 is the mean mass matrix. As a consequence

λ̃kk = 1 (32)

Then Eq. (30) becomes

φ̃k = φk +
N∑
n=1
n 6=k

P∑
p=0

λknp Ψp(Ξ) φn (33)

Eqs. (29) and (33) show that the PCE of random mode k requires N×(P +1) unknowns. Projecting

the eigenproblem (
K̃− ω̃2

k M̃
)
φ̃k = 0 (34)

on each deterministic eigenmode {φn}n=1···N and each PC {Ψp(Ξ)}p=0···P gives the N×(P+1) related

equations.
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Table 1: System characteristics

k (Nm−1) m (kg) c (Nm−1s−1) δK (%) F01 (N) F02 (N)
15000 1 1 5 1 0

Table 2: Modal characteristics of the deterministic system

Eigenfrequencies f (Hz) 12.05 31.54
Damping ratio (%) 0.25 0.66

5. Example 1

5.1. Two degree-of-freedom system with one uncertain parameter

MCS, PCE, and random modes will be used to evaluate the pdf of X for the example shown in

Fig. 1. Monte Carlo simulations will serve as a reference for validating the results obtained with the

XPA and random modes approaches. Stiffnesses k1 and k2 are assumed to be equal and uncertain:

k1 = k2 = k (1 + δK ξ) (35)

where ξ is random variable. Thus, the uncertain stiffness matrix is

K = K0 + δKξ K1 = K0 (1 + δKξ) (36)

where

K0 = K1 = k

 2 −1

−1 1

 (37)

In the following ξ is either a truncated normal variable (ξ ∼ N[−5; 5](0; 1)) or a uniform random

variable (ξ ∼ U[−1; 1]).

The characteristics of the system are listed in Tables 1 and 2.

5.2. ξ: truncated normal deviate

The mean and the standard deviation of the random stiffness can then be deduced from Table 1.

Note that if ξ had a uniform law, the positiveness of the stiffness would be questionable. However

the ratio of standard deviation to the mean indicates that the probability to draw a negative stiffness

is so low that the numerical estimation of this probability by a software like Matlab is 0, and the

probability to draw a stiffness lower than 0.75 × k is about 2.8 10−7. In the following the number

of samples is lower than 1 million. Hence, in practice, such statistical law could be used. However,

to avoid such issue, the normal law is truncated so that k ∈ [0.75k; 1.25k]: this corresponds to the

mean plus/minus five standard deviations.
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Figure 1: A two degree-of-freedom system with stochastic stiffness coefficients

5.2.1. Probability density function: exact solution

The steady-state response X = [X1 X2]T is solution of the following equation

(−ω2M + K) X(ξ, ω) = F (38)

Thus, the exact solution, for each dof k, is the following rational function:

Xk(ξ, ω) =
N0,k + N1,k ξ

1 + D1 ξ + D2 ξ2
(39)

with

D0 = k
2

+ 2 icω k − ω2(3 km+ c2)− 3 iω3mc+ ω4m2

D1 =
1

D0

(
2 k

2
δk − 3 k δk ω

2m+ 2 icω k δk

)
D2 =

1

D0

(
k

2
δk

2
)

N0,1 =
1

D0

(
k − ω2m+ icω

)
N1,1 =

1

D0

(
k δk
)

N0,2 =
1

D0

(
−k − icω

)
N1,2 =

1

D0

(
−k δk

)

Note that normalized Hermite polynomials are related to the monomials

1 = Ψ0(ξ) (40)

ξ = Ψ1(ξ) (41)

ξ2 =
√

2 Ψ2(ξ) + Ψ0(ξ) (42)
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Then, expression (39) can easily be transformed into a rational function whose numerator and de-

nominator are expanded in terms of the Hermite polynomials as

Xk(ξ, ω) =
NHP

0,k + NHP
1,k Ψ1(ξ)

1 + DHP
1 Ψ1(ξ) + DHP

2 Ψ2(ξ)
(43)

with

DHP
0 = D0(1 +D2) = (k

2
+ 2 icω k − ω2(3 km+ c2)− 3 iω3mc+ ω4m2)

(
1 + k

2
δk

2
)

DHP
1 = D0

D1

DHP
0

=
1

DHP
0

(
2 k

2
δk − 3 k δk ω

2m+ 2 icω k δk

)
DHP

2 = D0
D2

DHP
0

=
1

DHP
0

(
k

2
δk

2
)

NHP
0,1 = D0

N0,1

DHP
0

=
1

DHP
0

(
k − ω2m+ icω

)
NHP

1,1 = D0
N1,1

DHP
0

=
1

DHP
0

(
k δk
)

NHP
0,2 = D0

N0,2

DHP
0

=
1

DHP
0

(
−k − icω

)
NHP

1,2 = D0
N1,2

DHP
0

=
1

DHP
0

(
−k δk

)
Eq. (43) shows that the exact solution is a rational function of the random parameter: deriving

an estimation of the solution in terms of Padé approximants, which are rational functions, is then

appropriate.

The reference pdf is obtained with a direct Monte carlo simulation method together with a Latin

Hypercube Sampling (LHS) with 10,000 samples of the random variable. It has been verified that

the number of samples is sufficient for the convergence of the solution. The pdf is estimated at the

first deterministic eigenfrequency, which seems to be the worst case [2]. The results are given in Fig.

2(a).

5.3. Probability density function: PCE and XPA

The pdfs were also calculated directly from the PCE and with the Padé approach: they were

compared to the reference pdf with the Kullback-Leibler divergence [33–35], DKL, defined as

DKL(pref (x)||p(x)) =

∫
Dx

pref (x) ln

(
pref (x)

p(x)

)
dx (44)

where Dx is the domain of a random variable x. DKL is always nonnegative and is equal to zero

when pref (x) = p(x) almost everywhere.
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Table 3: Kullback-Leibler divergence - Exemple 1 - truncated normal deviate

pdf PCE 500 PCE 501 Padé [0/1] Padé [1/2] Padé [2/2]
DKL 0.38 2.00 5 10−3 0.09 1.5 10−4

A LHS with 10,000 samples was also performed directly on the PCE with P = 500 and P = 501:

the pdfs are given in Figs. 2(c) and 2(d). With a degree P = 500 a quite good estimation of the

pdf is reached. However the results are poor with P = 501. In fact the parity influence on the first

statistical moments was already noticed in [2].

A [0/1] Padé approximant pdf (i.e., nk = 0 and dk = 1) was derived with MCS (10,000 samples

were used): it required a PCE with P = 2. The pdf is given in Fig. 2(b). The quality of the

results with such a low PCE degree is striking. In fact, increasing the numerator and denominator

degree does not really improve the results. However, surprisingly, the only configuration which is

not excellent is XPA [1/2] (see Fig. 3), even though this configuration should be the best, since the

closed-form expression of the pdf is a rational function whose numerator (resp. denominator) degree

is equal to 1 (resp. to 2). However even this configuration accurately predicts the peak of the pdf,

even though the tail is poorly predicted.

The Kullback-Leibler divergences of the pdf calculated with the PCE approach and the Padé

technique are listed in Table 3: the results confirm the qualitative conclusions given from Figs. 2-

3. In particular the divergences show that estimating the pdf with the Padé technique is much more

efficient than with the PCE approach. Further, the Padé [1/2] divergence is quite low despite some

dissimilarities: this is due to the fact that only the tails of the distribution are not similar.

5.3.1. Mean and standard deviation: MCS and XPA

In [2] it was shown that the mean and the standard deviations are two slowly convergent sequences.

A solution to improve the convergence rate was proposed in [4]. Knowing the pdf, any moments of

the statistical distribution may be derived. If the pdf is well estimated with a low degree XPA, the

moments must be very well estimated as well.

The first two moments are given in Fig. 4 for several XPA. Figs. 4(a) and 4(b) show that with

P = 5 it is possible to obtain excellent estimates of the first two moments. The XPA approach is

then much more efficient than the Aitken method proposed in [4], as shown in Fig. 5 where P = 20.

It has been observed that a [0/1] XPA gives an excellent pdf at the first eigenfrequencies. However

Figs. 4(c) and 4(d) show that the moment estimation is poor about the deterministic antiresonant

13



(a) (b)

(c) (d)

Figure 2: Probability density function of the response at the first deterministic eigenfrequency; (a): MCS (10,000
samples); (b): XPA ([0/1], P = 1); (c): PCE (P = 500); (d): PCE (P = 501)
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(a) (b)

Figure 3: Probability density function of the response at the first deterministic eigenfrequency; (a): MCS (10,000
samples); (b): XPA ([1/2], P = 3)

frequency. On the contrary the moment are very well estimated with a [1/2] XPA, even around the

deterministic eigenfrequencies, ie where the pdf was not well estimated (see Figs. 4(e) and 4(f)).

5.3.2. Random modes: exact solution

The deterministic modes are solutions to the following equation

(
K0 − ω2

k M
)
φk = 0 (45)

whereas the random modes are solution to

(
K0(1 + δKξ)− ω̃2

k M
)
φ̃k = 0 (46)

Then it is easy to derive the expression of the random modes as functions of the deterministic modes

as

ω̃2
k = ω2

k (1 + δKξ) (47)

φ̃k = φk (48)

In this particular case, the random eigenvectors are equal to the deterministic ones: this occurs

because the random stiffness matrix is proportional to the deterministic stiffness matrix.

15



(a) (b)

(c) (d)

(e) (f)

Figure 4: First moments (XPA: solid lines; MCS: dotted line) for several XPA (a): [2/2] XPA mean; (b): [2/2] XPA
standard deviation; (c): [0/1] XPA mean; (d): [0/1] XPA standard deviation; (e): [1/2] XPA mean; (f): [1/2] XPA
standard deviation
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(a) (b)

Figure 5: First moments (Aitken method [4]: solid lines; MCS: dotted line); (a): Aitken mean; (b): Aitken standard
deviation

5.3.3. Random modes: PCE

In the following, if index k is equal to 1 then index k′ is equal to 2 and vice-versa. Random mode

k is determined according to the method indicated previously and then is expanded according to

Eqs. (29) and (30). Thus the following equation has to be solved:(
K0(1 + δKξ)− ω2

k

(
P∑
p=0

akp Ψp(ξ)

)
M

)(
φk +

P∑
p=0

λkk′pΨp(ξ)φk′

)
= 0 (49)

{ωk, φk} are the deterministic eigenmodes of the dynamical system defined in Eq. (45). Multiplying

Eq. (49) by each eigenvector and using the orthogonality properties gives

(1 + δKξ) −
P∑
p=0

akp Ψp(ξ) = 0 (50)

ω2
k′

P∑
p=0

λkk′p(Ψp(ξ) + δKξΨp(ξ)) − ω2
k

P∑
p=0

P∑
q=0

akpλ
k
k′qΨp(ξ)Ψq(ξ) = 0 (51)

Note that Ψ0(ξ) = 1 and Ψ1(ξ) = ξ. Multiplying the last two equations by Ψm(ξ) in the random

space gives

akm = (< m > +δK < 1m >) (52)

ω2
k′

P∑
p=0

λkk′p(< mp > +δK < 1mp >) − ω2
k

P∑
p=0

P∑
q=0

akpλ
k
k′q < mpq > = 0 (53)
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Solving Eqs. (52) and (53) gives

ak0 = 1 (54)

ak1 = δK (55)

∀p > 1 akp = 0 (56)

∀p ∈ N λkp = 0 (57)

Then the random mode k estimate is

ω̃2
k = ω2

k (Ψ0(ξ) + δKΨ1(ξ)) = ω2
k (1 + δKξ) (58)

φ̃k = φk (59)

Comparing Eqs. (47) and (48) to the last two equations proves that a PCE of degree 1 gives the

exact random modes, and therefore the exact solution of the uncertain problem.

This result may be extended to all the dynamical systems with an uncertain stiffness matrix that

verifies Eq. (36), but the result does not hold in general, in particular when the mass matrix is

uncertain or when the number of uncertain parameters is greater than one.

5.4. ξ: uniform deviate

The interval of the random stiffness can then be deduced from Table 1.

The reference pdf is obtained with a direct Monte carlo simulation method together with a Latin

Hypercube Sampling (LHS) with 10,000 samples of the random variable. It has been verified that

the number of samples is sufficient for the convergence of the solution. The pdf is estimated at the

first deterministic eigenfrequency. The results are given in Fig. 6(a).

5.4.1. Probability density function: PCE and XPA

The pdfs are also calculated directly from the PCE and with the Padé approach : they are plotted

in Figs. 6(b)-6(d) and they are compared to the reference pdf. The Kullback-Leibler divergences of

the pdf calculated with the PCE approach and the Padé technique are listed in Table 4.

As indicated in [36], a PCE with Legendre polynomials (uniform distribution) converges much

quicker than with the Hermite polynomials (normal distribution): the results are quite good with

P = 50 whereas in the previous case, they were poor with P = 500.
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Table 4: Kullback-Leibler divergence - Exemple 1 - uniform deviate

pdf PCE P = 50 PCE P = 51 PCE P = 2 Padé [0/2]
DKL 5 10−3 0.39 7.6 10−3

The results are excellent with a [0/2] XPA (see Table 4), which requires a PCE with P = 2:

however the pdf calculated with a PCE with P = 2 is far from the MCS pdf, as indicated with the

Kullback-Leibler divergence given in Table 4.

5.4.2. Random modes: PCE

Deriving the calculations made in 5.3.3 with the normalized Legendre polynomials leads to the

same results: the random modes obtained with a PCE are the exact random modes. Note that the

second normalized Legendre polynomial is Ψ1(ξ) =
√

3 ξ, i.e.n ξ = Ψ1(ξ)/
√

3. As a consequence, Eq.

52 is slightly modified: akm = (< m > +δK < 1m >)/
√

3.

6. Example 2

6.1. Two degree-of-freedom system with two uncertain parameters

The example shown in Fig. 1 is studied with uncertain stiffnesses k1 and k2:

k1 = k (1 + δK ξ1) (60)

k2 = k (1 + δK ξ2) (61)

where ξ1 and ξ2 are two independent normal random variables. In the following ξi is either a truncated

normal variable (ξi ∼ N[−5; 5](0; 1)) or a uniform random variable (ξi ∼ U[−1; 1]). The characteristics

of the system are listed in Table 1. Thus, the uncertain stiffness matrix is

K = K0 + ξ1 K1 + ξ2 K2 (62)

where

K0 = k

 2 −1

−1 1

 (63)

K1 = k δK

 1 0

0 0

 (64)

K2 = k δK

 1 −1

−1 1

 (65)
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(a) (b)

(c) (d)

Figure 6: Probability density function of the response at the first deterministic eigenfrequency; (a): MCS (10,000
samples); (b): XPA ([0/2], P = 2); (c): PCE (P = 50); (d): PCE (P = 51)
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The response of the system is:

X1(ξ1, ξ2, ω) =
−ω2m+ ıωc+ a2

ω4m2 − ω33ıcm− ω2(m(a1 + 2a2) + c2) + ωıc(a1 + 3a2) + a1a2

(66)

X2(ξ1, ξ2, ω) =
1 + δkξ2 + ıωc

ω4m2 − ω33ıcm− ω2(m(a1 + 2a2) + c2) + ωıc(a1 + 3a2) + a1a2

(67)

with a1 = k1/k = 1 + δkξ1 and a2 = k2/k = 1 + δkξ2.

The reference pdf is still obtained with an LHS with 10,000 samples. The pdf was estimated at

the first deterministic eigenfrequency, and the results are plotted in Fig. 7 (normal deviates) and in

Fig. 9 (uniform deviates).

6.2. Truncated normal deviates

Both random variables ξ1 and ξ2 are drawn according to a truncate normal law to avoid any

negative stiffness: ξi ∼ N[−5; 5](0; 1). Then, random stiffness ki is in the intervalle given by the mean

plus/minus five standard deviations.

6.2.1. Probability density function: PCE and XPA

The pdf was estimated with a PCE of degree 50, which required 1326 terms in the expansion.

Fig. 7(a) shows that the quality of the results is poor, even though the expansion requires a lot of

terms: the Kullback-Leibler divergences are listed in Table 5.

The pdf was also calculated with the XPA approach. The notation of subsection 3.3 is used. To

have the smallest systems of equations as possible, m′ is chosen minimal: it is the lowest integer such

that ]m′ ≥ nk + dk + 1. Then P ′ is such that nk + dk + 1 ≤ P ′+ 1 ≤ ]m′. If P ′+ 1 is chosen equal to

]m′, Eq. (18) is projected on all the PC of degree lower or equal to m′. If P ′ + 1 is chosen equal to

nk +dk + 1, the system is minimal. Limiting the number of PCE coefficients suggests that m = m′ is

a suitable choice. However the numerical experiments show that the XPA approach is a little more

efficient when m ≥ m′ + 1. In practice, the XPA was determined with m = m′ + 1, P + 1 = ]m (the

response is expanded on all the PCs of degree lower or equal to m). Further all the simulations have

shown that the results are exactly the same if P ′ + 1 = ]m′ or if P ′ + 1 = nk + dk + 1.

Then, the XPA [1/2] results, which necessitates a PCE of degree m =4 (P + 1 = ]m =15 terms

in the expansion), and a projection on P ′+ 1 = n+d+ 1 = 8 Hermite polynomials of degree lower or

equal to m′ = m−1 = 3, are equal to the MCS results (Fig. 7(b)) as indicated by a divergence equal
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(a) (b)

Figure 7: Probability density function of the response at the first deterministic eigenfrequency; normal deviates; MCS
(solid line) vs. (a): PCE (degree 50, P = 1325 - dotted line); (b): XPA ([1/2], P = 14 - dotted line))

Table 5: Kullback-Leibler divergence - Exempla 2 - truncated normal deviate

pdf PCE 50 Padé [1/2] Mode + PCE
DKL 0.32 0 0.008

to zero.This is in a perfect agreement with Eq. (66) as the numerator degree is equal to 1 and the

denominator degree is equal to 2, if the response is considered as a function of the random variates

(i.e. for a given frequency ω). Further, Eq. (66) shows that the response has no term in ξ1 in the

numerator: it was found that the XPA has no term in ξ1 in the numerator as well. The numerical

results have shown that any XPA gives the rational function calculated with the XPA [1/2], if the

requested degree for numerator (resp. denominator) is greater or equal to 1 (resp. 2). Hence, this

approach is very efficient for this case study as it is possible to find the analytical results given by

Eq. (66).

On the contrary, the PCE of degree 50 had a divergence equal to 0.32, which indicates that the

results are not in very good agreement with the reference pdf.

6.2.2. Random modes: MCS solution

The random modes are solutions of

(
K0 + ξ1K1 + ξ2K2 − ω̃2

k M
)
φ̃k = 0 (68)
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Then the random modes are:

ω2
1 =

k

2m
(a1 + 2 a2 −

√
a2

1 + 4 a2
2) (69)

φ1 =

 2 a2

a1 +
√
a2

1 + 4 a2
2

 (70)

ω2
2 =

k

m
(a1 + 2 a2 +

√
a2

1 + 4 a2
2) (71)

φ2 =

 2 a2

a1 −
√
a2

1 + 4 a2
2

 (72)

The MCS gives the mean of the random modes as

ω2
1 = 5723 (rad/s)2 (73)

φ1 = =

 0.5256

0.8507

 (74)

ω2
2 = 39277 (rad/s)2 (75)

φ2 =

 −0.8505

0.5260

 (76)

6.2.3. Random modes: PCE

Random mode k is determined according to the method indicated previously and then are ex-

panded according to Eq. (29)-(30). Then the following equation has to be solved:(
K0 + ξ1K1 + ξ2K2 − ω2

k

(
P∑
p=0

akp Ψp(Ξ)

)
M

)(
φk +

P∑
p=0

λkk′pΨp(Ξ)φk′

)
= 0 (77)

Note that the polynomial chaoses are numbered so that Ψ0(Ξ) = 1, Ψ1(Ξ) = ξ1, and Ψ2(Ξ) = ξ2.

Then Eq. (77) may be written as(
Ψ0(Ξ)K0 + Ψ1(Ξ)K1 + Ψ2(Ξ)K2 − ω2

k

(
P∑
p=0

akp Ψp(Ξ)

)
M

)(
φk +

P∑
p=0

λkk′pΨp(Ξ)φk′

)
= 0

(78)
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Eq. (78) is projected on each Ψm(Ξ) in the random space:

∀m = 0 · · ·P,
(
< 0m > K0+ < 1m > K1+ < 2m > K2 − ω2

ka
k
mM

)
φk

−ω2
k

(
P∑
p=0

P∑
q=0

akpλ
k
k′q < pqm >

)
Mφk′

+
P∑
p=0

λkk′p (< 0pm > K0+ < 1pm > K1+ < 2pm > K2)φk′ = 0 (79)

Projecting Eq. (79) onto the deterministic eigenvectors gives the set equations required to solve

for the unknowns. Hence pre-multiplying Eq. (79) by φk gives

P∑
p=0

(
< 0pm > φTkK0φk′+ < 1pm > φTkK1φk′+ < 2pm > φTkK2φk′

)
λkk′p − ω2

ka
k
m

= −
(
< 0m > φTkK0φk+ < 1m > φTkK1φk+ < 2m > φTkK2φk

)
(80)

and pre-multiplying Eq. (79) by φk′ gives

P∑
p=0

(
< 0pm > φTk′K0φk′+ < 1pm > φTk′K1φk′+ < 2pm > φTk′K2φk′

)
λkk′p

−ω2
k

(
P∑
p=0

P∑
q=0

akpλ
k
k′q < pqm >

)
(81)

= −
(
< 0m > φTk′K0φk+ < 1m > φTk′K1φk+ < 2m > φTk′K2φk

)
Eqs. (80) and (81) hold for m = 0 · · ·P + 1 and a matrix equation is derived φTkK1φk′ S1 + φTkK2φk′ S2 −ω2

k IP+1

φTk′K2φk′ S2 0P+1

 Yk − ω2
k

 0P+1

fNL(Yk)

 = −

 b

b′

 (82)
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where

Yk ∈ R2(P+1), Yk =

 λkk′
ak


Sk ∈ R(P+1)×(P+1) Sk,ij =< ijk >

fNL ∈ R(P+1)×1, fNL,i (Y
k) =

1

2

(
Yk
)T  0P+1 Si

Si 0P+1

Yk

b ∈ R(P+1), b =



φTkK0φk

φTkK1φk

φTkK2φk

0
...

0


and b′ ∈ R(P+1), b′ =



0

φTk′K1φk

φTk′K2φk

0
...

0


0P+1 ∈ R(P+1)×(P+1) is the null matrix, and IP+1 ∈ R(P+1)×(P+1) is the identity matrix.

The nonlinear Eq. (82) is solved with a Newton-Raphson method and gives the following estimate

of the random modes for a PC degree equal to 1:

ω̃2
1 = ω2

1 (0.9988 + 0.0362ξ1 + 0.0138ξ2) (83)

φ̃1 = φ1 + φ2 (−0.0003− 0.01ξ1 + 0.01ξ2) (84)

ω̃2
2 = ω2

2 (1.0002 + 0.0138ξ1 + 0.0362ξ2) (85)

φ̃2 = φ2 + φ1 (0.0003 + 0.01ξ1 − 0.01ξ2) (86)

The mean modes are

ω2
1 = 5723 (rad/s)2 (87)

φ1 = =

 0.5255

0.8508

 (88)

ω2
2 = 39277 (rad/s)2 (89)

φ2 =

 −0.8508

0.5255

 (90)

Hence, comparing the last equations to Eqs. (73)-(76) shows that the results obtained with a PCE

of low degree are very accurate.
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(a) (b)

Figure 8: normal deviates; random modes solution: MCS (solid lines) vs PCE (dotted line) - (a): pdf of x1; (b): mean
frequency response

Table 6: Kullback-Leibler divergence - Exempla 2 - uniform deviate

pdf PCE 30 Padé [1/2] Mode + PCE
DKL 0.28 0 0.005

Equations (24) and (28) give, for each frequency, the distribution of the uncertain response. Fig.

8 compares the results with the random modes obtained from MCS and a PCE of degree 1: the pdf

of the response evaluated at the first deterministic eigenfrequency is given in Fig. 8(a) whereas the

mean frequency response is plotted in Fig. 8(b). The results are very good even with a very low

PCE degree; this is confirmed by the low value of the Kullback-Leibler divergence given in Table 5.

6.3. Uniform deviates

As already mentioned, the PCE converges much quicker with Legendre polynomials. Fig. 9(a)

shows that the pdf calculated with a PCE of degree 30 is not very different from the reference pdf.

Similarly to the case with the normal deviate, the XPA is very efficient as it is equal to the reference

pdf (see Fig. 9(b)), which is indicated by a Kullback-Leibler divergence equal to zero (see Table

6). Fig. 9(c) shows that the random mode approach is also very efficient: the Kullback-Leibler

divergence is very low (see Table 6) while the degree of the PCE to calculate the random modes is

equal to one (P = 2).

The mean modes obtained from a PCE of degree 1 and a MCS are

26



(a) (b)

(c)

Figure 9: Probability density function of the response at the first deterministic eigenfrequency; uniform deviates; MCS
(solid line) vs. (a): PCE (degree 30, P = 495 - dotted line); (b): XPA ([1/2], P = 14 - dotted line); (c): random
modes solution
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ω2
1 = 5727 (rad/s)2 (91)

φ1 = =

 1

1.6188

 (92)

ω2
2 = 39273 (rad/s)2 (93)

φ2 =

 1.6188

−1

 (94)

The mean modes obtained from a PCE are

ω2
1 = 5727 (rad/s)2 (95)

φ1 = =

 1

1.6184

 (96)

ω2
2 = 39273 (rad/s)2 (97)

φ2 =

 1.6184

−1

 (98)

The previous equations show that the PCE approach to calculate the mean random modes is very

efficient in this case.

7. Conclusion

The problem of obtaining probability density function of the dynamic response in the frequency

domain of a damped linear stochastic system is considered in this paper. A numerical approach and

a physical approach were presented to estimate the response pdf of a random dynamical system and

illustrated on two simple case studies. Both approaches exploit polynomial chaos expansions (PCE)

in different ways compared to PCE applied directly to the frequency domain response. The numerical

approach relies on the (multivariate) Padé approximants derived from a PCE of the response, whereas

the mechanical approach requires the estimation of the random modes with a PCE. The examples

show the efficiency of both approaches. In particular, it is possible to estimate the first two moments

of the response with a very low degree PCE: these methods are even more efficient than the one

proposed in [4]. This study also suggests that the random modes, which may be easily calculated

with a PCE, might be as efficient as the deterministic modes in the study of a deterministic linear

structure.
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Appendix A. Closed-form solution of < i j l > ([37], p. 390, ex. 87)

A polynomial chaos is function of multiple independent random variables, Ξ = (ξ1, · · · , ξr) and

may be written

Ψi(Ξ) = ψi1(ξ1)× · · · × ψir(ξr) =
r∏

α=1

ψiα(ξα) (A.1)

In the following, ψiα = Hiα where Hiα(ξα) is a normalized Hermite polynomial;
∑r

α=1 iα is the degree

of Ψi, i may be either a multi-index (i1, · · · , ir) or a single index defined from the multi-index

(i1, · · · , ir) through a mapping.

The triple product, < i j l >=< Ψi,Ψj,Ψl > is

< i j l > =
r∏

α=1

∫
· · ·
∫
Hiα(ξα) Hjα(ξα) Hlα(ξα) p(ξα) dξα (A.2)

=
r∏

α=1

< Hiα , Hjα , Hlα > (A.3)

where < Hiα , Hjα , Hlα >:

if sα is odd, < Hiα , Hjα , Hlα > = 0 (A.4)

if sα is even, < Hiα , Hjα , Hlα > =

√
iα! jα! lα!

(sα − iα)! (sα − jα)! (sα − lα)!
Indmax (iα,jα,lα)(sα) (A.5)

with sα = (iα + jα + lα)/2, and function Indm(l) is defined in subsection 3.3.
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Algorithms 1996; 11(1):255–269.

[11] Collins JD, Thomson WT. The eigenvalue problem for structural systems with statistical prop-

erties. AIAA Journal 1969; 7(4):642–648.

[12] Ghosh D, Ghanem R, Red-Horse J. Analysis of eigenvalues and modal interaction of stochastic

systems. AIAA J. 2005; 43(10)(1):2196–2201.

[13] Van den Nieuwenhof B, Coyette J. Modal approaches for the stochastic finite element analysis of

structures with material and geometric uncertainties. Computer Methods in Applied Mechanics

and Engineering 2009; 192 (33-34):3705–3729.

[14] Adhikari S. Complex modes in stochastic systems. Adv. Vib.Eng. 2004; 3 (1)(1):1–11.

[15] Lan JC, Dong ZK X Jand Peng, Zhang WM, Meng G. Uncertain eigenvalue analysis by the

sparse grid stochastic collocation method. Acta Mechanica Sinica 2015; 31:545–557.

30



[16] Sall A, Thouverez F, Blanc L, Jean P. Stochastic behaviour of mistuned stator vane sectors: An

industrial application. Shock and Vibration 2012; 19 (5):1041–1050.

[17] Sarrouy E, Dessombz O, Sinou JJ. Stochastic analysis of the eigenvalue problem for mechani-

cal systems using polynomial chaos expansion-application to a finite element rotor. Journal of

Vibration and Acoustics - Transactions of the ASME 2012; 134 (5):051 009.

[18] Ghanem R, Ghosh D. Efficient characterization of the random eigenvalue problem in a polyno-

mial chaos decomposition. Int. J. Numer. Methods Eng. 2007; 72(1):486–504.

[19] Ghosh D, Ghanem R. Stochastic convergence acceleration through basis enrichment of polyno-

mial chaos expansions. Int. J. Numer. Methods Eng. 2008; 73(1):162–184.
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[28] Emmel L, Kaber SM, Maday Y. Padé-Jacobi filtering for spectral approximations of discontin-

uous solutions. Numerical Algorithms 2003; 33(1):251–264.

[29] Matos AC, Van Iseghem J. Simultaneous Frobenius-Padé approximants. Journal of Computa-
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