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The response of a random dynamical system is totally characterized by its probability density function (pdf). However determining a pdf by a direct approach requires a high numerical cost; similarly, surrogate models such as direct polynomial chaos expansions, are not generally efficient, especially around the eigenfrequencies of the dynamical system. In the present study a new approach based on Padé approximants to obtain moments and pdf of the dynamic response in the frequency domain is proposed. A key difference between the direct polynomial chaos representation and Padé representation is that the Padé approach has polynomials in both numerator and denominator. For frequency response functions, the denominator plays a vital role as it contains the information related to resonance frequencies, which are uncertain. A Galerkin approach in conjunction with polynomial chaos is proposed for the Padé approximation. Another physics based approach, utilizing polynomial chaos expansions of the random eigenmodes is proposed and compared with the proposed Padé approach.

It is shown that both methods give accurate results even if a very low degree of the polynomial expansion is used. The methods are demonstrated for two degree of freedom system with one and two uncertain parameters.

Introduction

In order to determine the statistics of the random dynamical system response, several methods may be used such as Monte Carlo simulation (MCS) or polynomial chaos (PC) expansion [START_REF] Ghanem | Stochastic Finite Elements: A Spectral Approach[END_REF]. It is well-known that the main drawback of MCS is its numerical cost. The PC method is an alternative that expands the dynamical response, X, on a set of orthogonal polynomials whose variables are mutually independent standard normal deviates. However, it turns out that the convergence of a PC expansion (PCE) around the "deterministic" resonances (i.e. related to the mean mass and stiffness matrices) is quite poor [START_REF] Adhikari | The polynomial chaos expansion and the steadystate response of a class of random dynamic systems[END_REF]: the polynomial expression of the solution is perhaps not suitable and can be improved.

An improvement may come from the numerical convergence acceleration of the probability density function (pdf): some researchers [START_REF] Keshavarzzadeh | Convergence acceleration of polynomial chaos solutions via sequence transformation[END_REF][START_REF] Adhikari | Polynomial chaos expansion in structural dynamics: Accelerating the convergence of the first two statistical moment sequences[END_REF] have already worked on the convergence acceleration [START_REF] Brezinski | Convergence acceleration during the 20th century[END_REF] of the moments and the coefficients of the PCE. Even though they demonstrated that Aitken's transformation and its generalization were successfully applied to the sequences defined by the first two moments of the responses, it is still necessary to consider a quite high degree of the PCE in order to obtain an accurate estimation of the moments. Further improvement can be obtained by considering the Padé approximants (PA) [START_REF] Baker | Padé approximants -second edition[END_REF][START_REF] Brezinski | Extrapolation algorithms and Padé approximations: a historical survey[END_REF]. Indeed, as the FRF of a random dynamical system is a rational function of the modal characteristics, which are random, it seems appropriate to estimate the solution in terms of a rational function that depends on the uncertain parameters [START_REF] Mace | A local modal/perturbational method for estimating frequency response statistics of built-up structures with uncertain properties[END_REF][START_REF] Pichler | A mode-based meta-model for the frequency response functions of uncertain structural systems[END_REF]. Thereby, the main contribution of the present study is to estimate the probability density function of the responses with a generalization of the Padé approximants [START_REF] Matos | Some convergence results for the generalized Padé-type approximants[END_REF], called here "extended" Padé approximants: they are rational functions where the numerator and the denominator are a linear combination of polynomial chaos.

The modal analysis together with the principle of mode superposition is a powerful tool widely used for studying deterministic linear dynamical systems. An extension to uncertain dynamical linear systems has been developed. The first work on random mode determination in a structural dynamics framework is probably the paper published by Collins et al. [START_REF] Collins | The eigenvalue problem for structural systems with statistical properties[END_REF]. This work was based on a perturbation approach and has been used by several authors [START_REF] Ghosh | Analysis of eigenvalues and modal interaction of stochastic systems[END_REF][START_REF] Van Den Nieuwenhof | Modal approaches for the stochastic finite element analysis of structures with material and geometric uncertainties[END_REF], and extended by Adhikari [START_REF] Adhikari | Complex modes in stochastic systems[END_REF].

Lan et al. [START_REF] Lan | Uncertain eigenvalue analysis by the sparse grid stochastic collocation method[END_REF] used a stochastic collocation method to estimate the eigenpairs. Sall [START_REF] Sall | Stochastic behaviour of mistuned stator vane sectors: An industrial application[END_REF], Sarrouy [START_REF] Sarrouy | Stochastic analysis of the eigenvalue problem for mechanical systems using polynomial chaos expansion-application to a finite element rotor[END_REF],

Ghanem [START_REF] Ghanem | Efficient characterization of the random eigenvalue problem in a polynomial chaos decomposition[END_REF], and Ghosh a [START_REF] Ghosh | Stochastic convergence acceleration through basis enrichment of polynomial chaos expansions[END_REF] have estimated the random modes following a method proposed by Dessombz [START_REF] Dessombz | Analysis of stochastic structures: Pertubation method and projection on homogeneous chaos[END_REF][START_REF] Dessombz | Analyse dynamique de structures comportant des paramètres incertains (dynamic a nalysis of structures with uncertain parameters[END_REF], which relies on a PCE and will be employed in this paper. However, the random mode superposition has been used rarely to evaluate the random frequency response function. Hence the second main contribution of this paper is to investigate the use of the random mode approach in order to obtain the probability density function of the response of a linear dynamical system with uncertain parameters.

In summary, the main objective of this work is to derive the pdf of uncertain dynamical responses by investigating both the Padé approximant and the random mode approaches. The paper is organized as follows. The random dynamical system is described in the next section. Then the Padé approximant method is presented in section 3, as well as the polynomial chaos expansion. In section 4 the random modes are described as a PCE. Finally, numerical simulations are performed on a 2-dof (degree of freedom) system and discussed in sections 5 and 6. These examples are very simple, with a low number of dofs to make possible closed form expressions of the exact solution, as well as the estimated solution with the PCE approaches. Further they illustrate the methods very well and show how it is possible to extend them to systems with more degrees of freedom and with more uncertain parameters.

Random dynamical system

A linear random N -dof dynamical system excited with harmonic force vector, F, is investigated. The uncertain dynamical system is characterized by the mass, stiffness, and damping matrices (M, K, and D), which depend on an r-element uncertain parameter vector, Ξ. The dynamical response, X(ω, Ξ) ∈ IR N , is then the solution of the system

(-ω 2 M + ı ω D + K) X(ω, Ξ) = F(ω) (1) 
where ω is the circular frequency of the applied forces, and ı 2 = -1.

The uncertain matrices are written as

M(Ξ) = M 0 + r i=1 ξ i M i (2) 
K(Ξ) = K 0 + r i=1 ξ i K i (3) 
D(Ξ) = D 0 + r i=1 ξ i D i (4) (5) 
where ξ i represents the i-th uncertain parameter with zero mean and is the i-th element of the above defined random vector Ξ. The related so-called deterministic dynamical system is characterized by the mean matrices (M 0 , K 0 , and D 0 ).

Polynomial chaos and Padé Approximants

Polynomial chaos expansion

A brief presentation of the well-known polynomial chaos method will be given in the following, mainly to define the notation. For the interested reader, an explicit solution with a PCE has been used for uncertain dynamical systems in refs. [START_REF] Adhikari | The polynomial chaos expansion and the steadystate response of a class of random dynamic systems[END_REF][START_REF] Adhikari | Polynomial chaos expansion in structural dynamics: Accelerating the convergence of the first two statistical moment sequences[END_REF]. The response of the dynamical system may be expanded in terms of polynomial chaos Ψ j [START_REF] Ghanem | Stochastic Finite Elements: A Spectral Approach[END_REF] as

X(ω, Ξ) = ∞ i=0 Y i (ω) Ψ i (Ξ) (6) 
with ∀i < j, degree of Ψ i (Ξ) ≤ degree of Ψ j (Ξ)

In the following, normalized Hermite or Legendre polynomials are used to build the polynomial chaos set.

In practice, the PC expansion is truncated:

X P (ω, Ξ) = P i=0 Y P i (ω) Ψ j (Ξ) (7) 
where P depends on the number of random variables and the PC degree [START_REF] Ghanem | Stochastic Finite Elements: A Spectral Approach[END_REF]. Coefficients Y P i are determined by replacing X P by its expansion in Eq. (1) and by using the orthogonality properties of the Hermite polynomials with respect to the Gaussian weight function. Then the coefficients are the solution of

H P (ω) Y P = F P (8)
where [START_REF] Adhikari | The polynomial chaos expansion and the steadystate response of a class of random dynamic systems[END_REF] 

C k ∈ R (P +1)×(P +1) , with [C k ] IJ =< k, I, J > (9) 
H P = r k=0 C k ⊗ (-ω 2 M k + ı ω D k + K k ) ∈ R N (P +1)×N (P +1) (10) 
Y P = [Y T 0 Y T 1 • • • Y T P ] T ∈ R N (P +1) (11) 
F P = [µF T 0 0 • • • 0 ] T ∈ R N (P +1) (12) < i 1 • • • i n > is defined by < i 1 • • • i n > = < Ψ i 1 (Ξ) • • • Ψ in (Ξ) > = Ξ (Ψ i 1 (Ξ) • • • Ψ in (Ξ)) P(Ξ) dΞ (13) 
with P(Ξ) = r α=1 p α (ξ α ) and p α (ξ α ) is the pdf of ξ α , and dΞ = r α=1 dξ α . When Hermite polynomials are used, a closed-form solution exists for < ijk >, which is given in Appendix A. Note also that the polynomials are normalized: < ij >= δ ij (δ ij is the Kronecker delta).

Once Eq. ( 8) is solved, the pdf can then be estimated with an MCS directly applied to Eq. ( 7).

In the following P is dropped for a sake of simplicity.

Rational function expansion: Padé Approximants

A Padé approximant (PA) of a function F is a rational function derived from the Taylor series of F. The Padé approximant converges much faster than the Taylor expansion [START_REF] Baker | Padé approximants -second edition[END_REF][START_REF] Brezinski | Extrapolation algorithms and Padé approximations: a historical survey[END_REF] when the function has poles. In this paper F = X(Ξ), the response of the uncertain system. First the function is assumed to depend on one variable (i.e., Ξ = ξ). Indeed, the definition of the PA of a multivariate function is not obvious, for reasons that will be presented later.

Consider that the Taylor series expansion of the response, X T ay , is known, up to a given degree,

m. A Padé approximant of X k (k-th element of vector X) is denoted [M k /N k ] X T ay k
where M k is the degree of the numerator and N k is the degree of the denominator, and is given by

[M k /N k ] X T ay k (ξ) = M k i=0 N P A k,i (ω) ξ i N k i=0 D P A k,i (ω) ξ i (14) 
The Padé approximant is such that:

X T ay k (ω, ξ) -[M k /N k ] X T ay k (ξ) = O(ξ M k +N k +1 ) (15) 
There are M k + N k + 2 unknowns, which are defined up to a multiplicative factor: so, usually, D P A 0,k is set equal to unity [START_REF] Cuyt | How well can the concept of Padé approximant be generalized to the multivariate case?[END_REF]. Hence, to calculate the M k + N k + 1 coefficients of the PA, m, the degree of the Taylor series expansion is equal to M k + N k , and then Eq. [START_REF] Lan | Uncertain eigenvalue analysis by the sparse grid stochastic collocation method[END_REF] gives

M k + N k + 1 equations.
This is more difficult for multivariate functions as several definitions may hold [START_REF] Cuyt | How well can the concept of Padé approximant be generalized to the multivariate case?[END_REF][START_REF] Chisholm | Rational approximates defined from double power series[END_REF][START_REF] Cuyt | Multivariate Padé approximants revisited[END_REF][START_REF] Guillaume | Multivariate Padé approximation[END_REF][START_REF] Guillaume | Generalized multivariate Padé approximants[END_REF]. For the general case, a PA involves M k + N k -1 unknowns (where m denotes the number of coefficients of a multivariate polynomial of degree m), if we decide that the numerator (resp. denominator) must contain all terms up to degree M k (resp. N k ). As a consequence a Taylor series that has at least M k + N k -1 coefficients is required to determine the PA unknowns. The problem comes from the relationship between a polynomial degree m, and the number of coefficients involved in the definition of a multivariate polynomial with r variables, m = (m + r)!/(m!r!). Indeed, in general, there does not exist m such that m = M k + N k -1. If one considers that all the terms up to degree m must be kept, the problem leads to an over-determined problem, and m ≥ M k + N k -1. However, one can keep the relation m = M k + N k -1 and accept that some polynomials of degree m are not included in the PCE. Then, a decision must be made in the choice of the equations. This will be discussed further in the next subsection and in subsection 6.2.1.

Rational function expansion: eXtended Padé Approximants (XPA)

In the stochastic finite element context, PC expansion is much more interesting than a Taylor series. Hence it is suggested to replace monomial ξ i , by polynomial chaos Ψ i (Ξ). Such generalization had been defined and studied in many papers [START_REF] Baker | Padé approximants -second edition[END_REF][START_REF] Matos | Some convergence results for the generalized Padé-type approximants[END_REF][START_REF] Matos | Recursive computation of Padé-Legendre approximants and some acceleration properties[END_REF][START_REF] Emmel | Padé-Jacobi filtering for spectral approximations of discontinuous solutions[END_REF][START_REF] Matos | Simultaneous Frobenius-Padé approximants[END_REF][START_REF] Hesthaven | Padé-Legendre interpolants for gibbs reconstruction[END_REF]. Chantrasmi et al. [START_REF] Chantrasmi | Padé-Legendre approximants for uncertainty analysis with discontinuous response surfaces[END_REF] have already used extended Padé approximants (Legendre-Padé approximants) for uncertainty propagation. They proposed multivariate approximants based on a definition given by Guillaume et al. [START_REF] Guillaume | Multivariate Padé approximation[END_REF]. Their objective was to calculate the statistics (pdf) of the position and the strength of a shock in a fluid mechanics context, which involves strong discontinuities (shock waves).

In the present study, the interest of the XPAs for calculating the response pdf of a random dynamical system is twofold. First they had been developed to accelerate the polynomial expansion convergence rate of a function. This property is important as it had been shown that the PCE has poor convergence properties around the deterministic eigenmodes [START_REF] Adhikari | The polynomial chaos expansion and the steadystate response of a class of random dynamic systems[END_REF]. Second, it is expected that the response of an uncertain dynamical system is a rational function of the uncertain parameters.

Hence, the representation of the response with Padé Approximants seems to be more appropriate than a polynomial expansion.

The Padé approximants are extended to a rational function such that the numerator and the denominator are developed in terms of PC as

[M k /N k ] X P C k (Ξ) = n k j=0 N XP A k,j (ω) Ψ j (Ξ) d k j=0 D XP A k,j (ω) Ψ j (Ξ) (16) 
where

n k = M k -1 and d k = N k -1; k refers to the k-th dof.
Similarly to the previous subsection

D XP A k,0
is equal to unity.

N XP A k,i
and

D XP A k,i
are derived by comparing Eq. ( 7) to Eq. ( 16):

P i=0 Y ik (ω) Ψ j (Ξ) = n k j=0 N XP A k,j (ω) Ψ j (Ξ) 1 + d k j=1 D XP A k,j (ω) Ψ j (Ξ) (17) 
where P = m -1 and m is the PCE degree of the response. This is transformed and reorganized as

n k j=0 N XP A k,j (ω)Ψ j (Ξ) - d k j=1 D XP A k,j (ω) P i=0 Y k,i (ω)Ψ i (Ξ)Ψ j (Ξ) = P i=0 Y k,i (ω) Ψ i (Ξ) (18) 
The

n k + d k + 1 coefficients N XP A k,j
and

D XP A k,j
are then calculated by projecting Eq. ( 18) on Ψ l (Ξ) for l from 0 to P : P + 1 equations are obtained:

N XP A k,l (ω) Ind n k (l) - d k j=1 D XP A k,j (ω) P i=0 Y k,i (ω) < i j l > = Y k,l (ω) Ind P (l) ( 19 
)
where Ind n (l) is equal to unity if 0 ≤ l ≤ n and to zero otherwise. The factor Ind P (l) in the right hand side of Eq. ( 19) suggests that P ≤ P otherwise it would mean that ∀ l > P, Y k,l (ω) = 0 in the "exact" PCE (i.e. with all the terms from 0 to infinity) of the response. Such approximation can not hold when the PCE does not converge quickly and P is low. As a consequence, in the following, P is supposed to be lower or equal to P .

Ind n k (l) indicates that the coefficients of the denominator are determined first with the following equations

∀ l / n k + 1 ≤ l ≤ P d k j=1 D XP A k,j (ω) P i=0 Y k,i (ω) < i j l > = -Y k,l (ω) (20) 
To avoid getting an underdetermined system, P ≥ n k + d k . However the last condition does not provide P and P . The choice of P may involve m , which is the degree of Ψ P and then is an integer

such that m ∈ IN, m -1 r < P ≤ m r (21) 
Eq. ( 18) can be projected on all the polynomials whose degree is lower or equal to m : P +1 = m .

Hence, except if by chance P = m -1 = n k + d k , the denominator coefficients are the solution of an overdetermined system. Further, as P is assumed to be lower or equal to P , then m ≤ m. A further discussion on the choice of P , P , m and m is given in subsection 6.2.1. The determination of a multivariate XPA has been discussed in several papers ( e.g. [START_REF] Guillaume | Multivariate Padé approximation[END_REF][START_REF] Guillaume | Generalized multivariate Padé approximants[END_REF][START_REF] Matos | Multivariate Frobenius-Padé approximants: properties and algorithms[END_REF]).

Once the denominator coefficients are determined, the numerator coefficients are obtained directly as

∀ l / 0 ≤ l ≤ n k N XP A k,l (ω) = d k j=1 D XP A k,j (ω) P i=0 Y k,i (ω) < i j l > + Y k,l (ω) (22) 
Finally, by performing an MCS on [M k /N k ] X P C k (Ξ), the pdf of the response may be estimated. Note that in the single variate case, the XPA is determined easily: the PCE degree is M k + N k , and

P + 1 = P + 1 = n k + d k + 1 = (M k + N k ).

Random modes

A natural way to obtain the response of an N -dof dynamical system is to expand the solution on the eigenvectors

X(t) = N k=1 q k (t) φ k ( 23 
)
where φ k is an eigenvector and q k defines the deterministic modal coordinate for the k-th eigenvector.

The mass and stiffness matrices are random so the eigenmodes, which will be denoted { ω k , φ k } are random as well. Then the random mode superposition reads

X(t) = N n=1 q n (t) φ n (24) 
where modal coordinate q n is random and depends on the random eigenmodes. Eq. ( 24) holds not only to describe a steady-state response of a dynamical system, but also for the transient response even if it has not been used in this latter context so far.

When force vector F is harmonic with frequency ω, the steady-state response is

X(ω) = N n=1 q n (ω) φ n (25) 
Modal coordinate q n (ω) is derived by substituting Eq. ( 25) in Eq. ( 1) and by projecting this latter equation on each φ n . Then the n-th modal equation is

(-ω 2 + 2 η n ω n ω + ω 2 n ) q n (t) = φ T n F m n ( 26 
)
where η n (resp. m n ) is the damping ratio (resp. the generalized modal mass) of mode n. In the following, the random damping may be calculated from the damping matrix:

η n = φ T n D φ n 2 ω n m n (27) 
Then the modal coordinate reads

q n (t) = φ T n F m n ( ω 2 n -ω 2 + 2 η n ω n ω) (28) 
Eq. [START_REF] Emmel | Padé-Jacobi filtering for spectral approximations of discontinuous solutions[END_REF] shows that the response of the random dynamical system is a rational function of the random parameters, φ n , ω n , η n , and m n . This is why the Padé approximant approach is appropriate as it consists in finding a rational function f the uncertain parameters.

The random eigenmodes can be determined with a MCS or a PCE. Considering the use of a PCE they are expanded as follows [START_REF] Dessombz | Analysis of stochastic structures: Pertubation method and projection on homogeneous chaos[END_REF][START_REF] Dessombz | Analyse dynamique de structures comportant des paramètres incertains (dynamic a nalysis of structures with uncertain parameters[END_REF]]

ω 2 k = ω 2 k P p=0 a k p Ψ p (Ξ) (29) 
φ k = N n=1 λ k n φ n = N n=1 P p=0 λ k np Ψ p (Ξ) φ n (30) 
where (ω k , φ k ) denotes the k-eigenmode of the deterministic system, defined in section 2.

{a k p , {λ k np } n=1•••N } p=0•••P
are the PC coefficients related to the PCE of random mode k. Further the following mass normalization is applied

φ T k M 0 φ k = 1 ( 31 
)
where M 0 is the mean mass matrix. As a consequence

λ k k = 1 (32) 
Then Eq. ( 30) becomes

φ k = φ k + N n=1 n =k P p=0 λ k np Ψ p (Ξ) φ n (33) 
Eqs. ( 29) and [START_REF] Kullback | On information and sufficiency[END_REF] show that the PCE of random mode k requires N × (P + 1) unknowns. Projecting the eigenproblem MCS, PCE, and random modes will be used to evaluate the pdf of X for the example shown in Fig. 1. Monte Carlo simulations will serve as a reference for validating the results obtained with the XPA and random modes approaches. Stiffnesses k 1 and k 2 are assumed to be equal and uncertain:

K -ω 2 k M φ k = 0 ( 34 
k (Nm -1 ) m (kg) c (Nm -1 s -1 ) δ K (%) F 01 (N) F 02 (N) 15000 1 1 5 1 0
k 1 = k 2 = k (1 + δ K ξ) ( 35 
)
where ξ is random variable. Thus, the uncertain stiffness matrix is

K = K 0 + δ K ξ K 1 = K 0 (1 + δ K ξ) (36) 
where

K 0 = K 1 = k   2 -1 -1 1   (37) 
In the following ξ is either a truncated normal variable (ξ ∼ N [-5; 5] (0; 1)) or a uniform random

variable (ξ ∼ U [-1; 1] ).
The characteristics of the system are listed in Tables 1 and2.

ξ: truncated normal deviate

The mean and the standard deviation of the random stiffness can then be deduced from Table 1.

Note that if ξ had a uniform law, the positiveness of the stiffness would be questionable. However the ratio of standard deviation to the mean indicates that the probability to draw a negative stiffness is so low that the numerical estimation of this probability by a software like Matlab is 0, and the probability to draw a stiffness lower than 0.75 × k is about 2.8 10 -7 . In the following the number of samples is lower than 1 million. Hence, in practice, such statistical law could be used. However, to avoid such issue, the normal law is truncated so that k ∈ [0.75k; 1.25k]: this corresponds to the mean plus/minus five standard deviations. The steady-state response X = [X 1 X 2 ] T is solution of the following equation

(-ω 2 M + K) X(ξ, ω) = F (38) 
Thus, the exact solution, for each dof k, is the following rational function:

X k (ξ, ω) = N 0,k + N 1,k ξ 1 + D 1 ξ + D 2 ξ 2 (39) 
with

D 0 = k 2 + 2 icω k -ω 2 (3 k m + c 2 ) -3 iω 3 m c + ω 4 m 2 D 1 = 1 D 0 2 k 2 δ k -3 k δ k ω 2 m + 2 icω k δ k D 2 = 1 D 0 k 2 δ k 2 N 0,1 = 1 D 0 k -ω 2 m + icω N 1,1 = 1 D 0 k δ k N 0,2 = 1 D 0 -k -icω N 1,2 = 1 D 0 -k δ k
Note that normalized Hermite polynomials are related to the monomials

1 = Ψ 0 (ξ) (40) ξ = Ψ 1 (ξ) (41) 
ξ 2 = √ 2 Ψ 2 (ξ) + Ψ 0 (ξ) (42) 
Then, expression (39) can easily be transformed into a rational function whose numerator and denominator are expanded in terms of the Hermite polynomials as

X k (ξ, ω) = N HP 0,k + N HP 1,k Ψ 1 (ξ) 1 + D HP 1 Ψ 1 (ξ) + D HP 2 Ψ 2 (ξ) (43) 
with

D HP 0 = D 0 (1 + D 2 ) = (k 2 + 2 icω k -ω 2 (3 k m + c 2 ) -3 iω 3 m c + ω 4 m 2 ) 1 + k 2 δ k 2 D HP 1 = D 0 D 1 D HP 0 = 1 D HP 0 2 k 2 δ k -3 k δ k ω 2 m + 2 icω k δ k D HP 2 = D 0 D 2 D HP 0 = 1 D HP 0 k 2 δ k 2 N HP 0,1 = D 0 N 0,1 D HP 0 = 1 D HP 0 k -ω 2 m + icω N HP 1,1 = D 0 N 1,1 D HP 0 = 1 D HP 0 k δ k N HP 0,2 = D 0 N 0,2 D HP 0 = 1 D HP 0 -k -icω N HP 1,2 = D 0 N 1,2 D HP 0 = 1 D HP 0 -k δ k
Eq. ( 43) shows that the exact solution is a rational function of the random parameter: deriving an estimation of the solution in terms of Padé approximants, which are rational functions, is then appropriate.

The reference pdf is obtained with a direct Monte carlo simulation method together with a Latin Hypercube Sampling (LHS) with 10,000 samples of the random variable. It has been verified that the number of samples is sufficient for the convergence of the solution. The pdf is estimated at the first deterministic eigenfrequency, which seems to be the worst case [START_REF] Adhikari | The polynomial chaos expansion and the steadystate response of a class of random dynamic systems[END_REF]. The results are given in Fig. 2(a).

Probability density function: PCE and XPA

The pdfs were also calculated directly from the PCE and with the Padé approach: they were compared to the reference pdf with the Kullback-Leibler divergence [START_REF] Kullback | On information and sufficiency[END_REF][START_REF] Basseville | Divergence measures for statistical data processing -An annotated bibliography[END_REF][START_REF] Greegar | Global response sensitivity analysis of uncertain structures[END_REF], D KL , defined as

D KL (p ref (x)||p(x)) = Dx p ref (x) ln p ref (x) p(x) dx ( 44 
)
where D x is the domain of a random variable x. D KL is always nonnegative and is equal to zero when p ref (x) = p(x) almost everywhere. A LHS with 10,000 samples was also performed directly on the PCE with P = 500 and P = 501: the pdfs are given in Figs. 2(c) and 2(d). With a degree P = 500 a quite good estimation of the pdf is reached. However the results are poor with P = 501. In fact the parity influence on the first statistical moments was already noticed in [START_REF] Adhikari | The polynomial chaos expansion and the steadystate response of a class of random dynamic systems[END_REF].

A [0/1] Padé approximant pdf (i.e., n k = 0 and d k = 1) was derived with MCS (10,000 samples were used): it required a PCE with P = 2. The pdf is given in Fig. 2(b). The quality of the results with such a low PCE degree is striking. In fact, increasing the numerator and denominator degree does not really improve the results. However, surprisingly, the only configuration which is not excellent is XPA [1/2] (see Fig. 3), even though this configuration should be the best, since the closed-form expression of the pdf is a rational function whose numerator (resp. denominator) degree is equal to 1 (resp. to 2). However even this configuration accurately predicts the peak of the pdf, even though the tail is poorly predicted.

The Kullback-Leibler divergences of the pdf calculated with the PCE approach and the Padé technique are listed in Table 3: the results confirm the qualitative conclusions given from Figs. 2-3. In particular the divergences show that estimating the pdf with the Padé technique is much more efficient than with the PCE approach. Further, the Padé [1/2] divergence is quite low despite some dissimilarities: this is due to the fact that only the tails of the distribution are not similar.

Mean and standard deviation: MCS and XPA

In [START_REF] Adhikari | The polynomial chaos expansion and the steadystate response of a class of random dynamic systems[END_REF] it was shown that the mean and the standard deviations are two slowly convergent sequences.

A solution to improve the convergence rate was proposed in [START_REF] Adhikari | Polynomial chaos expansion in structural dynamics: Accelerating the convergence of the first two statistical moment sequences[END_REF]. Knowing the pdf, any moments of the statistical distribution may be derived. If the pdf is well estimated with a low degree XPA, the moments must be very well estimated as well.

The first two moments are given in Fig. 4 for several XPA. Figs. 4(a) and 4(b) show that with P = 5 it is possible to obtain excellent estimates of the first two moments. The XPA approach is then much more efficient than the Aitken method proposed in [START_REF] Adhikari | Polynomial chaos expansion in structural dynamics: Accelerating the convergence of the first two statistical moment sequences[END_REF], as shown in Fig. 5 where P = 20.

It has been observed that a [0/1] XPA gives an excellent pdf at the first eigenfrequencies. However 

Random modes: exact solution

The deterministic modes are solutions to the following equation

K 0 -ω 2 k M φ k = 0 (45)
whereas the random modes are solution to

K 0 (1 + δ K ξ) -ω 2 k M φ k = 0 ( 46 
)
Then it is easy to derive the expression of the random modes as functions of the deterministic modes as

ω 2 k = ω 2 k (1 + δ K ξ) ( 47 
)
φ k = φ k (48)
In this particular case, the random eigenvectors are equal to the deterministic ones: this occurs because the random stiffness matrix is proportional to the deterministic stiffness matrix. In the following, if index k is equal to 1 then index k is equal to 2 and vice-versa. Random mode k is determined according to the method indicated previously and then is expanded according to Eqs. ( 29) and [START_REF] Hesthaven | Padé-Legendre interpolants for gibbs reconstruction[END_REF]. Thus the following equation has to be solved:

K 0 (1 + δ K ξ) -ω 2 k P p=0 a k p Ψ p (ξ) M φ k + P p=0 λ k k p Ψ p (ξ)φ k = 0 (49)
{ω k , φ k } are the deterministic eigenmodes of the dynamical system defined in Eq. ( 45). Multiplying

Eq. ( 49) by each eigenvector and using the orthogonality properties gives

(1 + δ K ξ) - P p=0 a k p Ψ p (ξ) = 0 (50) ω 2 k P p=0 λ k k p (Ψ p (ξ) + δ K ξΨ p (ξ)) -ω 2 k P p=0 P q=0 a k p λ k k q Ψ p (ξ)Ψ q (ξ) = 0 (51)
Note that Ψ 0 (ξ) = 1 and Ψ 1 (ξ) = ξ. Multiplying the last two equations by Ψ m (ξ) in the random space gives

a k m = (< m > +δ K < 1m >) (52) ω 2 k P p=0 λ k k p (< mp > +δ K < 1mp >) -ω 2 k P p=0 P q=0 a k p λ k k q < mpq > = 0 (53)
Solving Eqs. ( 52) and ( 53) gives

a k 0 = 1 (54) a k 1 = δ K (55) ∀p > 1 a k p = 0 (56) ∀p ∈ N λ k p = 0 (57)
Then the random mode k estimate is

ω 2 k = ω 2 k (Ψ 0 (ξ) + δ K Ψ 1 (ξ)) = ω 2 k (1 + δ K ξ) ( 58 
)
φ k = φ k (59)
Comparing Eqs. ( 47) and ( 48) to the last two equations proves that a PCE of degree 1 gives the exact random modes, and therefore the exact solution of the uncertain problem.

This result may be extended to all the dynamical systems with an uncertain stiffness matrix that verifies Eq. ( 36), but the result does not hold in general, in particular when the mass matrix is uncertain or when the number of uncertain parameters is greater than one.

ξ: uniform deviate

The interval of the random stiffness can then be deduced from Table 1.

The reference pdf is obtained with a direct Monte carlo simulation method together with a Latin Hypercube Sampling (LHS) with 10,000 samples of the random variable. It has been verified that the number of samples is sufficient for the convergence of the solution. The pdf is estimated at the first deterministic eigenfrequency. The results are given in Fig. 6(a).

Probability density function: PCE and XPA

The pdfs are also calculated directly from the PCE and with the Padé approach : they are plotted in Figs. 6(b)-6(d) and they are compared to the reference pdf. The Kullback-Leibler divergences of the pdf calculated with the PCE approach and the Padé technique are listed in Table 4.

As indicated in [START_REF] Adhikari | Role of roots of orthogonal polynomials in the dynamic response of stochastic systems[END_REF], a PCE with Legendre polynomials (uniform distribution) converges much quicker than with the Hermite polynomials (normal distribution): the results are quite good with P = 50 whereas in the previous case, they were poor with P = 500. The results are excellent with a [0/2] XPA (see Table 4), which requires a PCE with P = 2: however the pdf calculated with a PCE with P = 2 is far from the MCS pdf, as indicated with the Kullback-Leibler divergence given in Table 4.

Random modes: PCE

Deriving the calculations made in 5.3.3 with the normalized Legendre polynomials leads to the same results: the random modes obtained with a PCE are the exact random modes. Note that the

second normalized Legendre polynomial is Ψ 1 (ξ) = √ 3 ξ, i.e.n ξ = Ψ 1 (ξ)/ √ 3.
As a consequence, Eq.

52 is slightly modified:

a k m = (< m > +δ K < 1m >)/ √ 3.

Example 2

6.1. Two degree-of-freedom system with two uncertain parameters

The example shown in Fig. 1 is studied with uncertain stiffnesses k 1 and k 2 :

k 1 = k (1 + δ K ξ 1 ) (60) 
k 2 = k (1 + δ K ξ 2 ) (61) 
where ξ 1 and ξ 2 are two independent normal random variables. In the following ξ i is either a truncated normal variable (ξ i ∼ N [-5; 5] (0; 1)) or a uniform random variable (ξ i ∼ U [-1; 1] ). The characteristics of the system are listed in Table 1. Thus, the uncertain stiffness matrix is

K = K 0 + ξ 1 K 1 + ξ 2 K 2 (62) 
where 

K 0 = k   2 -1 -1 1   (63) 
K 1 = k δ K   1 0 0 0   (64) 
K 2 = k δ K   1 -1 -1 1   (65) (a) (b) (c) (d) 
X 1 (ξ 1 , ξ 2 , ω) = -ω 2 m + ıωc + a 2 ω 4 m 2 -ω 3 3ıcm -ω 2 (m(a 1 + 2a 2 ) + c 2 ) + ωıc(a 1 + 3a 2 ) + a 1 a 2 (66) X 2 (ξ 1 , ξ 2 , ω) = 1 + δ k ξ 2 + ıωc ω 4 m 2 -ω 3 3ıcm -ω 2 (m(a 1 + 2a 2 ) + c 2 ) + ωıc(a 1 + 3a 2 ) + a 1 a 2 (67) 
with

a 1 = k 1 /k = 1 + δ k ξ 1 and a 2 = k 2 /k = 1 + δ k ξ 2 .
The reference pdf is still obtained with an LHS with 10,000 samples. The pdf was estimated at the first deterministic eigenfrequency, and the results are plotted in Fig. 7 (normal deviates) and in Fig. 9 (uniform deviates).

Truncated normal deviates

Both random variables ξ 1 and ξ 2 are drawn according to a truncate normal law to avoid any negative stiffness: ξ i ∼ N [-5; 5] (0; 1). Then, random stiffness k i is in the intervalle given by the mean plus/minus five standard deviations.

Probability density function: PCE and XPA

The pdf was estimated with a PCE of degree 50, which required 1326 terms in the expansion. Fig. 7(a) shows that the quality of the results is poor, even though the expansion requires a lot of terms: the Kullback-Leibler divergences are listed in Table 5.

The pdf was also calculated with the XPA approach. The notation of subsection 3.3 is used. To have the smallest systems of equations as possible, m is chosen minimal: it is the lowest integer such that m ≥ n k + d k + 1. Then P is such that n k + d k + 1 ≤ P + 1 ≤ m . If P + 1 is chosen equal to m , Eq. ( 18) is projected on all the PC of degree lower or equal to m . If P + 1 is chosen equal to to zero.This is in a perfect agreement with Eq. (66) as the numerator degree is equal to 1 and the denominator degree is equal to 2, if the response is considered as a function of the random variates (i.e. for a given frequency ω). Further, Eq. (66) shows that the response has no term in ξ 1 in the numerator: it was found that the XPA has no term in ξ 1 in the numerator as well. The numerical results have shown that any XPA gives the rational function calculated with the XPA [1/2], if the requested degree for numerator (resp. denominator) is greater or equal to 1 (resp. 2). Hence, this approach is very efficient for this case study as it is possible to find the analytical results given by Eq. (66).

n k + d k + 1,
On the contrary, the PCE of degree 50 had a divergence equal to 0.32, which indicates that the results are not in very good agreement with the reference pdf.

Random modes: MCS solution

The random modes are solutions of

K 0 + ξ 1 K 1 + ξ 2 K 2 -ω 2 k M φ k = 0 (68)
Then the random modes are:

ω 2 1 = k 2m (a 1 + 2 a 2 -a 2 1 + 4 a 2 2 ) (69) φ 1 =   2 a 2 a 1 + a 2 1 + 4 a 2 2   (70) ω 2 2 = k m (a 1 + 2 a 2 + a 2 1 + 4 a 2 2 ) (71) φ 2 =   2 a 2 a 1 -a 2 1 + 4 a 2 2   (72) 
The MCS gives the mean of the random modes as

ω 2 1 = 5723 (rad/s) 2 (73) 
φ 1 = =   0.5256 0.8507   (74) ω 2 2 = 39277 (rad/s) 2 (75) 
φ 2 =   -0.8505 0.5260   (76) 

Random modes: PCE

Random mode k is determined according to the method indicated previously and then are expanded according to Eq. ( 29)- [START_REF] Hesthaven | Padé-Legendre interpolants for gibbs reconstruction[END_REF]. Then the following equation has to be solved:

K 0 + ξ 1 K 1 + ξ 2 K 2 -ω 2 k P p=0 a k p Ψ p (Ξ) M φ k + P p=0 λ k k p Ψ p (Ξ)φ k = 0 (77) 
Note that the polynomial chaoses are numbered so that Ψ 0

(Ξ) = 1, Ψ 1 (Ξ) = ξ 1 , and Ψ 2 (Ξ) = ξ 2 .
Then Eq. ( 77) may be written as

Ψ 0 (Ξ)K 0 + Ψ 1 (Ξ)K 1 + Ψ 2 (Ξ)K 2 -ω 2 k P p=0 a k p Ψ p (Ξ) M φ k + P p=0 λ k k p Ψ p (Ξ)φ k = 0 (78) 
Eq. ( 78) is projected on each Ψ m (Ξ) in the random space:

∀m = 0 • • • P, < 0m > K 0 + < 1m > K 1 + < 2m > K 2 -ω 2 k a k m M φ k -ω 2 k P p=0 P q=0 a k p λ k k q < pqm > Mφ k + P p=0 λ k k p (< 0pm > K 0 + < 1pm > K 1 + < 2pm > K 2 ) φ k = 0 (79) 
Projecting Eq. ( 79) onto the deterministic eigenvectors gives the set equations required to solve for the unknowns. Hence pre-multiplying Eq. ( 79) by φ k gives

P p=0 < 0pm > φ T k K 0 φ k + < 1pm > φ T k K 1 φ k + < 2pm > φ T k K 2 φ k λ k k p -ω 2 k a k m = -< 0m > φ T k K 0 φ k + < 1m > φ T k K 1 φ k + < 2m > φ T k K 2 φ k (80) 
and pre-multiplying Eq. ( 79) by φ k gives

P p=0 < 0pm > φ T k K 0 φ k + < 1pm > φ T k K 1 φ k + < 2pm > φ T k K 2 φ k λ k k p -ω 2 k P p=0 P q=0 a k p λ k k q < pqm > (81) = -< 0m > φ T k K 0 φ k + < 1m > φ T k K 1 φ k + < 2m > φ T k K 2 φ k
Eqs. ( 80) and (81) hold for m = 0 • • • P + 1 and a matrix equation is derived

  φ T k K 1 φ k S 1 + φ T k K 2 φ k S 2 -ω 2 k I P +1 φ T k K 2 φ k S 2 0 P +1   Y k -ω 2 k   0 P +1 f N L (Y k )   = -   b b   (82) 
where

Y k ∈ R 2(P +1) , Y k =   λ k k a k   S k ∈ R (P +1)×(P +1) S k,ij =< ijk > f N L ∈ R (P +1)×1 , f N L,i (Y k ) = 1 2 Y k T   0 P +1 S i S i 0 P +1   Y k b ∈ R (P +1) , b =               φ T k K 0 φ k φ T k K 1 φ k φ T k K 2 φ k 0 . . . 0               and b ∈ R (P +1) , b =               0 φ T k K 1 φ k φ T k K 2 φ k 0 . . . 0               0 P +1 ∈ R (P +1)×(P +1
) is the null matrix, and I P +1 ∈ R (P +1)×(P +1) is the identity matrix.

The nonlinear Eq. ( 82) is solved with a Newton-Raphson method and gives the following estimate of the random modes for a PC degree equal to 1:

ω 2 1 = ω 2 1 (0.9988 + 0.0362ξ 1 + 0.0138ξ 2 ) (83) φ 1 = φ 1 + φ 2 (-0.0003 -0.01ξ 1 + 0.01ξ 2 ) (84) ω 2 2 = ω 2 2 (1.0002 + 0.0138ξ 1 + 0.0362ξ 2 ) ( 85 
)
φ 2 = φ 2 + φ 1 (0.0003 + 0.01ξ 1 -0.01ξ 2 ) (86) 
The mean modes are 24) and ( 28) give, for each frequency, the distribution of the uncertain response. Fig. 8 compares the results with the random modes obtained from MCS and a PCE of degree 1: the pdf of the response evaluated at the first deterministic eigenfrequency is given in Fig. 8(a) whereas the mean frequency response is plotted in Fig. 8(b). The results are very good even with a very low PCE degree; this is confirmed by the low value of the Kullback-Leibler divergence given in Table 5.

ω 2 1 = 5723 (rad/s) 2 (87) 
φ 1 = =   0.5255 0.8508   (88) 

Uniform deviates

As already mentioned, the PCE converges much quicker with Legendre polynomials. Fig. 9(a)

shows that the pdf calculated with a PCE of degree 30 is not very different from the reference pdf.

Similarly to the case with the normal deviate, the XPA is very efficient as it is equal to the reference pdf (see Fig. 9(b)), which is indicated by a Kullback-Leibler divergence equal to zero (see Table 6). Fig. 9(c) shows that the random mode approach is also very efficient: the Kullback-Leibler divergence is very low (see Table 6) while the degree of the PCE to calculate the random modes is equal to one (P = 2).

The mean modes obtained from a PCE of degree 1 and a MCS are 

The previous equations show that the PCE approach to calculate the mean random modes is very efficient in this case.

Conclusion

The problem of obtaining probability density function of the dynamic response in the frequency domain of a damped linear stochastic system is considered in this paper. A numerical approach and a physical approach were presented to estimate the response pdf of a random dynamical system and illustrated on two simple case studies. Both approaches exploit polynomial chaos expansions (PCE) in different ways compared to PCE applied directly to the frequency domain response. The numerical approach relies on the (multivariate) Padé approximants derived from a PCE of the response, whereas the mechanical approach requires the estimation of the random modes with a PCE. The examples show the efficiency of both approaches. In particular, it is possible to estimate the first two moments of the response with a very low degree PCE: these methods are even more efficient than the one proposed in [START_REF] Adhikari | Polynomial chaos expansion in structural dynamics: Accelerating the convergence of the first two statistical moment sequences[END_REF]. This study also suggests that the random modes, which may be easily calculated with a PCE, might be as efficient as the deterministic modes in the study of a deterministic linear structure.

  ) on each deterministic eigenmode {φ n } n=1•••N and each PC {Ψ p (Ξ)} p=0•••P gives the N ×(P +1) related equations.
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 1 Figure 1: A two degree-of-freedom system with stochastic stiffness coefficients
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 423 Figs.[START_REF] Adhikari | Polynomial chaos expansion in structural dynamics: Accelerating the convergence of the first two statistical moment sequences[END_REF](c) and 4(d) show that the moment estimation is poor about the deterministic antiresonant

Figure 4 :Figure 5 :

 45 Figure 4: First moments (XPA: solid lines; MCS: dotted line) for several XPA (a): [2/2] XPA mean; (b): [2/2] XPA standard deviation; (c): [0/1] XPA mean; (d): [0/1] XPA standard deviation; (e): [1/2] XPA mean; (f): [1/2] XPA standard deviation

Figure 6 :

 6 Figure 6: Probability density function of the response at the first deterministic eigenfrequency; (a): MCS (10,000 samples); (b): XPA ([0/2], P = 2); (c): PCE (P = 50); (d): PCE (P = 51)

Figure 7 :

 7 Figure 7: Probability density function of the response at the first deterministic eigenfrequency; normal deviates; MCS (solid line) vs. (a): PCE (degree 50, P = 1325 -dotted line); (b): XPA ([1/2], P = 14 -dotted line))

  the last equations to Eqs. (73)-(76) shows that the results obtained with a PCE of low degree are very accurate.

Figure 8 :

 8 Figure 8: normal deviates; random modes solution: MCS (solid lines) vs PCE (dotted line) -(a): pdf of x 1 ; (b): mean frequency response

Figure 9 :

 9 Figure 9: Probability density function of the response at the first deterministic eigenfrequency; uniform deviates; MCS (solid line) vs. (a): PCE (degree 30, P = 495 -dotted line); (b): XPA ([1/2], P = 14 -dotted line); (c): random modes solution

Table 1 :

 1 System characteristics

Table 2 :

 2 Modal characteristics of the deterministic system

	Eigenfrequencies f (Hz) 12.05 31.54
	Damping ratio (%)	0.25 0.66
	5. Example 1	
	5.1. Two degree-of-freedom system with one uncertain parameter

Table 3 :

 3 Kullback-Leibler divergence -Exemple 1 -truncated normal deviate

	pdf PCE 500 PCE 501 Padé [0/1] Padé [1/2] Padé [2/2]
	D KL	0.38	2.00	5 10 -3	0.09	1.5 10 -4

Table 4 :

 4 Kullback-Leibler divergence -Exemple 1 -uniform deviate pdf PCE P = 50 PCE P = 51 PCE P = 2 Padé [0/2]

	D KL	5 10 -3	0.39	7.6	10 -3

Table 5 :

 5 Kullback-Leibler divergence -Exempla 2 -truncated normal deviate

	pdf PCE 50 Padé [1/2] Mode + PCE
	D KL 0.32	0	0.008

Acknowledgments J-J. Sinou acknowledges the support of the Institut Universitaire de France.

A polynomial chaos is function of multiple independent random variables, Ξ = (ξ 1 , • • • , ξ r ) and may be written

In the following, ψ iα = H iα where H iα (ξ α ) is a normalized Hermite polynomial; r α=1 i α is the degree of Ψ i , i may be either a multi-index (i 1 , • • • , i r ) or a single index defined from the multi-index

where < H iα , H jα , H lα >:

Ind max (iα,jα,lα) (s α ) (A.5) with s α = (i α + j α + l α )/2, and function Ind m (l) is defined in subsection 3.3.