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ABSTRACT
The way information flows into programs can be difficult to track.

As non-interference is a hyperproperty relating the results of sev-

eral executions of a program, showing the correctness of an analysis

is quite complex. We present a framework to simplify the certifica-

tion of the correction proof of such analyses. The key is capturing

the non-interference property through an annotated semantics

based on the execution of the program and not simply its result.

The approach is illustrated using a small While language.

CCS CONCEPTS
• Security and privacy → Formal methods and theory of se-
curity;
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1 INTRODUCTION
Non-interference can be defined as a program property that give

guaranties on the independence of specific (public) outputs of a

program from specific (secret) inputs. Non-interference is a hyper-

property [9]: it does not depend on one particular execution of the

program (unlike illegal memory access for example), but on the

results of several executions.

To develop a certified system verifying information flows, such

as non-interference, we propose to only rely on the execution of

the program, and thus investigate such properties using directly

the derivation tree of an execution.

Considering a single execution is clearly not sufficient to deter-

mine if a program has the non-interference property. Surprisingly,

studying every execution independently is also not sufficient. This

is why we propose a formal approach that builds, from any seman-

tics respecting a certain structure, a multisemantics that allows to

reason on several executions simultaneously. Adding annotations

to this multisemantics lets us capture the dependencies between

inputs and outputs of a program.

We show that our approach is correct, i.e., annotations correctly

capture non-interference. This allows analyses (systems detecting

information leak giving non-interferent guarantees only when the

tested program is actually non-interferent) to be proven correct

as the dependencies are a simple property of the multisemantics

defined by induction.
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To demonstrate our approach, we present a small WHILE lan-

guage and its semantics and build its annotated multisemantics.

Contributions. This paper provides a systematic transformation

of a Pretty-Big-Step semantics into an annotated multisemantics

that correctly captures dependencies as a property of the derived

semantics. It does not provide an analysis, but a framework that can

be used to formally prove analyses. The approach is partially for-

malized in the Coq proof assistant [12]: among the lemmas shown

here, the lemmas of section 4.2 and of appendix B are proven with

the Coq proof assistant.

Outline. In Section 2, we present the non-interference property

and we give an intuition of our approach. In Section 3, we present

the semantics format we use and show how a WHILE semantics

is expressed in that format. In Sections 4 and 5, we describe how

the multisemantics is systematically built and we extend it with

annotations. In Section 6, we state and prove that the annotated

multisemantics correctly capture non-interference. In Section 7, we

compare our approach to previous works. We conclude in Section 8.

2 NON-INTERFERENCE
Suppose we have a programming language in which variables can

be private or public, and where the programs can take variables as

parameters. We say a program is non-interferent if, for any pair of

execution that differs only on the private parameters, the values

of the public variables are the same. In other words, changing the

value of the private variables does not influence the public variables.

Or in yet other words, the public variables do not depend on the

private variables: there is no leak of private information.

Definition 2.1 (Termination-Insensitive Non-interference).
A program is Non-interferent if, for any pair of terminating ex-

ecutions starting with different values in the private variables,
the executions end with the same value in the public variables.

In this work, we only consider finite program executions.We now

illustrate through examples of increasing complexity where leaks

of private information may happen and how one may detect them.

As a simple first example, consider the naive program in Figure 1,

where public is a public parameter and secret is a private variable.
It is clearly interferent (or not non-interferent): changing the value

of secret changes the value of public. This is a direct flow of

information because the value of secret is directly assigned into

public.

public := secret

Figure 1: Example of naive interference

Unfortunately, interference is not simply the transitive closure of

direct flows. It may also come from the context in which a particular
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instruction is executed. For example, Figure 2 shows a program

with an indirect flow. The value of secret is not directly stored

into public but the condition in the if statements ensures that

in each case secret receives the value of public. One may thus

detect interference by taking into account the context in which an

assignment takes place. Any single execution of the program of

Figure 2 would then witness the interference.

if secret
then public := true
else public := false

Figure 2: Example of indirect flow

Another source of interference is the fact that not executing
a part of the code can provide information. This is often called

masking. For example, Figure 3 shows such a program. In the case

where secret is false, the variable public is not modified, so this

execution does not witness the interference, even when taking

the context into account. The other execution, where secret is

true, does witness the interference. Hence a further refinement to

detect interference would be to consider all possible executions of

a program.

public := false
if secret

then public := true
else skip

Figure 3: Example of indirect flow with a mask

Unfortunately, this is not sufficient. In the example shown in

Figure 4, we can see that there exists no single execution where

the flow can be inferred. In the left execution, public depends on
y, which is not modified by the execution. In the right execution,

public still depends on y, which itself depends by indirect flow

on x, which is not modified by the execution. Hence in both cases

there seems to be no dependency on secret. Yet, we have public =
secret at the end of both execution, so the secret is leaked. Looking
at every execution independently is not enough.

To recover the inference of information flow as a property of

an execution, we propose a different semantics where multiple

executions are considered in lock-step, so that one may combine the

information gathered by several executions. In the case of Figure 4,

we can see that x depends on secret in the first execution at the end
of the first if. Hence, in the second execution, x must also depend

on secret, as the fact that not modifying it is an information flow.

We can similarly deduce that y depends on x in both executions,

hence public transitively depends on secret.
In some sense, we propose to internalize an approximation of the

non-interference hyperproperty in a property of a refined semantics.

Our approach gives the ability to reason inductively on the refined

semantics and construct formal proofs of correctness of analyses.

3 PRETTY-BIG-STEP
As we aim to provide a generic framework independent of a spe-

cific programming language, we need a precise and simple way

x := true
y := true
if secret

then x := false
else skip

if x
then y := false
else skip

public := y

secret = true

x := true
y := true
if secret

then x := false
else skip

if x
then y := false
else skip

public := y

public = true

secret = f alse

x := true
y := true
if secret

then x := false
else skip

if x
then y := false
else skip

public := y

public = f alse

(executed code, non-executed code)

Figure 4: Running Example

to describe its semantics. The Pretty-Big-Step semantics [8] is not

only concise, it has been shown to scale to complex programming

languages while still being amenable to formalization with a proof

assistant [7]. We slightly modify the definition of Pretty-Big-Step

to make it more uniform and to simplify the definition of non-

interference.

3.1 Canonical structure
Memory model. We propose to model non-interference by mak-

ing explicit the inputs of a program and its outputs. We do not

consider interactive programs, so each input is a constant single

value, for instance an argument of the program. Outputs, however,

consists of lists of values, as we allow a program to send several

values to a given output.

Formally, we consider given a set of values Val and a set of vari-

ables Var . We define the memory as a triplet (Ei ,Ex ,Eo ), where
Ei ∈ Envi represents the inputs of a program as a read-only map-

ping from each input to a value, Ex ∈ Envx represents run-time

environment as a read-write mapping from each variable to a value,

and Eo ∈ Envo represents the outputs of a program, as a write-only

mapping of each output to a list of values, accumulated in the out-

put. To simplify, we consider inputs and outputs to be indexed by

an integer.

Inputs := N
Outputs := N
Envi := Inputs 7→ Val
Envx := Var 7→ Val
Envo := Outputs 7→ Val list
Mem := Envi × Envx × Envo
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Semantics. The Pretty-Big-Step semantics is a constrained Big-

Step semantics where each rule may only have 0, 1, or 2 inductive

premises. In addition, one only needs to know the state and term

under evaluation to decide which rule applies. To illustrate the

Pretty-Big-Step approach, let us consider the evaluation of a condi-

tional. It may look like this is Big-Step format.

IfTrue

M ,e → (M ′,v ) v = true M ′,s1 → M ′′

M ,if e then s1 else s2 → M ′′

Although this rule only has two inductive premises, one has to

partially execute it to know it if is applicable (in this case if e
evaluates to true). In Pretty-Big-Step, one first evaluates e , then
passes control to another rule to decide which branch to evaluate.

Additional constructs are needed to describe these intermediate

steps, they are called extended terms, often written with a 1 or 2

subscript, and they need previously computed values. Here are the

rules for evaluating a conditional in Pretty-Big-Step.

If

M ,e → (M ′,v ) (M ′,v ),If
1
s1 s2 → M ′′

M ,if e then s1 else s2 → M ′′

IfTrue

M ,s1 → M ′

(M ,true ),If
1
s1 s2 → M ′

Formally, rules are in three groups shown in Figure 5: (i) axioms,

the rules with no inductive premise; (ii) rules 1, the rules with

one inductive premise; (iii) rules 2, the rules with two inductive

premises.

Rules may either return a memory and a value, or just a memory.

Conversely, in Pretty-Big-Step, rules may take as input a memory

and zero, one, or several values. To account for this in a uniform

way, we define a state σ as a pair of a memory and a list of values,

called an extra. We write extra(σ ) to refer to the list of values in

a state σ . The result of evaluating an expression is a state whose

extra is a singleton list containing the resulting value. To simplify

notations, we omit the extra when it is an empty list.

Extra := List (Val)
State := Mem × Extra

A rule is entirely defined by the following components.

• Axioms

– t : term, the term on which the axiom can be applied;

– ax : State → State option, a function that give the result-

ing state given the initial state.

• Rule 1

– t : term, the term on which the rule 1 can be applied;

– up : State → State option, a function that returns the new

state in which t1 will be evaluated;
– t1 : term, a term to evaluate in order to continue the

derivation.

• Rule 2

– t : term, the term on which the rule 2 can be applied;

– up : State → State option, a function returning the state

in which the term t1 has to be applied;

– next : State ∗ State → State option, a function giving the

state in which t2 had to be derived depending on the initial
state and the result of the derivation of t1;

– t1,t2 : term, the terms to derive in order to get the result

for t ;
– prod_extra, a boolean value indicating if the evaluation

of t1 produces an extra.

The functions ax , up, and next are functions returning a State
option because these functions have no image for some states. For

example, the rule IfTrue above is defined only when the state has a

single extra that is the boolean value true . The prod_extra boolean

is used to distinguish rules that produce an intermediate state with

a non-empty extra to those who produce one with an empty extra.

It is only used in Section 5 when annotating rules.

Ax

σ ,t → ax (σ )
R_1

up (σ ),t1 → σ ′

σ ,t → σ ′

R_2

up (σ ),t1 → σ ′
1

next (σ ,σ ′
1
),t2 → σ ′

σ ,t → σ ′

Figure 5: Types of rule for a Pretty-Big-Step semantics

For clarity reasons, Figure 5 assumesax (σ ),up (σ ) andnext (σ ,σ ′
1
)

return actual states and not an optional states. Rules are not defined

when the results are None.
The intuition behind the rules Pretty-Big-Step is the following.

• If the evaluation is immediate, we can directly give the results

(e.g., the evaluation of a skip statement or a constant). This

behavior corresponds to an axiom.

• If the evaluation needs to branch depending on a previously

computed value, stored as an extra, then a rule 1 is used.

This is used for instance after evaluating the condition in a

conditional statement.

• If the evaluation needs to first inductively compute an inter-

mediate result, then a rule 2 is used. The intermediate result

is used to compute the next state with which the evaluation

continues.

We thus impose the following additional requirements. For rules

1 and rules 2, if up is defined, then it must not change nor inspect

the memory, i.e., it can only change the extra part of the state,

and this change is a function of the previous extra: up (M ,e ) =
Some (M ′,e ′) =⇒ M ′ = M ∧ e ′ = f (e ). For rules 2, if next
is defined, then the new memory is the memory of the second

argument, and the new extra only depends on the extras of the

arguments: next ((M1,e1), (M2,e2)) = Some (M ,e ) =⇒ M = M2 ∧

e = д(e1,e2). Finally, given a term and an extra, at most one rule

applies.

3.2 WHILE language
To illustrate our approach, we introduce a small WHILE language.

In this language, we distinguish two kinds of terms: expressions

and statements. We first give the syntax of the language and then

its semantics in Pretty-Big-Step form.

Syntax. An expression is either a constant value, a variable, an in-
put, or the binary operation between two expressions. A statement

is either a no-op operation skip, a sequence of two statements, a

3
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conditional, a while loop, an assignment of an expression into a

variable, or an assignment of an expression into an output.

⟨expression⟩ e ::= Const n | Var x | Input n | Op e e

⟨statement⟩ s ::= Skip | Seq s s | If e s s | While e s | Assign x e
| Output n e

We add to the expressions and statements the extended terms

required by the Pretty-Big-Step format.

⟨expression⟩ e ::= . . . | Op1 e | Op2

⟨statement⟩ s ::= . . . | Seq1 s | If1 s s | While1 e s | While2 e s |

Assign1 x | Output1 n

Semantics. To simplify the reading of the rules and the examples,

we use some usual notations.

c for Const c
x for Var x
e1 op e2 for Op e1 e2
s1; s2 for Seq s1 s2
;
1
s2 for Seq1 s2

x := e for Assign x e
x :=

1
for Assign1 x

if e then s1 else s2 for If e s1 s2
If

1
s1 s2 for If1 s1 s2

while e do s for While e s
while

1
e do s for While1 e s

while
2
e do s for While2 e s

f [x 7→ v] denotes the function y 7→



v if x = y

f (y) otherwise

.

As an example of the Pretty-Big-Step semantics, consider the

evaluation of a conditional. The evaluation of if b then s1 else s2
starts with the evaluation of the guarding condition b. The result
is passed in an extra to the extended statement If

1
s1 s2. We then

have two rules to evaluate If
1
s1 s2, one for each possible case for

the extra.

4 MULTISEMANTICS
The first step of our approach is to derive a new semantics where

several derivations are considered at once. We do not simply want

a set of derivations, but a multiderivation where applications of the

same rule at the same point in the derivation are shared.

We use the following notation to represent multiderivations

t ⇓ µ

where µ ⊆ State × State is a relation between states. From now on,

we refer to such a µ as a multistate. Intuitively, a multistate relates

states that are before and after the execution of the term. Formally,

for every pair (σ ,σ ′) ∈ µ, we should have

σ ,t → σ ′

which is a property of the multisemantics that we state in Section

4.2 and have proven in Coq.

We need a few helper functions to define the multisemantics.

First, for every function f : X 7→ Y option, we define the relation
fSome (S ) ∈ X × Y between any element of S ⊆ X that has any

MultiAx

µ = axSome (fst(µ )) µ , ∅

t ⇓ µ

MultiR1

t1 ⇓ µ1 µ = upSome (fst(µ )) ◦ µ1

t ⇓ µ

MultiR2

t1 ⇓ µ1 t2 ⇓ µ2 µn =
−−−−−−−−−−−−−−−−−−−→
upSome (fst(µ )) ◦ µ1

µ = µn ◦ nextSome (snd(µn )) ◦ µ2

t ⇓ µ

Figure 7: Translation of Pretty-Big-Step to multisemantics

image by f of the form Some y with y ∈ Y .

fSome (S ) =




{
(x ,y) ��x ∈ S ∧ f (x ) = Some y

}
if ∀x ∈ S , f (x ) = Some y

undefined otherwise

Second, we define operators to extract the set of first and second

components of a relation.

fst(r ) =
{
x �� (x ,y) ∈ r

}
snd(r ) =

{
y �� (x ,y) ∈ r

}
Third, we define the strict relation composition operator ◦, for

every pair of relations r1,r2.

r1◦r2 =



{(x ,z) |∃y, (x ,y) ∈ r1 ∧ (y,z) ∈ r2} if snd(r1) = fst(r2)

undefined otherwise

This operator is associative and propagates undefinedness, so we

avoid using parentheses.

Finally, we define an operator on relations
−→· that takes a relation

and returns a new relation where the left-hand side is remembered

in the right-hand side.

−→r =
{
(σ , (σ ,σ ′

1
)) ��� (σ ,σ

′
1
) ∈ r

}

4.1 Canonical structure
Figure 7 shows how to derive a rule in the multisemantics from

a rule in Pretty-Big-Step style. There are three cases as there are

three kinds of Pretty-Big-Step rules.

In order to derive an axiom, the multistate should be consistent

with the ax function for every pair, that is for every pair (σ ,σ ′) of
the multistate, ax (σ ) = Some σ ′. We forbid µ to be empty because

it would correspond to multiderivations that have no meaning. De-

riving a rule 1 can be done if for every pair (σ ,σ ′) in the multistate,

there exists a state σ1 such that up (σ ) is of the form Some σ1 and
(σ1,σ

′) is a pair of a multistate obtained by derivation of t1. To
derive a rule 2, for every pair (σ ,σ ′) ∈ µ, their should exists three

states σ1,σ
′
1
,σ2 such that:

• up (σ ) is of the form Some σ1
• (σ1,σ

′
1
) is a pair of a multistate obtained by derivation of t1

• next (σ ,σ ′
1
) is of the form Some σ2

• (σ2,σ
′) is a pair of a multistate obtained by derivation of t2

4
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Cst

M ,c → (M ,c )
Var

Ex (x ) = v

(Ei ,Ex ,Eo ),x → ((Ei ,Ex ,Eo ),v )

Op

M ,e1 → (M ′′,v1) (M ′,v1),op1
e2 → (M ′′,v )

M ,e1 op e2 → (M ′′,v )
Op1

M ,e2 → (M ′,v2) (M ′, (v1,v2)),op2
→ M ′′,v

(M ,v1),op1
e2 → M ′′,v

Op2

v = v1 op v2

(M , (v1,v2)),op
2
→ (M ,v )

Input

Ei (n) = v

(Ei ,Ex ,Eo ),Input n → ((Ei ,Ex ,Eo ),v )
Skip

M ,skip→ M

Seq

M ,s1 → M ′ M ′, ;
1
s2 → M ′′

M ,s1; s2 → M ′′
Seq1

M ,s → M ′

M , ;
1
s → M ′

If

M ,e → (M ′,v ) (M ′,v ),If
1
s1 s2 → M ′′

M ,if e then s1 else s2 → M ′′

IfTrue

M ,s1 → M ′

(M ,true ),If
1
s1 s2 → M ′

IfFalse

M ,s2 → M ′

(M , f alse ),If
1
s1 s2 → M ′

While

M ,e → (M ′,v ) (M ′,v ),while
1
e do s → M ′′

M ,while e do s → M ′′
WhileFalse

(M , f alse ),while
1
e do s → M

WhileTrue1

M ,s → M ′ M ′,while
2
e do s → M ′′

(M ,true ),while
1
e do s → M ′′

WhileTrue2

M ,while e do s → M ′

M ,while
2
e do s → M ′

Asg

M ,e → (M ′,v ) (M ′,v ),x :=
1
→ M ′′

M ,x := e → M ′′
Asg1

E ′x = Ex [x 7→ v]

((Ei ,Ex ,Eo ),v ),x :=
1
→ (Ei ,E

′
x ,Eo )

Output

M ,e → (M ′,v ) (M ′,v ),Ouput
1
n → M ′′

M ,Ouput n e → M ′′
Output1

E ′o = Eo[n 7→ v :: Eo (n)]

((Ei ,Ex ,Eo ),v ),Ouput1
n → (Ei ,Ex ,E

′
o )

Figure 6: Rules of the Pretty-Big-Step semantics

Because we need σ to determine next (σ ,σ ′
1
), we use the −→· oper-

ator to remember σ .
These rules are not sufficient in the general case as they force

every derivation to have the same structure. For example, when

trying to derive an if statement in the multisemantics, all of the

derivations have to go in the same branch. The multiderivation for

a conditional has the following root.

MultiIf

b ⇓ µ1 If
1
s1 s2 ⇓ µ2 µn =

−−−−−−−−−−−−−−−−−−−→
upSome (fst(µ )) ◦ µ1

µ = µn ◦ nextSome (snd(µn )) ◦ µ2

if b then s1 else s2 ⇓ µ

To derive If
1
s1 s2 there are two options. Either

MultiIfTrue

s1 ⇓ µ1 µ = upSome (fst(µ )) ◦ µ1

If
1
s1 s2 ⇓ µ

whereupSome (fst(µ )) =
{
((M ,true ),M ) �� (M ,true ) ∈ fst(µ )

}
and

fst(µ ) only contains states of the form (M ,true ), or

MultiIfFalse

s2 ⇓ µ2 µ = upSome (fst(µ )) ◦ µ2

If
1
s1 s2 ⇓ µ

where upSome (fst(µ )) =
{
((M , f alse ),M ) �� (M , f alse ) ∈ µ

}
and

fst(µ ) only contains states of the form (M , f alse ).

As those options are incompatible, it is impossible to have a

multiderivation for a conditional where the guard is evaluated

differently for some states. To fix this, we add aMerge rule. This

rule simply states that if it is possible to derive a term with two

multistates, then it is also possible to derive it from the union of

them. In the case of an if statement ti f , one may thus use two

subderivations, one for each status of the guard, and merge them

together.

Merge

t ⇓ µ1 t ⇓ µ2

t ⇓ µ1 ∪ µ2

We do not restrict the use of theMerge rule. In practice, we only

use it when we need to apply different rules to a multistate.

4.2 Expected properties
We now prove properties that show that multiderivations corre-

spond to multiple derivations. First, if t ⇓ µ is derivable, then for

every pair (σ ,σ ′) ∈ µ, σ ,t → σ ′ is derivable. A proof by induction

on the multiderivation is straightforward.

Lemma 4.1. ∀tµ . t ⇓ µ =⇒ ∀(σ ,σ ′) ∈ µ . σ ,t → σ ′

The converse implication is not true, however. Figure 8 shows

an example of a program allowing Pretty-Big-Step derivations of

5
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arbitrary size. For every k ∈ N, a derivation starting with the value

k in the first input needs to unroll k times the while loop. Each

of these derivations are finite but considering all of them together

would require an infinite multiderivation.

n := In 1
i := 0
While (i<n) do

i := i + 1

Figure 8: Counter example to the reciprocal of lemma 4.1

Nonetheless, when taking a finite number of Pretty-Big-Step

derivations, we are able to derive them all together in the multi-

semantics. Using the fact that a finite set can be described as the

union of singletons (one for each element of the set), we can prove

this with the two lemmas 4.2 and 4.3. The first one states that if

a term is derivable in Pretty-Big-Step then it is derivable in the

multisemantics with the corresponding singleton relation. The sec-

ond lemma states that if a term is derivable with two multistates

then it is derivable with the union of them. Finite multistates are

sufficient for our purpose since finding interference only requires

two derivations (or equivalently: proving non-interference only

requires to inspect every pair of derivations).

Lemma 4.2. ∀tσ ,σ ′. σ ,t → σ ′ =⇒ t ⇓ {(σ ,σ ′)}

Lemma 4.3. ∀tµ1µ2. t ⇓ µ1 =⇒ t ⇓ µ2 =⇒ t ⇓ µ1 ∪ µ2

The first lemma is proved by induction on the Pretty-Big-Step

derivation and the second one is a direct use of the Merge rule. We

have formally proved these three lemmas in Coq.

5 ANNOTATIONS
We now present how multiderivations may be annotated to track

information flows.

5.1 Construction of the annotations
Our annotations track the inputs on which every variable and

output depends in a dependency environment of type Dep, typically
written D. Additionally, we track the context dependency CD of the

current computation. It has type CtxtDep, a set of inputs, and it

represents the dependency of the context in which the current

expression or statement is evaluated. The context dependency is

used to track indirect flows, and is similar to program counter levels,

although more precise.

Dep := (Var ∪ Outputs) 7→ Inputs set
CtxtDep := Inputs set

An annotated derivation is written as follows.

CD,D,t ⇓ µ,D ′,VD ′

CD ∈ CtxtDep and D ∈ Dep are the context dependency and the

dependency environment before the execution. D ′ ∈ Dep is the

dependency environment after the execution of the term. VD ′ ∈
CtxtDep is the set of inputs the computed value, i.e., the extra,

depends on.

We suppose we are given, for each axioms, the inputs, variables,

and outputs used by the rule. Formally, each axiom comes with four

sets:

• InputRead ⊂ Inputs, the set of inputs the axiom may read;

• VarRead ⊂ Var , the set of variables the axiom may read;

• VarWrite ⊂ Var , the set of variables the axiom may write;

• OutputWrite ⊂ Outputs, the set of outputs the axiom may

write.

These sets respect the following properties.

(1) If two states have identical extras, and their memories are

equal on the inputs and variables that can be read by the

axiom, then for every variable x ∈ VarWrite , the value

stored in x after the axiom is the same in both memories.

(2) The value in variables not in VarWrite are not modified by

the axiom.

(3) If two states have identical extras, and their memories are

equal on the inputs and variables that can be read by the

axiom, then for every output o ∈ OutWrite , the value added
to o after the axiom is the same in both memories.

(4) The value in outputs not in OutWrite are not modified by

the axiom.

More formally :

(1) ∀σ1σ2. (extra(σ1) = extra(σ2))
∧ (∀i ∈ InputRead . σ1 (i ) = σ2 (i ))
∧ (∀y ∈ VarRead . σ1 (y) = σ2 (y))
=⇒ (∀x ∈ VarWrite . ax (σ1) (x ) = ax (σ2) (x ))

(2) ∀σ ,σ ′. ∀x < VarWrite .
ax (σ ) = Some σ ′ =⇒ σ (x ) = σ ′(x )

(3) ∀σ1σ2. (extra(σ1) = extra(σ2))
∧ (∀i ∈ InputRead ,σ1 (i ) = σ2 (i ))
∧ (∀y ∈ VarRead,σ1 (y) = σ2 (y))

=⇒

*.....
,

∀v1v2. ∀o ∈ OutWrite .

ax (σ1) (o) = v1 :: σ1 (o)

∧ ax (σ2) (o) = v2 :: σ2 (o)

=⇒ v1 = v2

+/////
-

(4) ∀σ ,σ ′. ∀o < OutputWrite .
ax (σ ) = Some σ ′ =⇒ σ (o) = σ ′(o)

The annotated semantics rules in Figure 9 are the multisemantics

rules extended with annotation information.

The most complex case is the one for axioms. For every variable

written by the axiom, we replace the dependency for that variable

by the union of the current context dependencies, the inputs the

axiom may read, and the dependencies of the variables the axiom

may read. Note that this is a strong update: we throw away prior

dependencies for that variable as it is overwritten. In contrast,

for every output written by the axiom, we add the union of the

current context dependencies, the inputs the axiom may read, and

the dependencies of the variables the axiom may read to the old

dependencies of the output. This is because the output is added to

the list of previous outputs.

Rules 1 are simple to annotate: they propagate annotations.

The annotations for a Rule 2 depend on whether the first premise

produces an extra. If it does not, no context dependency is added in

the evaluation of the continuation (dependencies of side effects of

the first premise are already recorded in D1). If the rule produces

an extra, then the dependencies of that extra VD1 are added to the

context dependencies to evaluate the continuation.

6
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aMultiAx

µ = axSome (fst(µ )) µ , ∅

CD,D,t ⇓ µ,D ′,VD ′

where

VD ′ = CD ∪ InputRead
⋃

x ∈VarRead

D (x )

∀x . D ′(x ) =



VD ′ if x ∈ VarWrite

D (x ) otherwise

∀o. D ′(o) =



VD ′ ∪ D (o) if o ∈ OutputWrite

D (o) otherwise

aMultiR1

CD,D,t1 ⇓ µ1,D1,VD1 µ = upSome (fst(µ )) ◦ µ1

CD,D,t ⇓ µ,D1,VD1

aMultiR2

CD,D,t1 ⇓ µ1,D1,VD1 CD ′,D1,t2 ⇓ µ2,D2,VD2

µn =
−−−−−−−−−−−−−−−−−−−→
upSome (fst(µ )) ◦ µ1

µ = µn ◦ nextSome (snd(µn )) ◦ µ2

CD,D,t ⇓ µ,D2,VD2

where CD ′ = CD ∪



VD1 if prod_extra

∅ otherwise

aMerge

CD,D,t ⇓ µ1,D1,VD1 CD,D,t ⇓ µ2,D2,VD2

CD,D,t ⇓ µ1 ∪ µ2,D
′,VD1 ∪VD2

where D ′(xo) = D1 (xo) ∪ D2 (xo)for all variable and output xo

Figure 9: Types of rule for an annotated multisemantics

An example of the first case is the sequence rule.

aMultiSeq

CD,D,s1 ⇓ µ1,D1,VD1 CD,D1, ;1 s2 ⇓ µ2,D2,VD2

µn =
−−−−−−−−−−−−−−−−−−−→
upSome (fst(µ )) ◦ µ1

µ = µn ◦ nextSome (snd(µn )) ◦ µ2

CD,D,s1; s2 ⇓ µ,D2,VD2

An example of the second case, where an extra is produced, is the

rule for conditionals.

aMultiIf

CD,D,b ⇓ µ1,D1,VD1

CD ∪ VD_1,D1,If1
s1 s2 ⇓ µ2,D2,VD2

µn =
−−−−−−−−−−−−−−−−−−−→
upSome (fst(µ )) ◦ µ1

µ = µn ◦ nextSome (snd(µn )) ◦ µ2

CD,D,if b then s1 else s2 ⇓ µ,D2,VD2

Finally the Merge rule simply merges the dependencies together

by doing the pointwise union of the dependencies environments,

and the union of the value dependencies. For instance, for a condi-

tional where both branches are executed, the dependencies are the

union of the dependencies of each branch.

if Input 1
then Output 1 0
else Output 1 0

Figure 10: A program for which the annotations will over-
approximate

Note that annotations only approximates the notion of non-

interference and we may capture dependencies that do not lead to

interferences. For example, Figure 10 shows a program for which

any annotated multiderivation will calculate that the output 1 de-

pends on the input 1, although changing input 1 would not change

the result. The loss of precision comes from the fact that we only

track dependencies, and not the actual values being computed.

5.2 Capturing masking
In Figure 11, we have re-written the running example of Figure 4

in the WHILE language with the value of secret stored in the first

input and the public variable being the first output. We now show

how our approach captures the dependency.

x := true;
y := true;
if Input 1

then x := false
else skip;

if x
then y := false
else skip;

Output 1 y

Figure 11: The running example in the WHILE language

Consider two states, one with false in the first input and one

with true. We derive the running example in the annotated multi-

semantics. We write D∅ the empty dependencies environment, a

function returning an empty set for every variable and output. We

suppose x and y are already set to true and the dependencies are

empty.

When evaluating the first if statement, we have to derive the

condition Input 1 and then derive each branch with a smaller

relation (after applying ruleMerge) depending on the condition.

The reader can easily verify that the first branch is derived as

. . .

{1},D∅,If1
x := f alse skip ⇓ µtrue ,D∅[x 7→ {1}], {1}

aMltIfTrue

and second branch is derived as

. . .

{1},D∅,If1
x := f alse skip ⇓ µf alse ,D∅, {1}

aMltIfFalse

where µtrue and µf alse are the singleton multistates relating only

the corresponding states in the Pretty-Big-Step semantics for both

derivation.

7
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It leads us to derive the statement If
1
x := f alse skip with a

merge rule as follow

{1},D∅,If1
x := f alse skip ⇓ µtrue ,D∅[x 7→ {1}], {1}

{1},D∅,If1
x := f alse skip ⇓ µf alse ,D∅, {1}

{1},D∅,If1
x := f alse skip ⇓ µ,D∅[x 7→ {1}], {1}

aMerge

where µ = µtrue ∪ µf alse .
Putting these together, the derivation of P1 = if Input 1 thenx :=

f alse else skip is

∅,D∅,Input 1 ⇓ µinput ,D∅, {1}
{1},D∅,If1

x := f alse skip ⇓ µ,D∅[x 7→ {1}], {1}

∅,D∅,P1 ⇓ µP1 ,D∅[x 7→ {1}], {1}
aMltIf

where µinput and µP1 are the multistates each one relating two

pairs of states corresponding the derivations in the Pretty-Big-Step

semantics for the terms.

Without even going further, we already know that x depends on

the first input. The second if statement has the same behavior: at

the end we also infer that y depends on the first input.

Finally, when observing y, the dependency flows into the first

output. If we call our program runninдExample we have

. . .

∅,D∅,runninдExample ⇓ µRE ,D, {1}

where D = D∅[x 7→ {1}][y 7→ {1}][1 7→ {1}] and µRE is the

relation relating the two pairs of states appearing in the corre-

sponding Pretty-Big-Step derivations. We can observe that we have

1 ∈ D (1) = {1}.

5.3 Precision
As our framework relies on executions, we can potentially be more

precise than static analyses. This is not surprising as we do not

provide analyses, but a way to prove their correction. Thus, very

precise analyses that can infer which branch of a conditional is

taken can still be proven correct with our framework.

To illustrate this, we suppose that our language has been ex-

tended with the infix operators <=, == and +, which are respec-

tively the lower or equal operator, the equal operator and the ad-

dition operator. We also introduce the logical not operator and we

use a shortcut isprime to represent an expression returning true
if i is prime and false otherwise (for the purpose of this example,

it could just be a disjunction of equalities between i and all of the

prime numbers smaller than 200). In the example of Figure 12, in

any annotated multiderivation, the annotations will show that x
does not depend depends on input 1 because in every execution,

the loop will end up overwriting the value of x by the constant 0.

It implies that output 1 depends on nothing. In the other hand, a

syntactic method (for example we could adapt one from Sabelfeld

and Myers approach [19]) approximates the dependencies after the

if statement saying that x depends on input 1, and then the output

1 also depends on input 1.

Let t the program of Figure 12. We have the following result.

Lemma 5.1. For every µ, if ∅,D∅,t ⇓ µ,D ′,VD ′, then D ′(1) = ∅.

i := 0;
while i <= 100 or not(isprime(i)) do

if i == 101
then x:=0
else x:=Input 1;

i := i + 1;
Output 1 x

Figure 12: An example where the annotations do not over-
approximate

Proof. First, we show that for any subderivation CD,D,t ′ ⇓
µ,D ′,VD ′ where t ′ is the while loop, we have D ′(x ) = ∅. Then we

deduce that D ′(1) = ∅
We proceed by induction on n = 101− i . It is possible because all

states share the same value in the i variable (and µ is not empty).

The base case is when i = 101. In that case, rule IfTrue applies,

and in the resulting dependency we have D ′(x ) = ∅ since at that
point CD = ∅. More precisely, we evaluate true, which returns

a VD = {}, then we do the assignment to x , which does a strong

update of D ′(x ) as x ∈ VarWrite for rule Asg1.
For the inductive case n > 0, we have i < 101, then WhileTrue

applies. First we derive the body of the while loop and then we

derive the while loop with the value i + 1 in the variable i . The
resulting dependency is then the one from the while loop with in

the case n − 1, i.e. D ′(x ) = ∅.
When i = 102, ruleWhileFalse applies, followed by rulesOuput

and Output1, whereD ′(1) is set to the union ofD (1) = ∅ andD (x ).
Hence D ′(1) = ∅. □

6 CORRECTNESS
We now formally prove that the framework is correct.

6.1 Correctness theorem
We define ∆(σ1,σ2) as the set of variables and outputs on which

the two states differ.

Definition 6.1. Let σ1 and σ2 be two states.

∆(σ1,σ2) =

{x ∈ Var | σ1 (x ) , σ2 (x )} ∪
{
o ∈ Outputs ��σ1 (o) , σ2 (o)

}
Two derivations are said to be (I,o)-interferent if a difference

in only the inputs I ⊂ Inputs results in a difference in the output

o ∈ Outputs.

Definition 6.2. Let t be a term, I a finite set of private inputs and
o a public output. t is (I,o)-interferent if there exist four states σ1,
σ ′
1
, σ2 and σ

′
2
such that σ1,t → σ ′

1
, σ2,t → σ ′

2
and:

∀i ′ ∈ Inputs\I ,σ1 (i ′) = σ2 (i
′)

∧ ∀i ∈ I ,σ1 (i ) , σ2 (i )
∧ ∆(σ1,σ2) = ∅
∧ extra(σ1) = extra(σ2)
∧ σ ′

1
(o) , σ ′

2
(o)

We will note this formula inter f(I ,o) (σ1,σ
′
1
,σ2,σ

′
2
).

A term is then interferent if and only if there exists a finite set

of inputs I and an output o such that it is (I,o)-interferent.
8
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The fundamental theorem 6.3 is the main theorem we want

to prove. It says that if we have two Pretty-Big-Step derivations

showing that output o depends on inputs I , then their exists an

annotatedmultiderivationwith empty dependencies on the left such

that the annotation shows this interference. By contraposition it

means that if for everymultiderivationwe cannot show interference

by the annotations, then the program is non-interferent.

Theorem 6.3 (Fundamental Theorem). ∀t ,σ1,σ
′
1
,σ2,σ

′
2
, I ,o.

σ1,t → σ ′
1

∧ σ2,t → σ ′
2

∧ inter f(I ,o) (σ1,σ
′
1
,σ2,σ

′
2
)

=⇒ ∃µ,D ′,VD ′ such that
∅,D∅,t ⇓ µ,D

′,VD ′

∧ (σ1,σ
′
1
) ∈ µ

∧ (σ2,σ
′
2
) ∈ µ

∧ I ⊆ D ′(o)

The fundamental theorem is a particular case of the more general

lemma A.1 when we take CD = ∅ and D = D∅.

6.2 Proving an analysis
Given a program, proving the absence of information leakage with

this framework would require considering every annotated mul-

tiderivation with exactly two pairs of states in the multistate and

prove that there is no unwanted dependency. But proving interfe-

rence requires only one annotated multiderivation. This allows us

to use the framework to prove analyses.

Let us consider an analysisA. It is a function returning true for at
least each interferent program and may have some false-positives.

But if the function returns f alse , it means the analyzed program

satisfies the property of non-interference.

The standard way to prove the analysis A is the following :

Lemma 6.4.

∀P ,
if P is interferent
then A(P )

Such proofs are difficult to do by induction of the program since

non-interference is an hyperproperty that is not defined by induc-

tion.When assuming the hypothesis “P is interferent”, we only have

information on what happens before two executions (the states

differ only on some private inputs) and after (the resulting states

differ on a public output). No information is given on what happens

in the program.

Instead, if one uses our framework, he has to prove:

Lemma 6.5.

∀P , I ,o
if CD,D,P ⇓ µ,D ′,VD ′ ∧ I ⊆ D ′(o) ∧ I are private ∧ o is public
then A(P )

because if P is interferent then the hypothesis of lemma 6.5 is

satisfied for some I and o. This proof can be done by induction on

the annotated multiderivations. It is easier to manipulate because

assuming that we have a leaking annotated derivation gives us a

whole derivation tree with annotations at each semantic step.

The drawback of our approach is that one cannot prove the

correctness of an analysis that is more complete than our method.

7 RELATEDWORK
Studies about non-interference take their roots in 1977 with E. Co-

hen [10] andD. E. Denning& P. J. Denning [11]; and then formalized

in 1982 by J. A. Goguen & J. Meseguer [14] as following:

One groups users, using a certain set of commands, is

noninterferingwith another group of users if what the

first group does with those commands has no effect

on what the second group of users can see.

There are several modern definitions of non-interference. In

particular, non-interference may take into account the termination

of an execution of the program.We thus have termination-insensitive
non-interference [1], termination-aware non-interference [6], and
timing- and termination-sensitive non-interference [16]. Our work
considers termination-insensitive non-interference. To be able to

deal with non-terminating executions, we would need to consider

a coinductive version of the semantics.

A major inspiration of our work is the 2003 paper by A. Sabelfeld

& A. C. Myers [19]. They give an overview of the information-flow

techniques and show the many sources of potential interference.

Our long-term goal is to evaluate our approach with the full Pretty-

Big-Step semantics of JavaScript [7] and to show that [19] listed

every possible source of information leak.

The thesis of G. Le Guernic [17] proposes and proves a precise

dynamic analysis for non-interference. T. Austin and C. Flanagan

also propose sound dynamic analyses for non-interference based

on the no-sensitive-upgrade policy [2] and the permissive upgrade
policy [3]. Our approach is similar in the sense that it is based on

actual executions, but we consider every execution whereas these

works monitor a single execution, modifying it if it is interferent.

We believe, and should prove, that we are at least as precise as these

works. Our goals are also quite different: they provide a monitor,

we provide a framework to simplify the certification of analyses.

A. Sabelfeld and A. Russo [18, 20] prove several properties com-

paring static and dynamic approaches of non-interference. In par-

ticular, purely dynamic monitors can not be sound and permissive

but it is possible for an hybrid monitor. Our framework could be a

way to certify the correctness of such hybrid monitors.

G. Barthe, P.R. D’Argenio & T. Rezk [5] reduce the problem of

non-interference of a program into a safety property of a transfor-

mation of the program. It allows to use standard techniques based

on program logic for information flow verification. Our work is

similar in the sense that we both transform a hyperproperty into a

property. Self-composition achieves it by transforming the program,

whereas we achieve it by extending the semantics in a mechanical

way. In addition, our approach never inspects the values produced

by the program, but only how it manipulates them. This is the

reason why our approach is incomplete. For instance, we do not

identify when two branches of a conditional do the same thing and

we may flag it as interferent.

S. Hunt & D. Sands [15] present a family of semantically sound

type system for non-interference. The main relation between the

paper is the use of dependencies: a mapping from a variable to sets

of variables they depend on in [15], a mapping from variables and

outputs to set of inputs in our case. Our work is more precise as it

does not use program points but actual executions. We also never

consider the dependencies from branches of conditionals that are

9
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taken by no execution, as illustrated in Figure 12. Finally, we do

not propose an analysis, but a generic way to mechanically build

the refined semantics.

D. Devriese and F. Piessens [13] introduce the notion of secure
multi-execution allowing a sound and precise technique for infor-

mation flow verification by execution a program multiple times

with different security levels. Inspired by this work, T. Austin and C.

Flanagan [4] present a new dynamic analysis for information flow

based on faceted values. Our approach lies between secure multi-

execution and faceted execution: we do not tag data but spawn

multiple executions. In our pretty-big-step setting, however, the

continuations of those executions are shared, in a way reminiscent

of faceted execution.

8 CONCLUSION
In this paper, we presented a framework to automatically refine

a semantics written in Pretty-Big-Step form into a new multise-

mantics able to consider many derivations at once and proved with

the Coq proof assistant a correctness relation between the new

and old semantics. We then presented an extension of the multise-

mantics with annotations that soundly approximates the notion of

non-interference. The correctness proofs of the annotations is done

by hand in the appendices. The final annotated multisemantics is a

tool to prove the correctness of non-interference analyses.

Our next step is the full proof in Coq of the approach, followed

by the extensions of the example language to show we can capture

information flows in presence of functions and exceptions. We then

want to apply the approach to certify existing analyses. Finally,

we plan to refine the annotations in the Merge rule to inspect the

results of computation, only adding dependencies when the results

differ. We conjecture this will result in a framework that is complete

in relation to non-interference.
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Appendices
Before starting the proofs, we recall important hypothesis over the

Pretty-Big-Step semantics:

• For a given term and a given extra, there is a most one rule

derivable,

• The functions up don’t change the memory but only the

extra.

• The functionsnext keep the memory of the second argument

and the extra depends only on the extras of the arguments.

A PROOF OF CORRECTNESS OF THE
ANNOTATIONS

Lemma A.1. ∀t ,σ1,σ
′
1
,σ2,σ

′
2
, I ,

σ1,t → σ ′
1

=⇒ σ2,t → σ ′
2

=⇒ ∀i ′ ∈ Inputs\I ,σ1 (i ′) = σ2 (i
′)

=⇒ ∀i ∈ I ,σ1 (i ) , σ2 (i )
=⇒ ∀D,CD,

∀x ∈ ∆(σ1,σ2), I ⊂ D (x )
=⇒ (extra(σ1) , extra(σ2) =⇒ I ⊂ CD)
=⇒ ∃D ′,VD ′ such that

1. CD,D,t ⇓ {(σ1,σ ′
1
), (σ2,σ

′
2
)},D ′,VD ′

2. ∀y ∈ ∆(σ ′
1
,σ ′

2
), I ⊂ D ′(y)

3. extra(σ ′
1
) , extra(σ ′

2
) =⇒ I ⊂ VD ′

Proof. Let t ,σ1,σ2,σ
′
1
,σ ′

2
, I .

Let σ1,t → σ ′
1
and σ2,t → σ ′

2
be two Pretty-Big-Step derivations.

Let’s continue the proof by induction on the first derivation and

then by a case matching on the second one.

First case. In the case of two different rules R and R′, we neces-
sarily have extra(σ1) , extra(σ2) by hypothesis on the Pretty-Big-

Step semantics. We will have to use the Merge rule.

Let suppose

∀i ′ ∈ Inputs\I ,σ1 (i ′) = σ2 (i
′)

∀i ∈ I ,σ1 (i ) , σ2 (i )
Let’s have D and CD such that

∀x ∈ ∆(σ1,σ2), I ⊂ D (x )
(extra(σ1) , extra(σ2) =⇒ I ⊂ CD)

By this last hypothesis we have I ⊂ CD. Thanks to lemma B.1

there existsD ′
1
,VD ′

1
,D ′

2
,VD ′

2
such thatCD,D,t ⇓ {(σ1,σ

′
1
)},D ′

1
,VD ′

1

and CD,D,t ⇓ {(σ2,σ
′
2
)},D ′

2
,VD ′

2
.

We can construct:

• VD ′ = VD ′
1
∪VD ′

2

• D ′(xo) = D ′
1
(xo) ∪ D ′

2
(xo)

We now have our 3 points:

(1) CD,D,t ⇓ {(σ1,σ
′
1
); (σ2,σ

′
2
)},D ′,VD ′ thanks to the merge

rule

(2) ∀y ∈ ∆(σ ′
1
,σ ′

2
),

either, y ∈ ∆(σ1,σ2) and then by hypothesis, I ⊂ D (y).
Lemma B.2 ensures that I ⊂ D ′(y).
or, σ1 (y) = σ2 (y) and we can assume (for symmetric reasons)

that σ1 (y) , σ ′
1
(y). Lemma B.3 ensures thatCD ⊂ D ′(y) and

thus I ⊂ CD ⊂ D ′(y)
Anyway, I ⊂ D ′(y).

(3) extra(σ ′
1
) , extra(σ ′

2
) =⇒ I ⊂ VD ′

1
is a direct conse-

quence of Lemma B.2

Second case. In the other case, both derivation is made by the

same rule:

• Axiom:

Ax
σ1,t → σ ′

1

and,

Ax
σ2,t → σ ′

2

Let suppose

∀i ′ ∈ Inputs\I ,σ1 (i ′) = σ2 (i
′)

∀i ∈ I ,σ1 (i ) , σ2 (i )
Let’s have D and CD such that

∀x ∈ ∆(σ1,σ2), I ⊂ D (x )
(extra(σ1) , extra(σ2) =⇒ I ⊂ CD)

We can construct:

– VD ′ = CD ∪ InputRead
⋃

x ∈VarRead
D (x )

–

D ′(xo) =




VD ′ if xo ∈ VarWrite

VD ′ ∪ D (xo) if xo ∈ OutputWrite

D (xo) otherwise

We now have 3 points to prove:

(1) by construction of D ′ and VD ′, we have the derivation
D,CD,t ⇓ {(σ1,σ

′
1
); (σ2,σ

′
2
)},D ′,VD ′

(2) ∀y ∈ ∆(σ ′
1
,σ ′

2
), we have 4 cases:

y is a variable and y ∈ VarWrite .

By hypothesis on the elements ofVarWrite , either (extra(σ1) ,
extra(σ2)), (∃i

′ ∈ InputRead ,σ1 (i
′) , σ2 (i

′)), or (∃x ∈
VarRead,σ1 (x ) , σ2 (x )). We can simplify this into:

either (extra(σ1) , extra(σ2)), (I ⊂ InputRead ), or
(∃x ∈ VarRead,x ∈ ∆(σ1,σ2)). It means that either

I ⊂ CD, I ⊂ InputRead , or (∃x ∈ VarRead, I ⊂ D (x )).
In the three cases, I ⊂ VD ′, and thus I ⊂ D ′(y).
y is a variable and y < VarWrite .

By hypothesis on the elements notmember ofVarWrite ,
σ1 (y) , σ2 (y) i.e. y ∈ ∆(σ1,σ2) and by hypothesis,

I ⊂ D (y) = D ′(y).
y is an output and y ∈ OutputWrite .

Let’s define l1 and l2 such that σ ′
1
(y) = l1 :: σ1 (y) and

σ ′
2
(y) = l2 :: σ2 (y).

Since l1 :: σ1 (y) , l2 :: σ2 (y), either l1 , l2, or y ∈
∆(σ1,σ2).
With the same reasoning than for the first case: either

I ⊂ CD, (I ⊂ InputRead ), (∃x ∈ VarRead, I ⊂ D (x )),
or I ⊂ D (y). We have in every cases: I ⊂ D ′(y).
y is an output and y < OutputWrite .

By hypothesis on the elements notmember ofOutputWrite ,
σ1 (y) , σ2 (y) i.e. y ∈ ∆(σ1,σ2) and by hypothesis,

I ⊂ D (y) = D ′(y).
(3) if extra(σ1) , extra(σ2) then by hypothesis I ⊂ CD ⊂

VD ′

• R1:

R1

up (σ1),t1 → σ ′
1

σ1,t → σ ′
1

11
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and,

R1

up (σ2),t1 → σ ′
2

σ2,t → σ ′
2

Let suppose

∀i ′ ∈ Inputs\I ,σ1 (i ′) = σ2 (i
′)

∀i ∈ I ,σ1 (i ) , σ2 (i )
Let’s have D and CD such that

∀x ∈ ∆(σ1,σ2), I ⊂ D (x )
(extra(σ1) , extra(σ2) =⇒ I ⊂ CD)

Since up does not modify the memory, to use the induction

hypothesis we only need to prove

extra(up (σ1)) , extra(up (σ2)) =⇒ I ⊂ CD
Which is a consequence of (extra(σ1) , extra(σ2) =⇒ I ⊂
CD).
So by induction hypothesis: ∃D ′

1
,VD ′

1
such that

1. CD,D,t1 ⇓ {(up (σ1),σ
′
1
), (up (σ2),σ

′
2
)},D ′

1
,VD ′

1

2. ∀y ∈ ∆(σ ′
1
,σ ′

2
), I ⊂ D ′

1
(y)

3. extra(σ ′
1
) , extra(σ ′

2
) =⇒ I ⊂ VD ′

1

We can then have the 3 points:

1. CD,D,t ⇓ {(σ1,σ
′
1
); (σ2,σ

′
2
)},D ′

1
,VD ′

1

2. ∀y ∈ ∆(σ ′
1
,σ ′

2
), I ⊂ D ′

1
(y)

3. extra(σ ′
1
) , extra(σ ′

2
) =⇒ I ⊂ VD ′

1

• R2:

R2

up (σ1),t1 → σ ′′
1

next (σ1,σ
′′
1
),t2 → σ ′

1

σ1,t → σ ′
1

and,

R2

up (σ2),t1 → σ ′′
2

next (σ2,σ
′′
2
),t2 → σ ′

2

σ2,t → σ ′
2

Let suppose

∀i ′ ∈ Inputs\{i},σ1 (i ′) = σ2 (i
′)

∀i ∈ I ,σ1 (i ) , σ2 (i )
Let’s have D and CD such that

∀x ∈ ∆(σ1,σ2), I ⊂ D (x )
(extra(σ1) , extra(σ2) =⇒ I ⊂ CD)

Since up does not change the memory but only the extra and

extra(up (σ1)) , extra(up (σ2)) =⇒ I ⊂ CD, we can use

the induction hypothesis: ∃D ′
1
,VD ′

1
such that

1. CD,D,t1 ⇓ {(up (σ1),σ
′′
1
), (up (σ2),σ

′′
2
)},D ′

1
,VD ′

1

2. ∀y ∈ ∆(σ ′′
1
,σ ′′

2
), I ⊂ D ′

1
(y)

3. extra(σ ′′
1
) , extra(σ ′′

2
) =⇒ I ⊂ VD ′

1

Since the result of next has the same memory as the second

argument (but not necessarily the same extra), we have

∆(next (σ1,σ
′′
1
),next (σ2,σ

′′
2
)) = ∆(σ ′′

1
,σ ′′

2
).

To use again the induction hypothesis on the second premise,

we only need to prove

extra(next (σ1,σ
′′
1
)) , extra(next (σ2,σ

′′
2
)) =⇒ I ⊂ CD ′

Where

CD ′ = CD ∪



VD ′
1

if prod_extra,

∅ otherwise.

If extra(next (σ1,σ
′′
1
)) , extra(next (σ2,σ

′′
2
)) then either

extra(σ1) , extra(σ2) and then by hypothesis I ⊂ CD, or

extra(σ ′′
1
) , extra(σ ′′

2
) and then t1 produces an extra and

by hypothesis I ⊂ VD ′
1
. In both case, I ⊂ CD ′

We can then use the induction hypothesis another time:

∃D ′
2
,VD ′

2
such that

1. CD ′,D1,t2 ⇓ {(next (σ1,σ
′′
1
),σ ′

1
), (next (σ2,σ

′′
2
),σ ′

2
)},D ′

2
,VD ′

2

2. ∀y ∈ ∆(σ ′
1
,σ ′

2
), I ⊂ D ′

2
(y)

3. extra(σ ′
1
) , extra(σ ′

2
) =⇒ I ⊂ VD ′

2

We finally have:

1. CD,D,t ⇓ {(σ1,σ
′
1
), (σ2,σ

′
2
)},D ′

2
,VD ′

2

2. ∀y ∈ ∆(σ ′
1
,σ ′

2
), I ⊂ D ′

2
(y)

3. extra(σ ′
1
) , extra(σ ′

2
) =⇒ I ⊂ VD ′

2

□

B OTHER LEMMAS
The following lemma states that if we have a Pretty-Big-Step deriva-

tion, then we can build an annotated multiderivation from it.

Lemma B.1. ∀σ ,σ ′,t ,
σ ,t → σ ′ ⇒ ∀CD,D,

∃D ′,VD ′,
CD,D,t ⇓ {(σ ,σ ′)},D ′,VD ′

Proof. Straightforward by induction since the condition needed

by every pair of states related by a µ in a multisemantics rule is ex-

actly the condition verified by the pair of state in the corresponding

Pretty-Big-Step rule.. □

Lemma B.2 states that if before a multiexecution the context

depends on inputs I then the calculated value will also depend on I ;
and moreover, if a variable or an output xo also depends on I then
xo will depend on I at the end of the execution.

Lemma B.2. ∀CD,D,t ,µ,D ′,VD ′

CD,D,t ⇓ µ,D ′,VD ′

⇒ ∀I ,xo,
I ⊂ CD
⇒ I ⊂ VD ′

∧ (I ⊂ D (xo) ⇒ I ⊂ D ′(xo))

Proof. Let haveCD,D,t ,µ,D ′,VD ′ such that we have the multi-

derivation CD,D,t ⇓ µ,D ′,VD ′ and prove the lemma by induction

on this derivation.

Axiom

Ax (t )
µ = axSome (fst(µ )) µ , ∅

CD,D,t ⇓ µ,D ′,VD ′

With

VD ′ = CD ∪ InputRead
⋃

x ∈VarRead
D (x )

∀x ,D ′(x ) =



VD ′ if x ∈ VarWrite

D (x ) otherwise

∀o,D ′(o) =



VD ′ ∪ D (o) if o ∈ OutputWrite

D (o) otherwise

Let’s have xo a variable or an output and I ⊂ CD. We directly

have I ⊂ CD ⊂ VD ′.
Moreover if I ⊂ D (xo), whether xo ∈ VarWrite , xo <
VarWrite , xo ∈ OutputWrite or xo < OutputWrite , we
have I ⊂ D ′(xo).

12
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Rule 1

R1 (t )

CD,D,t1 ⇓ µ1,D
′,VD ′

µ = upSome (fst(µ )) ◦ µ1

CD,D,t ⇓ µ,D ′,VD ′

Let’s have xo a variable or an output and I ⊂ CD.
By induction hypothesis we directly have the result:

I ⊂ VD ′ ∧ (I ⊂ D (xo) =⇒ I ⊂ D ′(xo))
Rule 2

R2 (t )

CD,D,t1 ⇓ µ1,D1,VD1

µn =
−−−−−−−−−−−−−−−−−−−→
upSome (fst(µ )) ◦ µ1

µ = µn ◦ nextSome (snd(µn )) ◦ µ2
CD ′,D1,t2 ⇓ µ2,D

′,VD ′

CD,D,t ⇓ µ,D ′,VD ′

With

CD ′ = CD ∪



VD1 if prod_extra

∅ otherwise

Let’s have xo a variable or an output and I ⊂ CD.
By induction hypothesis on the first premise we have:

I ⊂ VD1 ∧ (I ⊂ D (xo) =⇒ I ⊂ D1 (xo))
and by induction on the second:

I ⊂ VD ′ ∧ (I ⊂ D1 (xo) =⇒ I ⊂ D ′(xo))
By combining both implication:

I ⊂ VD ′ ∧ (I ⊂ D (xo) =⇒ I ⊂ D ′(xo))
which is the result we wanted.

Merge

Merдe (t )

CD,D,t ⇓ µ1,D1,VD1 CD,D,t ⇓ µ2,D2,VD2

µ = µ1 ∪ µ2

CD,D,t ⇓ µ,D ′,VD ′

With

VD ′ = VD1 ∪VD2

∀xo ∈ Var ∪ Outputs,D ′(xo) = D1 (xo) ∪ D2 (xo)
Let’s have xo a variable or an output and I ⊂ CD.
By induction hypothesis on both premises we have

I ⊂ VD1 ∧ (I ⊂ D (xo) =⇒ I ⊂ D1 (xo))
and

I ⊂ VD2 ∧ (I ⊂ D (xo) =⇒ I ⊂ D2 (xo))
Thus,

I ⊂ VD ′ ∧ (I ⊂ D (xo) =⇒ I ⊂ D ′(xo))

We have the result by induction. □

This lemma states that if a variable or an output xo is modified

during an execution, then xo depends at least on the context of the

execution.

Lemma B.3. ∀CD,D,t ,µ,D ′,VD ′

CD,D,t ⇓ µ,D ′,VD ′

⇒ ∀σ ,σ ′,xo,
(σ ,σ ′) ∈ µ
⇒ σ (xo) , σ ′(xo)
⇒ CD ⊂ D ′(xo)

Proof. Let haveCD,D,t ,µ,D ′,VD ′ such that we have the multi-

derivation CD,D,t ⇓ µ,D ′,VD ′ and prove the lemma by induction

on this derivation.

Axiom

Ax (t )
µ = axSome (fst(µ )) µ , ∅

CD,D,t ⇓ µ,D ′,VD ′

where

VD ′ = CD ∪ InputRead
⋃

x ∈VarRead
D (x )

∀x ,D ′(x ) =



VD ′ if x ∈ VarWrite

D (x ) otherwise

∀o,D ′(o) =



VD ′ ∪ D (o) if o ∈ OutputWrite

D (o) otherwise

Let’s have two states σ and σ ′ such that (σ ,σ ′) ∈ µ and a

variable or an output xo such that σ (xo) , σ ′(xo). Since
ax (σ ) = Some σ ′, xo ∈ VarWrite or xo ∈ OutputWrite and
thus CD ⊂ VD ′ ⊂ D ′(xo).
Rule 1

R1 (t )

CD,D,t1 ⇓ µ1,D
′,VD ′

µ = upSome (fst(µ )) ◦ µ1

CD,D,t ⇓ µ,D ′,VD ′

Let’s have two states σ and σ ′ such that (σ ,σ ′) ∈ µ and a

variable or an input xo such that σ (xo) , σ ′(xo).
Since up only changes the extra and not the memory, we can

use the induction hypothesis to ensure:

CD ⊂ D ′(xo)

Rule 2

R2 (t )

CD,D,t1 ⇓ µ1,D1,VD1

µn =
−−−−−−−−−−−−−−−−−−−→
upSome (fst(µ )) ◦ µ1

µ = µn ◦ nextSome (snd(µn )) ◦ µ2
CD ′,D1,t2 ⇓ µ2,D

′,VD ′

CD,D,t ⇓ µ,D ′,VD ′

With

CD ′ = CD ∪



VD1 if prod_extra

∅ otherwise

Let’s have two statesσ andσ ′ such that (σ ,σ ′) ∈ µ and a vari-
able or an input xo such that σ (xo) , σ ′(xo). Their exists a
state σ ′′ such that (up (σ ),σ ′′) ∈ µ1 and (next (σ ,σ ′′),σ ′) ∈
µ2.
There are two possibilities:

either σ ′′(xo) , σ ′(xo) and thus by induction CD ⊂
D ′(xo);
or σ ′′(xo) = σ ′(xo) and then σ (xo) , σ ′′(xo). By induc-

tion on the first premise (because next doesn’t change the
memory of the second argument) we have CD ⊂ D1 (xo).
And now thanks to lemma B.2, CD ⊂ D ′(xo).

Merge

Merдe (t )

CD,D,t ⇓ µ1,D1,VD1

CD,D,t ⇓ µ2,D2,VD2

µ = µ1 ∪ µ2

CD,D,t ⇓ µ,D ′,VD ′

With

VD ′ = VD1 ∪VD2

∀x ,D ′(x ) = D1 (x ) ∪ D2 (x )

13
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∀o,D ′(o) = D1 (o) ∪ D2 (o)
Let’s have two states σ and σ ′ such that (σ ,σ ′) ∈ µ and a

variable or an output xo such that σ (xo) , σ ′(xo).
For symmetric reason, we can suppose (σ ,σ ′) ∈ µ1 and thus
the induction hypothesis ensures CD ⊂ D ′

1
(xo) ⊂ D ′(xo).

□

14
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