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Numerical analysis with error estimates for the Korteweg-de Vries
Equation

Clémentine Courtès1, Frédéric Lagoutière2, Frédéric Rousset1

November 20, 2017

Abstract

This article deals with the numerical analysis of the Cauchy problem for the Korteweg-de Vries equation
with a finite difference scheme. We consider the Rusanov scheme for the hyperbolic flux term and a 4-points
θ-scheme for the dispersive term. We prove the convergence under a hyperbolic Courant-Friedrichs-Lewy
condition when θ ≥ 1

2
and under an "Airy" Courant-Friedrichs-Lewy condition when θ < 1

2
. More precisely,

we get the first order convergence rate for strong solutions in the Sobolev space Hs(R), s ≥ 6 and extend this
result to the non-smooth case for initial data in Hs(R), with s ≥ 3

4
, to the price of a loss in the convergence

order. The orders of convergence seem optimal with numerical simulations in some cases, at least when
s ≥ 3.

1 Introduction
We are interested in the Korteweg-de Vries equation (called the KdV equation thereafter) which is a model for
wave propagation on shallow water surfaces in a channel and was first established by D.J. Korteweg and G. de
Vries in 1895 [KdV95]. We focus on the numerical analysis of the Cauchy problem ∂tu(t, x) + ∂x

(
u2

2

)
(t, x) + ∂3

xu(t, x) = 0, (t, x) ∈ [0, T ]× R, (1a)

u|t=0
(x) = u0(x), x ∈ R, (1b)

for which the local well-posedness in Sobolev spaces Hs(R) is well-established. (In particular, well-posedness
was proved for s ≥ 2 in [ST76], s > 3

2 in [BS75], s > 3
4 in [KPV91], s ≥ 0 in [Bou93], s > − 5

8 in [KPV93],
note that one of the first existence result was obtained by proving the convergence of a semi-discrete scheme
[Sjö70]). Due to the conservation of the L2 norm, this yields global well-posedness for any s ≥ 0. Note that
global well-posedness is even known below L2 (see [CKS+03], for example). There are two antagonist effects
in the KdV equation: the Burgers nonlinearity tends to create singularities (shock waves, which yield a blow
up in finite time) whereas the linear term tends to smooth the solution due to dispersive effects (and creates
dispersive oscillating waves of Airy type). In some sense the above global well-posedness results come from the
fact that dispersive effects dominate.

Given the practical importance of the KdV equation in concrete physical situations, there exists a wide
range of numerical schemes to solve it. A very classical numerical approach is the finite difference method
which consists in approximating the exact solution u by a numerical solution (vnj )(n,j) in such a way that
vnj ≈ u(tn, xj) in which tn = n∆t, xj = j∆x with ∆t and ∆x respectively the time and space steps. In most
cases, the convergence is ensured only if a stability condition between ∆t and ∆x is satisfied. Let us mention
for instance the explicit leap-frog scheme designed by Zabusky and Kruskal in [ZK65] with periodic boundaries
conditions, or the Lax-Friedrichs scheme studied by Vliegenthart in [Vli71]. Both are formally convergent to the
second order in space under a very restrictive stability condition ∆t = O(∆x3). The price to pay to avoid a so
restrictive stability condition ∆t = O(∆x3) is to design formally an implicit scheme, as in [Win80], for example,
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with a twelve-points implicit finite difference scheme with three time levels or in [TA84] with a pentagonal
implicit scheme.

The analysis and the rigorous justification of the stability condition started in [Vli71], where Vliegenthart
computed rigorously the amplification factor for a linearized equation. More recently, Holden, Koley and
Risebro in [HKR15] prove the convergence of the Lax-Friedrichs scheme with an implicit dispersion under the
stability condition ∆t = O(∆x

3
2 ) without obtaining convergence rates. More precisely, they obtain the strong

convergence without rate of the numerical scheme towards a classical solution if u0 ∈ H3(R) and a strong
convergence towards a weak solution L2(0, T ;L2

loc(R)) if u0 ∈ L2(R).
The aim of this paper is to prove rigorously the convergence of some finite difference schemes by analyzing

the rate of convergence and in particular its dependence on the regularity of the initial datum.
Let us mention that many types of numerical methods can be used to solve the KdV equation sometimes

with the aim of capturing the long time behavior or the low dispersion regime. The equation being Hamiltonian
(the Hamiltonian is the energy), symplectic schemes based on compact finite differences that conserve the energy
have been designed. We refer for example to [KMY12], [LV06], [AM05]. Splitting methods (the equation being
split into the linear Airy part and the nonlinear Burgers part) are also widely studied. For example, a rigorous
analysis of such schemes has been performed in [HKRT11], [HLR13]. One can also use spectral methods see
[NS89] for example or [HS17] where a Fourier pseudo spectral method is combined with an exponential-type
time-integrator. A quite widespread discretization is related to finite element type schemes, see for example
[BDK83], [DK85] for Galerkin methods and the recent work [BCKX13] where a non-dissipative scheme is derived
and applied to the computation of traveling waves.

In the present paper, we discretize Equation (1a) together with the initial datum (1b) in a finite difference
way and our aim is to determine the convergence rate of this numerical scheme. We exhibit the error estimate
on the convergence error by a method which suits both non-linear term and dispersive term of KdV.

Let us introduce some notations and present the finite difference scheme here under study.

Notations and numerical scheme We use a uniform time- and space-discretization of (1a). Let ∆t be the
constant time step and ∆x the constant space step. We note tn = n∆t for all n ∈ J0, NK = {0, 1, .., N} where
N = b T∆tc (with b.c the integer part) and xj = j∆x for all j ∈ Z.

Numerical scheme. Let c ∈ R∗+ and θ ∈ [0, 1]. We denote by (vnj )(n,j)∈N×Z the discrete unknown defined
by the following scheme with parameters c and θ :

vn+1
j − vnj

∆t
+

(
vnj+1

)2 − (vnj−1

)2
4∆x

+ θ
vn+1
j+2 − 3vn+1

j+1 + 3vn+1
j − vn+1

j−1

∆x3

+ (1− θ)
vnj+2 − 3vnj+1 + 3vnj − vnj−1

∆x3
= c

(
vnj+1 − 2vnj + vnj−1

2∆x

)
, n ∈ J0, NK, j ∈ Z (2)

with
v0
j =

1

∆x

∫ xj+1

xj

u0(y)dy, j ∈ Z. (3)

If θ = 0, we recognize the explicit scheme whereas θ = 1 corresponds to the implicit scheme (with respect

to the dispersive term). Without the dispersive term θ
vn+1
j+2 −3vn+1

j+1 +3vn+1
j −vn+1

j−1

∆x3 +(1− θ) v
n
j+2−3vnj+1+3vnj −v

n
j−1

∆x3 , we
recognize the Rusanov scheme applied to the Burgers equation, which consists in a centered hyperbolic flux
(vnj+1)

2−(vnj−1)
2

4∆x and an added artificial viscosity c
(
vnj+1−2vnj +vnj−1

2∆x

)
in order to ensure the stability of the scheme.

In the following, the constant c will be called the Rusanov coefficient.
Without the non-linear term and the right hand side, we recognize the θ-right winded finite difference scheme

for the Airy equation

vn+1
j − vnj

∆t
+ θ

vn+1
j+2 − 3vn+1

j+1 + 3vn+1
j − vn+1

j−1

∆x3
+ (1− θ)

vnj+2 − 3vnj+1 + 3vnj − vnj−1

∆x3
= 0, n ∈ J0, NK, j ∈ Z.

Remark 1. All the results are valid with a variable time step ∆tn and a variable Rusanov coefficient cn. For
simplicity, we will keep them constant.
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Remark 2. The choice of the right winded scheme for the dispersive part is dictated by the result in [Cou16]
on numerical schemes applied to high-order dispersive equations ∂tu+∂2p+1

x u = 0, with p ∈ N, which brought to
light that right winded schemes are stable under a Courant-Friedrichs-Lewy type condition (CFL-type condition)
for p odd (including the Airy equation) and left winded schemes are stable under a CFL-type condition for p
even.

Remark 3. This scheme (2)-(3) is a generalization of the one studied by Holden, Koley and Risebro [HKR15].
Indeed, they consider the Lax-Friedrichs scheme for the hyperbolic flux term together with the implicit scheme
for the dispersive term, which consists in taking c∆t = ∆x and θ = 1 in Scheme (2)-(3).

Discrete operators. For notational convenience for Scheme (2)-(3), let us use the notations introduced in
[HKR15] and define the following discrete operators. For any sequence (anj )(n,j)∈N×Z,

D−(a)nj =
anj − anj−1

∆x
, D+(a)nj =

anj+1 − anj
∆x

, D(a)nj =
D+(a)nj +D−(a)nj

2
. (4)

Equation (2) rewrites

vn+1
j − vnj

∆t
+D

(
v2

2

)n
j

+ θD+D+D− (v)
n+1
j + (1− θ)D+D+D− (v)

n
j =

c∆x

2
D+D− (v)

n
j . (5)

Function spaces. In the following, we denote by Hr(R), with r ∈ R, the Sobolev space whose norm is

||u||Hr(R) =

(∫
R

(
1 + |ξ|2

)r |û(ξ)|2
) 1

2

, (6)

with û the Fourier transform of u. If there is ambiguity, an ’x’ will be added in Hr
x for the Sobolev space with

respect to the space variable.
We study the convergence in the discrete space `∞(J0, NK, `2∆(Z)) whose norm is defined by

||a||`∞(J0,NK,`2∆(Z)) = sup
n∈J0,NK

||an||`2∆ = sup
n∈J0,NK

∑
j∈Z

∆x|anj |2
 1

2

, (7)

for all a = (an)n∈J0,NK = (anj )(n,j)∈J0,NK×Z. This norm is a relevant discrete equivalent for the L∞([0, T ];L2(R))-
norm.

Convergence error. Let u be the exact solution of (1a)-(1b). From u, we construct the following sequence
[u∆]

n
j =

1

∆x[inf (tn+1, T )− tn]

∫ inf(tn+1,T)

tn

∫ xj+1

xj

u(s, y)dyds, if (n, j) ∈ J1, NK× Z,

[u∆]
0
j =

1

∆x

∫ xj+1

xj

u0(y)dy, if j ∈ Z.
(8)

From the averaged exact sequence
(

[u∆]
n
j

)
(n,j)

and the numerical one
(
vnj
)

(n,j)
, we define two piecewise constant

functions u∆ and v∆ by, for all n ∈ J0, NK and j ∈ Z,{
u∆(t, x) = (u∆)

n
j ,

v∆(t, x) = vnj ,
if (t, x) ∈ [tn, inf

(
tn+1, T

)
[×[xj , xj+1[. (9)

We define the convergence error by the following difference

enj = v∆(tn, xj)− u∆(tn, xj), (n, j) ∈ J0, NK× Z. (10)

Thanks to the definition (7), the convergence error satisfies

||e||`∞(J0,NK,`2∆(Z)) = ||v∆ − u∆||L∞([0,T ],L2(R)).
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Consistency error. We denote by
(
εnj
)

(n,j)∈J0,NK×Z the consistency error defined by the following relation

εnj =
(u∆)

n+1
j − (u∆)

n
j

∆t
+D

(
u2

∆

2

)n
j

+ θD+D+D− (u∆)
n+1
j

+ (1− θ)D+D+D− (u∆)
n
j −

c∆x

2
D+D− (u∆)

n
j , (n, j) ∈ J0, NK× Z. (11)

Main result In our first main result we handle the case of smooth enough initial data, u0 ∈ Hs (R), s ≥ 6.

Theorem 1 (Convergence rate in the smooth case). Let s ≥ 6 and u0 ∈ Hs(R). Let T > 0 and c > 0 such that
the unique global solution u of (1a)-(1b) verifies

sup
t∈[0,T ]

||u(t, ·)||L∞(R) < c. (12)

Let β0 ∈ (0, 1) and θ ∈ [0, 1]. There exists ω̂0 > 0 such that, for every ∆x ≤ ω̂0 and ∆t satisfying
4 (1− 2θ)

∆t

∆x3
≤ 1− β0, (13a)[

c+
1

2

]
∆t

∆x
≤ 1− β0, (13b)

the finite difference scheme (2)-(3) with parameters c and θ and time- and space discretization steps ∆t, ∆x
satisfies, for any η ∈ (0, s− 3

2 ],

||en||`∞(J0,NK,`2∆(Z)) ≤ ΛT,‖u0‖
H

3
4

(
1 + ‖u0‖2

H
1
2

+η

)(‖u0‖H6

c+ 1
2

+ ‖u0‖H4 + ‖u0‖
H

3
2

+η‖u0‖H1

)
∆x. (14)

In this estimate, en is defined as in (10)-(8)-(9) and ΛT,‖u0‖
H

3
4

is defined by

ΛT,‖u0‖
H

3
4

= exp

(
C

2

(
1 + c2

)(
1 +

(1− β0)2

(c+ 1
2 )2

)(
T + (T

3
4 + T

1
2 )||u0||

H
3
4
e
κ 3

4
T
))

CeκT

√
T

{
1 +

1− β0

c+ 1
2

}
,

(15)
in which C is a constant, κ 3

4
and κ depend only on ‖u0‖L2(R).

Remark 4. Conditions (13a)-(13b) are Courant-Friedrichs-Lewy-type conditions (in short, CFL conditions).
The hypothesis

[
c+ 1

2

]
∆t
∆x ≤ 1 − β0 seems to be a technical hypothesis, which probably may be replaced with

the classical hyperbolic CFL condition c∆t ≤ ∆x. Indeed, experimental results suit with Theorem 1 with this
classical CFL condition, see Section 7.

Remark 5. Thereafter, η should be chosen as small as possible, then norms ||u0||Hs+η(R) should be regarded as
||u0||Hs+(R).

Thus, the scheme (2)-(3) is convergent to the first order in space in the `∞(J0, NK, `2∆(Z))-norm.
In our second main result, we improve the previous result to handle non-smooth initial data u0 ∈ Hs(R),
s ≥ 3/4. To perform the analysis, we first have to approximate in a suitable way the initial datum. Let χ be a
C∞-function such that

• 0 ≤ χ ≤ 1,

• χ ≡ 1 in the ball B
(
0, 1

2

)
and χ is supported in the ball B (0, 1),

• χ(−ξ) = χ(ξ).

Let ϕ be such as ϕ̂ (ξ) = χ (ξ), where ϕ̂ stands for the Fourier transform of ϕ, and for all δ > 0, we define ϕδ

such that ϕ̂δ (ξ) = χ (δξ), which implies ϕδ = 1
δϕ
(
.
δ

)
. Eventually,
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• we shall still denote by u the exact solution of (1a) starting from the initial datum u0.

• Let uδ be the solution of (1a) with uδ0 = u0 ? ϕ
δ as initial datum, where ? stands for the convolution

product.

• We denote then by (vnj )(n,j)∈J0,NK×Z the numerical solution obtained by applying the numerical scheme
(2) from the initial datum (uδ0)∆:

v0
j = (uδ0)∆ =

1

∆x

∫ xj+1

xj

u0 ? ϕ
δ(y)dy. (16)

Theorem 2 (Convergence rate in the non-smooth case). Let s ≥ 3
4 and u0 ∈ Hs(R). Let T > 0 and c > 0 such

that the unique global solution u of (1a)-(1b) verifies

sup
t∈[0,T ]

||u(t, ·)||L∞(R) < c.

Let β0 ∈ (0, 1) and θ ∈ [0, 1]. There exists ω̂0 > 0 such that for every ∆x ≤ ω̂0 and ∆t satisfying
4 (1− 2θ)

∆t

∆x3
≤ 1− β0,[

c+
1

2

]
∆t

∆x
≤ 1− β0,

(17)

the finite difference scheme (2)-(16) with parameters c and θ and time- and space discretization steps ∆t, ∆x
satisfies, for any η ∈ (0, s− 1

2 ],

||en||`∞(J0,NK,`2∆(Z)) ≤ ΓT,‖u0‖
H

3
4

(
1 + ‖u0‖2

H
1
2

+η

)( 1

c+ 1
2

+ 1 + ‖u0‖Hmin(1,s)

)
‖u0‖Hs∆xq.

In this estimate, en is defined as in (10)-(8)-(9),

• q = s
12−2s if 3

4 ≤ s ≤ 3,

• q = min(s,6)
6 if 3 < s,

and ΓT,‖u0‖
H

3
4

is defined by

ΓT,‖u0‖
H

3
4

= C

ΛT,‖u0‖
H

3
4

+ exp

T 3
4C 3

4
e
κ 3

4
T

4
‖u0‖

H
3
4

 ,
where ΛT,‖u0‖

H
3
4

is defined by (15), C and C 3
4
are two constants and κ 3

4
depends only on ‖u0‖L2(R).

If u0 ∈ Hm(R) with m ≥ 6, then Theorem 2 implies an order of convergence equal to 1 and we get back the
result of Theorem 1. Note that the results are valid for any T > 0 in agreement with the fact that at this level
of regularity we have global solutions keeping their regularity.

To prove Theorem 1, we prove consistency and stability of the scheme. It is in the control of the consistency
error that we need the exact solution to be smooth. The most challenging part of the proof is the study
of the stability of the scheme in order to take advantage of the fact that the exact solution remains smooth
on the whole [0, T ]. The main idea is to transpose at the discrete level the well known weak-strong stability
property for hyperbolic conservation laws that relies on a relative entropy estimate, see [Daf10] for a detailed
presentation. This method is classical for the study of hyperbolic systems, see for exemple [CMS16] for the
numerical approximation of systems of conservation laws, [Tza05] for a relaxation hyperbolic system or [LV11]
for the approximation of shocks and contact discontinuities. An important outcome of this approach is that
in the stability estimate, the exponential amplification factor only involves the norm

∫ T
0
‖∂xu(t, .)‖L∞dt of the

exact solution, which is bounded thanks to the dispersive properties of the equation. This allows to get the
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convergence of the scheme on the full interval of time [0, T ] and also to handle less smooth initial data at the
price of deteriorating the convergence order as stated in Theorem 2. Indeed in order to prove Theorem 2, we
replace the initial data u0 with a smoother one uδ0 and just use the triangular inequality

‖v∆ − u∆‖L∞([0,T ],L2
x) ≤ ‖v∆ − uδ∆‖L∞([0,T ],L2

x) + ‖uδ∆ − u∆‖L∞([0,T ],L2
x),

where uδ∆ is the discretization of the exact solution uδ of the KdV equation with initial data uδ0. We then
use the stability in L2 for exact solutions of the KdV equation and the stability estimate of Theorem 1. The
amplification factor

∫ T
0
‖∂xuδ(t, .)‖L∞dt is finite and can be bounded independently of δ as soon as the initial

data is in Hs(R), with s ≥ 3/4 because of the Strichartz estimate that ensures that at this level of regularity,
the exact solution is actually also such that ∂xu ∈ L4([0, T ], L∞(R)). We then end the proof by optimizing
these estimates in terms of δ and ∆x.

Outline of the paper In Section 2, we state precisely the results of the Cauchy theory of KdV that we shall
use in this paper. Then, in Section 3, we analyze the consistency error of the scheme (postponing the more
technical part to the appendix). The aim of Section 4 is to derive the crucial `2∆-stability inequality. We study
the discrete equation verified by the convergence error and we obtain the `2∆ estimates. Eventually, the rate of
convergence is determined in Section 5.
Section 6 is devoted to the study of the convergence rate for a non smooth solution. A convolution product by
mollifiers enables us to counteract the lack of regularity. It requires several general approximation estimates
between initial data and regularized initial data which are gathered in Subsection 6.1. The proof of Theorem 2
is developed in Subsection 6.2. Some numerical results illustrate the theoretical rate of convergence in Section
7. Finally, in Appendix A, we prove an estimate of the consistency error in `∞

(
J0, NK, `2∆ (Z)

)
-norm, and in

Appendix B, some technical lemmas of Section 4 are proved.

Notation Thereafter, the letter C represents a positive number that may differ from line to line and that can
be chosen independently of ∆t, ∆x, u, u0, T and δ. We denote by κ all numbers depending only on ‖u0‖L2(R).

2 Known results on the Cauchy problem for the KdV equation
Let us recall the definition of Bourgain spaces. A tempered distribution u(t, x) on R2 belongs to Xs,b if its
following norm is finite

||u||Xs,b =

(∫
R

∫
R

(1 + |ξ|)2s (
1 + |τ − ξ3|

)2b |ũ (τ, ξ) |2dξdτ
) 1

2

,

where ũ is the space and time Fourier transform of u. We shall also use a localized version of this space,
u ∈ Xs,b(I) where I ⊂ R is an interval if ‖u‖Xs,b(I) < +∞ where

‖u‖Xs,b(I) = inf{‖u‖Xs,b , u/I = u}.

By using results from [KPV91], [Bou93], [KPV93], see for example the book [LP15], we get the following
theorem.

Theorem 3. Consider s ≥ 0, 1 > b > 1/2. There exists a unique global solution u of (1a)-(1b), with
u0 ∈ Hs(R), such that for every T ≥ 0, u ∈ C([0, T ], Hs(R)) ∩ Xs,b([0, T ]). Moreover, there exists κs > 0,
depending only on s and on the norm ‖u0‖L2 , and Cs > 0, depending only on s, such that, for any T ≥ 0,

• sup
t∈[0,T ]

‖u(t)‖Hs(R) ≤ Cs‖u0‖Hs(R)e
κsT ,

• if s ≥ 3

4
, ‖∂xu‖Li([0,T ],L∞(R)) ≤ T

4−i
4i ‖u0‖

H
3
4 (R)

C 3
4
e
κ 3

4
T
, for i ∈ {1, 2}.

The growth rate in the above estimates is not optimal.
Note that a local well-posedness result for s > 3/4 follows directly from [KPV91]. In the present paper, we

will be only interested in s ≥ 3/4, nevertheless, to get the global well-posedness for s ∈ [3/4, 1), we need to go
through the L2 local well-posedness result.
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Proof. Let us just briefly explain how we can organize now classical arguments to get the result. We refer for
example to [KPV93], [LP15] for the details. The existence is proven by a fixed point argument on the following
truncated problem:

v 7→ F (v)

such that

F (v)(t) = χ(t)e−t∂
3
xu0 − χ(t)

∫ t

0

e−(t−τ)∂3
x∂x

(
χ
(τ
δ

) v2

2
(τ)

)
dτ,

where χ ∈ [0, 1] is a smooth compactly supported function which is equal to 1 on [−1, 1] and supported in
[−2, 2]. For |t| ≤ δ ≤ 1/2, a fixed point of the above equation gives a solution of the original Cauchy problem,
denoted by u.

Fix C > 0, that does not depend on u, such that

‖χ(t)e−t∂
3
xu0‖X0,b ≤ C‖u0‖L2 .

We can first prove that F is a contraction on a suitable ball of X0,b, provided 8C2‖u0‖L2δβ ≤ 1 for some β > 0
(that is related to 1 > b > 1/2) that does not depend on δ nor u. In particular, for the fixed point, we can
ensure that

‖v‖X0,b ≤ 2C‖u0‖L2 .

Next, by using again the Duhamel formula, we can obtain, for s ≥ 0,

‖v‖Xs,b ≤ cs‖u0‖Hs + csδ
β‖v‖X0,b‖v‖Xs,b ≤ cs‖u0‖Hs + 2csC‖u0‖L2δβ‖v‖Xs,b ,

where cs depends only on s. In particular, by choosing δ, possibly smaller than previously, such that 2csC‖u0‖L2δβ ≤
1/2, we thus obtain that

‖v‖Xs,b ≤ 2cs‖u0‖Hs .

Next, by using that the Xs,b norm for b > 1/2 controls the C(R, Hs) norm (see for example [Tao06] lemma 2.9
page 100), we obtain that

‖u‖C([0,δ],Hs(R)) ≤ ‖v‖C(R,Hs(R)) ≤ Bs‖u0‖Hs(R),

where Bs depends only on s. Since the existence time δ depends only on the L2-norm of the initial datum and
that the L2-norm is conserved for the KdV equation, we can iterate the above argument to get a global solution.
Moreover, in a quantitative way, by choosing n = bT/δc+ 1 and iterating n times, we obtain that

‖u‖C([0,T ],Hs) + ‖u‖Xs,b[0,T ] ≤ Bns ‖u0‖Hs ≤ Cs‖u0‖HseκsT ,

where κs depends only on s and ‖u0‖L2 while Cs depends only on s.
Finally, since the Strichartz estimate in the KdV context (see [KPV91]) reads

‖|∂x|
1
4 e−t∂

3
xu0‖L4

t (R,L∞x ) ≤ C‖u0‖L2 ,

by using the embedding properties of the Bourgain spaces (see again [Tao06] lemma 2.9 page 100), we obtain
that

‖∂xu‖L4
t ([0,δ],L

∞
x ) ≤ ‖∂xv‖L4

t (R,L∞x ) ≤ ‖v‖X 3
4
,b ≤ C‖u0‖

H
3
4
.

Again by iterating this estimate, we finally obtain that

‖∂xu‖L4
t ([0,T ],L∞x ) ≤ C 3

4
‖u0‖

H
3
4
e
κ 3

4
T

and the desired estimate follows from the Hölder inequality.
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3 Consistency error estimate
This section is devoted to the computation of the consistency error defined by Equation (11). As a starting
point, by using Theorem 3, we obtain the following estimates on the averaged solution u∆.

Lemma 1. Let u be the exact solution of (1a)-(1b) from u0 ∈ Hs(R), s > 1
2 and u∆ be defined by (9). Then

there exists C > 0, depending only on s, and κs > 0, depending only on s and ‖u0‖L2 , such that, for any T ≥ 0
and any n ∈ J0, NK with N = b T∆tc,

• || (u∆)
n ||`∞ ≤ CeκsT ‖u0‖Hs ,

• if s ≥ 3

4
, ∆t||D+ (u∆)

n ||i`∞ ≤
∫ tn+1

tn
||∂xu(s, .)||iL∞x ds ≤ T

4−i
4i Ce

κ 3
4
T ‖u0‖

H
3
4 (R)

, for i ∈ {1, 2}. (18)

Proof. The Sobolev embedding Hs(R) ↪→ L∞(R), for s > 1
2 yields the inequality

|| (u∆)
n ||`∞ ≤

1

∆t

∫ tn+1

tn
||u(t, .)||L∞(R)dt ≤ C sup

t∈[0,T ]

||u(t, .)||Hs(R).

Theorem 3 implies

|| (u∆)
n ||`∞ ≤ CCs‖u0‖Hs(R)e

κsT ,

which proves the first estimate of Lemma 1.
To prove Equation (18) for i = 1, we use a Taylor expansion:

∆t ||D+ (u∆)
n||`∞ = ∆t

∣∣∣∣∣
∣∣∣∣∣ 1

∆t∆x2

∫ tn+1

tn

∫ xj+1

xj

u(s, y + ∆x)− u(s, y)dyds

∣∣∣∣∣
∣∣∣∣∣
`∞

= ∆t

∣∣∣∣∣
∣∣∣∣∣ 1

∆x2∆t

∫ tn+1

tn

∫ xj+1

xj

∫ y+∆x

y

∂xu(s, z)dzdyds

∣∣∣∣∣
∣∣∣∣∣
`∞

≤
∫ tn+1

tn
||∂xu(s, .)||L∞x ds.

For i = 2, the same Taylor expansion gives, thanks to the Cauchy-Schwarz inequality,

∆t ||D+ (u∆)
n||2`∞ = ∆t

∣∣∣∣∣
∣∣∣∣∣ 1

∆x2∆t

∫ tn+1

tn

∫ xj+1

xj

∫ y+∆x

y

∂xu(s, z)dzdyds

∣∣∣∣∣
∣∣∣∣∣
2

`∞

≤ ∆t

∆x4∆t2
∆t∆x2

∫ tn+1

tn

∫ xj+1

xj

∫ y+∆x

y

||∂xu(s, .)||2L∞x dzdyds

≤
∫ tn+1

tn
||∂xu(s, .)||2L∞x ds.

Theorem 3 concludes the proof.

Remark 6. The Sobolev regularity of the initial datum is at least H
3
4 (R) in Theorem 2 because we need to

control
∫ T

0
||∂xu(t, .)||iL∞(R)dt, for i ∈ {1, 2} in some of the proofs. This is explicitly needed in Lemma 1,

Theorem 3 and in the definition of ΛT,‖u0‖ 3
4

in (15).

As a consequence, we control the `2∆-norm of the consistency error εn defined in (11) in terms of the initial
datum thanks to the following proposition.
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Proposition 1. Consider u0 ∈ Hs(R), with s ≥ 6. There exist C > 0 and κ > 0, depending only on ‖u0‖L2 ,
such that for any η ∈ (0, s− 3

2 ] and for any T > 0,

||εn||`∞(J0,NK;`2∆(Z)) ≤ CeκT
(

1 + ||u0||2
H

1
2

+η

){
∆t ||u0||H6 + ∆x

[
||u0||H4 + ||u0||

H
3
2

+η ||u0||H1

]}
, (19)

Proof. The consistency error satisfies the following inequality (cf. Appendix A for the proof):

||εn||`∞(J0,NK,`2∆) ≤ B1

{
∆t sup

t∈[0,T ]

[(
1 + ||u||2L∞x

)
||u||H6

x

]
+ ∆x sup

t∈[0,T ]

[(
1 + ||u||L∞x

)
||u||H4

x
+ ||∂xu||L∞x ||u||H1

x

]}
,

with B1 a constant that does not depend on u, u0, T , ∆t and ∆x. By using the Sobolev embedding H
1
2 +η(R) ↪→

L∞(R), with η > 0, we obtain

||εn||`∞(J0,NK,`2∆) ≤ B1

{
∆t sup

t∈[0,T ]

[(
1 + ||u||2

H
1
2

+η
x

)
||u||H6

x

]
+ ∆x sup

t∈[0,T ]

[(
1 + ||u||

H
1
2

+η
x

)
||u||H4

x
+ ||u||

H
3
2

+η
x

||u||H1
x

]}
.

Theorem 3 enables to rewrite

||εn||`∞(J0,NK,`2∆) ≤ ∆t B1C6C
2
1
2 +ηe

(2κ 1
2

+η
+κ6)T

[(
1 + ||u0||2

H
1
2

+η

)
||u0||H6

]
+ ∆x CeκT

[(
1 + ||u0||

H
1
2

+η

)
||u0||H4 + ||u0||

H
3
2

+η ||u0||H1

]
,

with C = max
(
B1C 1

2 +ηC4, B1C 3
2 +ηC1, B1C4

)
and κ = max

(
κ 1

2 +η + κ4, κ 3
2 +η + κ1, κ4

)
.

Inequality (19) follows from the fact that there exists a constant B2 ≥ 2 such that(
1 + ||u0||

H
1
2

+η

)
≤ B2

(
1 + ||u0||2

H
1
2

+η

)
.

We fix C = max
(
B1C6C

2
1
2 +η

, B2C
)
and κ = max

(
2κ 1

2 +η + κ6, κ
)
.

4 Stability estimate
The stability property will be proved in stating a discrete weak-strong stability type inequality : Equation (39).
This inequality gives an upper bound of the convergence error at time n+ 1 with convergence error at time n.
However, some terms Bi of (39) are in factor of derivatives on the convergence error (enj )(n,j), which are not
controlled at this first step: we will cancel those terms in Section 5.

4.1 Preliminary results
We here collect some discrete "Leibniz’s rules" (Lemma 2), `2-norm identities (Lemma 3) and discrete inte-
grations by parts formulas (Lemma 4) which will be used in Subsection 4.2. Their proofs lie in Appendix
B.

Lemma 2. Let (aj)j∈Z and (bj)j∈Z be two sequences and let D, D+, D− be the discrete operators defined in
(4). One has, for any j ∈ Z:

• D+D− (a)j = D−D+ (a)j , (20)

•

{
D+ (ab)j = aj+1D+ (b)j + bjD+ (a)j , (21a)
D− (ab)j = aj−1D− (b)j + bjD− (a)j . (21b)

• D(ab)j = D(a)jbj+1 + aj−1D(b)j , (22)

9



• D(ab)j = bjD(a)j +
aj+1

2
D+(b)j +

aj−1

2
D−(b)j , (23)

•


ajD+ (a)j =

1

2
D+

(
a2
)
j
− ∆x

2

(
D+ (a)j

)2

, (24a)

ajD− (a)j =
1

2
D−

(
a2
)
j

+
∆x

2

(
D− (a)j

)2

. (24b)

Lemma 3. For (aj)j∈Z a sequence in `2∆(Z), one has

•
∑
j∈Z

[
D+ (a)j

]2
=
∑
j∈Z

[
D− (a)j

]2
, (25)

•
∑
j∈Z

[
D

(
a2

2

)
j

]2

=
∑
j∈Z

[
D (a)j

]2(aj+1 + aj−1

2

)2

, (26)

•
∑
j∈Z

[
D+D− (a)j

]2
=

4

∆x2

∑
j∈Z

[
D+ (a)j

]2
− 4

∆x2

∑
j∈Z

[
D (a)j

]2
. (27)

Applying (27) to D+ (a)j rather than aj enables to state

Corollary 1. Let (aj)j∈Z be a sequence in `2∆(Z). One has∑
j∈Z

[
D+D+D− (a)j

]2
=

4

∆x2

∑
j∈Z

[
D+D− (a)j

]2
− 4

∆x2

∑
j∈Z

[
D+D (a)j

]2
. (28)

Lemma 4. Let (aj)j∈Z and (bj)j∈Z be two sequences in `2∆(Z). One has

•
∑
j∈Z

D+ (a)j bj = −
∑
j∈Z

ajD− (b)j , (29)

•
∑
j∈Z

D (a)j bj = −
∑
j∈Z

ajD (b)j , (30)

•
∑
j∈Z

ajD+ (a)j = −
∑
j∈Z

∆x

2

[
D+ (a)j

]2
, (31)

•
∑
j∈Z

D+ (a)j ajaj+1 = −
∑
j∈Z

∆x2

3

[
D+ (a)j

]3
, (32)

•
∑
j∈Z

D (a)j aj−1aj+1 = −
∑
j∈Z

4∆x2

3

[
D (a)j

]3
, (33)

•
∑
j∈Z

ajD (ab)j =
∑
j∈Z

D+ (b)j
ajaj+1

2
, (34)

•
∑
j∈Z

D+D− (a)j D (ab)j = −
∑
j∈Z

1

∆x2
D+ (b)j ajaj+1 +

∑
j∈Z

1

∆x2
D (b)j aj−1aj+1. (35)

With (32) and (33), taking (b)j∈Z = (
aj
2 )j∈Z in (34) and (35) gives the following corollary.

Corollary 2. Let (aj)j∈Z be a sequence in `2∆(Z). One has

•
∑
j∈Z

ajD

(
a2

2

)
j

= −
∑
j∈Z

∆x2

12

[
D+ (a)j

]3
, (36)

•
∑
j∈Z

D

(
a2

2

)
j

D+D− (a)j =
∑
j∈Z

1

6

[
D+ (a)j

]3
− 2

3

[
D (a)j

]3
. (37)

10



4.2 The `2
∆-stability inequality

We focus on the derivation of the `2∆-stability inequality (39), which corresponds to a discrete equivalent of a
weak-strong estimate.
Combining (5), (10) and (11), we obtain

en+1
j + θ∆tD+D+D− (e)

n+1
j (38)

= enj − (1− θ)∆tD+D+D− (e)
n
j −∆tD

(
e2

2

)n
j

−∆tD (u∆e)
n
j +

c∆x∆t

2
D+D− (e)

n
j −∆tεnj , (n, j) ∈ J0, NK× Z.

Proposition 2 (`2∆-stability inequality). Let (enj )(j,n) be the convergence error defined by (10) with respect to
Scheme (2)-(3). For every θ ∈ [0, 1],∆t > 0 and ∆x > 0, for every (n, j) ∈ J0, NK × Z and γ ∈ [0, 1

2 ) and
σ ∈ {0, 1}, one has∣∣∣∣en+1 + θ∆tD+D+D− (e)n+1

∣∣∣∣2
`2∆
≤ ||en + θ∆tD+D+D− (e)n||2`2∆ + ∆tBa||en||2`2∆ + ∆t ||en − (1− θ)∆tD+D+D− (e)n||2`2∆

+ ∆tBb ||D+ (e)n||2`2∆ + ∆t2Bc ||D (e)n||2`2∆ + ∆tBd ||D+D− (e)n||2`2∆ + ∆tBe ||D+D (e)n||2`2∆ + ∆tBf ||D+D+D− (e)n||2`2∆

+ ∆t||εn||2`2∆

{
1 + 4

∆t

∆x
+ ∆t

}
,

(39)

where the coefficients Bi, for i ∈ {a, b, c, d, e, f}, are defined in Equations (40a)-(40f).

Ba = ||un∆||2`∞ + ||D+ (u∆)
n ||`∞

(
2− θ +

∆t

∆x

[
2c+

2

3
||en||`∞ +

3

2
||(u∆)n||`∞

])
+

∆t2

∆x2
||D+(u∆)n||2`∞ +

∆t

∆x
(||un∆||2`∞ + 2c2), (40a)

Bb =

(
∆x

6
D+ (e)

n
j − c

)
(∆x− c∆t) + (1− θ)∆t||D+ (u∆)

n ||2−σ`∞ , (40b)

Bc = ||en||2`∞ [1 + ∆x] + ||(u∆)n||2`∞ − c2 + 2||en||`∞ ||(u∆)n||`∞ +
2c

3
||en||`∞ , (40c)

Bd = (1− θ)∆t
[
||D+(u∆)n||σ`∞ +

∆x

2
||D− (u∆)

n ||`∞
]
, (40d)

Be = 2(1− θ)∆t

{
|| (u∆)

n ||`∞ + ||en||`∞ +

[
∆x

1
2−γ + ||en||`∞ + 9||en||2`∞∆xγ−

1
2

2

]}
−∆x, (40e)

Bf = ∆t

{
(1− 2θ) +

(1− θ)∆x2

2

[
c+

∆x
1
2−γ + ||en||`∞ + 9||en||2`∞∆xγ−

1
2

2

]

+∆t(1− θ)||D+ (u∆)
n ||`∞} −

∆x3

4
. (40f)

Remark 7. One of our purposes, here below, will be to control the right hand side terms Bi with i ∈ {b, c, d, e, f}
only in terms of u∆ and not v. This is why, this inequality can be viewed as a weak-strong inequality.

Proof. Thanks to (38), one has(
en+1
j + θ∆tD+D+D−(e)n+1

j

)2
=
(
RHSnj

)2
a

+
(
RHSnj

)2
b

+
(
RHSnj

)2
c

with

(
RHSnj

)2
a

=
(
enj
)2

+(1−θ)2∆t2
[
D+D+D− (e)nj

]2
+∆t2

[
D

(
e2

2

)n
j

]2

+∆t2
[
D (u∆e)

n
j

]2
+
c2∆t2∆x2

4

[
D+D− (e)nj

]2
,
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(
RHSnj

)2
b

=− 2(1− θ)∆tenjD+D+D− (e)nj − 2∆tenjD

(
e2

2

)n
j

− 2∆tenjD (u∆e)
n
j + c∆x∆tenjD+D− (e)nj

+ 2(1− θ)∆t2D+D+D− (e)nj D (u∆e)
n
j + 2(1− θ)∆t2D+D+D− (e)nj D

(
e2

2

)n
j

− c∆x∆t2(1− θ)D+D+D− (e)nj D+D− (e)nj + 2∆t2D

(
e2

2

)n
j

D (u∆e)
n
j − c∆x∆t2D

(
e2

2

)n
j

D+D− (e)nj

− c∆x∆t2D (u∆e)
n
j D+D− (e)nj ,

(41)

and

(
RHSnj

)2
c

= −2∆tεnj

(
enj − (1− θ)∆tD+D+D− (e)nj

)
+ 2∆t2D

(
e2

2

)n
j

εnj + 2∆t2D (u∆e)
n
j ε

n
j − c∆x∆t2D+D− (e)nj ε

n
j

+ ∆t2
(
εjn

)2

.

Right Hand Side
(
RHSnj

)2
a

We here will bound
∑
j∈Z ∆x

(
RHSnj

)2
a
.

• To this aim, we use the discrete integrations by parts formulas of Subsection 4.1, to see that, thanks to
Identity (26), ∑

j∈Z
∆x∆t2

[
D

(
e2

2

)n
j

]2

=
∑
j∈Z

∆x∆t2
[
D (e)

n
j

]2(enj+1 + enj−1

2

)2

.

• To bound
∑
j∈Z ∆x∆t2

[
D (u∆e)

n
j

]2
, we use the following result, proved in Appendix B.

Lemma 5. Let (aj)j∈Z and (bj)j∈Z be two sequences in `2∆(Z), then they satisfy the following inequality

∑
j∈Z

[
D (ab)j

]2
≤
∑
j∈Z

{
(bj)

2
+

∆t

2

[
(D+bj)

2
+ (D−bj)

2
]}

(Daj)
2

+
∑
j∈Z

1

2

{
(bj−1)

2
+ (bj+1)

2

∆t
+

3

4
(D+bj)

2
+

3

4
(D−bj)

2

}
(aj)

2
. (42)

Relation (42) gives

∑
j∈Z

∆x∆t2
[
D (u∆e)

n
j

]2
≤
∑
j∈Z

∆x∆t2
{(

[u∆]
n
j

)2

+
∆t

2

(
D+ (u∆)

n
j

)2

+
∆t

2

(
D− (u∆)

n
j

)2
}(

Denj
)2

+
∑
j∈Z

∆t∆x

2

{(
[u∆]

n
j−1

)2

+
(

[u∆]
n
j+1

)2

+
3∆t

4

(
D+ (u∆)

n
j

)2

+
3∆t

4

(
D− (u∆)

n
j

)2
}(

enj
)2
.

We turn our attention to the term
∑
j∈Z

∆x∆t3

2

{(
D+(u∆)nj

)2
+
(
D−(u∆)nj

)2}(
Denj

)2. Definition of Denj
gives

∑
j∈Z

∆x∆t3

2

{(
D+(u∆)nj

)2
+
(
D−(u∆)nj

)2}(
Denj

)2 ≤∑
j∈Z

∆x∆t3||D+(u∆)n||2`∞
( |enj |

∆x

)2

≤
∑
j∈Z

∆x
∆t2

∆x2
∆t||D+ (u∆)

n ||2`∞ |enj |2.
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• Thanks to Relation (27), one has

∑
j∈Z

c2∆t2∆x3

4

[
D+D−(e)nj

]2
=
∑
j∈Z

c2∆t2∆x
[
D+ (e)

n
j

]2
−
∑
j∈Z

c2∆t2∆x
[
D (e)

n
j

]2
.

All this yields∑
j∈Z

∆x
(
RHSnj

)2
a
≤
∑
j∈Z

∆x∆t2
[
D+D+D− (e)nj

]2 (
θ2 + (1− 2θ)

)
+
∑
j∈Z

c2∆t2∆x
[
D+ (e)nj

]2
+
∑
j∈Z

∆x∆t2
[
D (e)nj

]2{(enj+1 + enj−1

2

)2

+
[
(u∆)nj

]2
− c2

}

+
∑
j∈Z

∆x
(
enj
)2{

1 +
∆t

2

[(
[u∆]nj−1

)2

+
(

[u∆]nj+1

)2

+
3∆t

4

(
D+ (u∆)nj

)2

+
3∆t

4

(
D− (u∆)nj

)2

+ 2
∆t2

∆x2
||D+(u∆)n||2`∞

]}
.

Right Hand Side
(
RHSnj

)2
b

We next focus on
∑
j∈Z ∆x

(
RHSnj

)2
b
and on its different ten terms.

• By Relations (29) and (31), one sees that∑
j∈Z
−2(1− θ)∆t∆xenjD+D+D−(e)nj =

∑
j∈Z

2θ∆t∆xenjD+D+D− (e)
n
j +

∑
j∈Z

2∆t∆xD− (e)
n
j D+D− (e)

n
j ,

=
∑
j∈Z

2θ∆t∆xenjD+D+D− (e)
n
j −

∑
j∈Z

∆t∆x2
[
D+D− (e)

n
j

]2
.

Equality (28) enables to write

∑
j∈Z
−2(1− θ)∆t∆xenjD+D+D−(e)nj =

∑
j∈Z

2θ∆t∆xenjD+D+D− (e)
n
j −

∑
j∈Z

∆t∆x4

4

[
D+D+D− (e)

n
j

]2
−
∑
j∈Z

∆t∆x2
(
D+D (e)

n
j

)2

.

• Thanks to Identity (36), one has

∑
j∈Z
−2∆x∆tenjD

(
e2

2

)n
j

=
∑
j∈Z

∆x3∆t

6

[
D+ (e)

n
j

]3
.

• Identity (34) gives∑
j∈Z
−2∆x∆tenjD (u∆e)

n
j =

∑
j∈Z
−∆x∆tD+ (u∆)

n
j e

n
j e
n
j+1 ≤

∑
j∈Z

∆x∆t
(
enj
)2 ||D+ (u∆)

n ||`∞ .

• Moreover, Relations (20) and (29) imply∑
j∈Z

c∆x2∆tenj
[
D+D−(e)nj

]
=
∑
j∈Z
−c∆x2∆t

[
D+ (e)

n
j

]2
.

• To bound
∑
j∈Z 2(1 − θ)∆t2∆xD+D+D−(e)njD (u∆e)

n
j , we use Lemma 6, whose proof lies in Appendix

B.
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Lemma 6. Let (aj)j∈Z, (bj)j∈Z be two sequences in `2∆(Z) and σ ∈ {0, 1}. One has

∑
j∈Z

D+D+D− (a)j D (ab)j ≤
∑
j∈Z

∆t

4

{
|D+ (b)j |+ |D− (b)j |

}(
D+D+D− (a)j

)2

+
∑
j∈Z

1

2

{
||D+(b)||σ`∞ −

∆x

2
D− (b)j

}(
D+D− (a)j

)2

+
∑
j∈Z

1

2
||D+ (b) ||2−σ`∞

(
D+ (a)j

)2

−
∑
j∈Z

bj

(
D+D (a)j

)2

+
∑
j∈Z

1

4∆t

{
|D− (b)j |+ |D+ (b)j |

}
(aj)

2
. (43)

Thanks to this lemma applied with aj = enj and bj = (u∆)
n
j , one has

∑
j∈Z

2(1− θ)∆t2∆xD+D+D−(e)njD (u∆e)
n
j ≤

∑
j∈Z

∆t3∆x

2
(1− θ)

{
|D+ (u∆)nj |+ |D− (u∆)nj |

}(
D+D+D− (e)nj

)2

+
∑
j∈Z

∆t∆x

2
(1− θ)

{
|D− (u∆)nj |+ |D+ (u∆)nj |

}(
enj
)2

+
∑
j∈Z

(1− θ)∆t2∆x

{
||D+(u∆)n||σ`∞ −

∆x

2
D− (u∆)nj

}(
D+D− (e)nj

)2

+
∑
j∈Z

(1− θ)∆x∆t2||D+ (u∆)n ||2−σ`∞

(
D+ (e)nj

)2

−
∑
j∈Z

2(1− θ)∆x∆t2 (u∆)nj

(
D+D (e)nj

)2

,

for σ ∈ {0, 1}.

• To bound
∑
j∈Z 2(1− θ)∆t2∆xD+D+D−(e)njD

(
e2

2

)n
j
, we use Lemma 7 (proved in Appendix B).

Lemma 7. Let (aj)j∈Z be a sequence in `2∆(Z) and γ ∈ [0, 1
2 ), one has

∑
j∈Z

D+D+D−(a)jD

(
a2

2

)
j

≤
∑
j∈Z

∆x
1
2−γ + ||a||`∞ + 9||a||2`∞∆xγ−

1
2

2
(D+D−(a)j)

2

+
∑
j∈Z
||a||`∞ (D+D(a)j)

2
.

Applying this inequality to aj = enj , one gets

∑
j∈Z

2(1− θ)∆t2∆xD+D+D−(e)njD

(
e2

2

)n
j

≤
∑
j∈Z

∆t2∆x(1− θ)
(

∆x
1
2−γ + ||en||`∞ + 9||en||2`∞∆xγ−

1
2

)(
D+D− (e)

n
j

)2

+
∑
j∈Z

2(1− θ)∆t2∆x||en||`∞
(
D+D(e)nj

)2
.

Once again, Relation (28) transforms
∑
j∈Z ∆t2∆x(1−θ)

(
∆x

1
2−γ + ||en||`∞ + 9||en||2`∞∆xγ−

1
2

)(
D+D− (e)

n
j

)2

to obtain

∑
j∈Z

2(1− θ)∆t2∆xD+D+D−(e)njD

(
e2

2

)n
j

14



≤
∑
j∈Z

∆t2∆x(1− θ)
[
∆x

1
2−γ + ||en||`∞ + 9||en||2`∞∆xγ−

1
2

] (
D+D (e)

n
j

)2

+
∑
j∈Z

(1− θ)∆t2∆x3

4

[
∆x

1
2−γ + ||en||`∞ + 9||en||2`∞∆xγ−

1
2

] (
D+D+D−(e)nj

)2
+
∑
j∈Z

2(1− θ)∆t2∆x||en||`∞
(
D+D(e)nj

)2
.

Remark 8. Thereafter, aj will be replaced by the unknown enj whereas bj will be replaced by the exact
solution [u∆]nj . We could not use Lemma 6 with bj =

aj
2 instead of Lemma 7 because D+(b)j in Lemma

6 will be replaced by D+(a2 )j = D+( e2 )nj which is always unknown.

• Relation (31) gives

∑
j∈Z
−c∆x2∆t2(1− θ)D+D+D−(e)njD+D−(e)nj =

∑
j∈Z

(1− θ)c∆x3∆t2

2

[
D+D+D− (e)

n
j

]2
.

• To deal with
∑
j∈Z 2∆x∆t2D

(
e2

2

)n
j
D (u∆e)

n
j , we use Lemma 8 (see Appendix B for its proof)

Lemma 8. Let (aj)j∈Z and (bj)j∈Z be two sequences in `2∆(Z), then one has

∑
j∈Z

D (ab)j D

(
a2

2

)
j

=
∑
j∈Z

[
D (a)j

]2 aj+1bj+1 + aj−1bj−1

2

−
∑
j∈Z

D (b)j

[
D (a)j

]3 4∆x2

3
−
∑
j∈Z

1

3
DD (b)j a

3
j . (44)

Identity (44) with aj = enj and bj = (u∆)
n
j gives

∑
j∈Z

2∆x∆t2D

(
e2

2

)n
j

D (u∆e)
n
j =

∑
j∈Z

∆x∆t2
[
D (e)

n
j

]2 [
(u∆)

n
j+1 e

n
j+1 + (u∆)

n
j−1 e

n
j−1

]
−
∑
j∈Z

8∆x3∆t2

3
D (u∆)

n
j

[
D (e)

n
j

]3
−
∑
j∈Z

2∆x∆t2

3
DD (u∆)

n
j

(
enj
)3
.

• Relation (37) yields

∑
j∈Z
−c∆x2∆t2D

(
e2

2

)n
j

D+D−(e)nj =
∑
j∈Z
−c∆x

2∆t2

6

[
D+ (e)

n
j

]3
+
∑
j∈Z

2c∆x2∆t2

3

[
D (e)

n
j

]3
.

• Relation (35) implies∑
j∈Z
−c∆x2∆t2D (u∆e)

n
j D+D−(e)nj =

∑
j∈Z

c∆t2D+ (u∆)
n
j e

n
j e
n
j+1 −

∑
j∈Z

c∆t2D (u∆)
n
j e

n
j−1e

n
j+1.

Thus, thanks to the Cauchy-Schwarz inequality,∑
j∈Z
−c∆x2∆t2D (u∆e)

n
j D+D−(e)nj ≤

∑
j∈Z

c∆t2||D+ (u∆)
n ||`∞

(
enj
)2

+
∑
j∈Z

c∆t2||D (u∆)
n ||`∞

(
enj
)2
.

15



Gathering all these relations yields the following inequality, for σ ∈ {0, 1}.∑
j∈Z

∆x
(
RHSnj

)2
b
≤
∑
j∈Z

2θ∆t∆xenjD+D+D− (e)nj +
∑
j∈Z

(1− θ)∆t2∆x

[
||D+(u∆)n||σ`∞ +

∆x

2
||D− (u∆)n ||`∞

] (
D+D−e

n
j

)2
+
∑
j∈Z

∆x∆t

{
||D+u

n
∆||`∞ −

2∆t

3
DD (u∆)nj e

n
j +

c∆t

∆x
||D+u

n
∆||`∞ +

c∆t

∆x
||Dun∆||`∞ +

(1− θ)
2

[|D+u
n
∆|+ |D−un∆|]

}(
enj
)2

+
∑
j∈Z

∆x∆t

{
∆x2

6
D+ (e)nj − c∆x−

c∆t∆x

6
D+ (e)nj + (1− θ)∆t||D+ (u∆)n ||2−σ`∞

}[
D+ (e)nj

]2
+
∑
j∈Z

∆x∆t2
[
D (e)nj

]2{
(u∆)nj+1 e

n
j+1 + (u∆)nj−1 e

n
j−1 −

8∆x2

3
D (u∆)nj D (e)nj +

2c∆x

3
D (e)nj

}
+
∑
j∈Z

∆t∆x
{
−∆x− 2(1− θ)∆t (u∆)nj + 2(1− θ)∆t||en||`∞ + ∆t(1− θ)

[
∆x

1
2
−γ + ||en||`∞ + 9||en||2`∞∆xγ−

1
2

]} (
D+De

n
j

)2
+
∑
j∈Z

∆t∆x

{
−∆x3

4
+ c

(1− θ)∆x2∆t

2
+

∆t2(1− θ)
2

[
|D+ (u∆)nj |+ |D− (u∆)nj |

]
+(1− θ)∆t∆x2

4

(
∆x

1
2
−γ + ||en||`∞ + 9||en||2`∞∆xγ−

1
2

)}[
D+D+D− (e)nj

]2
.

Right Hand Side
(
RHSnj

)
c

Let us now focus on
∑
j∈Z ∆x

(
RHSnj

)2
c
and its four different terms.

• From Young’s inequality,

−
∑
j∈Z

2∆x∆t
(
enj − (1− θ)∆tD+D+D− (e)

n
j

)
εnj ≤

∑
j∈Z

∆x∆t
(
enj − (1− θ)∆tD+D+D− (e)

n
j

)2

+
∑
j∈Z

∆x∆t
(
εnj
)2
.

• Once again, we apply Young’s inequality to obtain

∑
j∈Z

2∆x∆t2D

(
e2

2

)n
j

εnj ≤
∑
j∈Z

∆t2
[
εnj
]2

+
∑
j∈Z

∆t2∆x2

[
D

(
e2

2

)n
j

]2

.

Then, Identity (26) gives∑
j∈Z

2∆x∆t2D

(
e2

2

)n
j

εnj ≤
∑
j∈Z

∆t2
[
εnj
]2

+
∑
j∈Z

∆t2∆x2
[
D (e)

n
j

]2(enj+1 + enj−1

2

)2

,

• One also has ∑
j∈Z

2∆x∆t2D (u∆e)
n
j ε

n
j ≤

∑
j∈Z

∆t2
(
enj
)2 ||(u∆)n||2`∞ +

∑
j∈Z

∆t2
(
εnj
)2
.

• Finally, we see that, thanks to Young’s inequality,∑
j∈Z
−c∆x2∆t2D+D− (e)

n
j ε

n
j ≤

∑
j∈Z

2c2∆t2
(
enj
)2

+
∑
j∈Z

2∆t2
(
εnj
)2
.

Thus, we have∑
j∈Z

∆x
(
RHSnj

)2
c
≤ ∆t||en||2`2∆

{
∆t

∆x

[
||(u∆)n||2`∞ + 2c2

]}
+ ∆t||εn||2`2∆

{
1 + 4

∆t

∆x
+ ∆t

}

+
∑
j∈Z

∆x∆t
(
enj − (1− θ)∆tD+D+D− (e)

n
j

)2

+
∑
j∈Z

∆t2∆x2
[
D (e)

n
j

]2(enj+1 + enj−1

2

)2

.
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Final inequality To conclude, the convergence error satisfies the following inequality

∑
j∈Z

∆x
(
en+1
j + θ∆tD+D+D− (e)

n+1
j

)2

≤
∑
j∈Z

∆x
(
enj + θ∆tD+D+D− (e)

n
j

)2

+ ∆t||en||2`2∆Aa

+
∑
j∈Z

∆t∆x
(
enj − (1− θ)∆tD+D+D− (e)

n
j

)2

+
∑
j∈Z

∆x∆tAb

[
D+ (e)

n
j

]2
+
∑
j∈Z

∆x∆t2Ac

[
D (e)

n
j

]2
+
∑
j∈Z

∆x∆tAd

(
D+D− (e)

n
j

)2

+
∑
j∈Z

∆x∆tAe

(
D+D (e)

n
j

)2

+
∑
j∈Z

∆t∆xAf

[
D+D+D− (e)

n
j

]2
+ ∆t||εn||2`2∆

{
1 + 4

∆t

∆x
+ ∆t

}
,

with

Aa =

(
[u∆]

n
j−1

)2

2
+

(
[u∆]

n
j+1

)2

2
+

∆t

2

[
3

4

(
D− (u∆)

n
j

)2

+
3

4

(
D+ (u∆)

n
j

)2
]

+
∆t2

∆x2
||D+(u∆)n||2`∞

+
(1− θ)

2

[
|D− (u∆)

n
j |+ |D+ (u∆)

n
j |
]

+ ||D+ (u∆)
n ||`∞

(
1 +

c∆t

∆x

)
+
c∆t

∆x
||D (u∆)

n ||`∞ −
2∆t

3
DD (u∆)

n
j e

n
j +

∆t

∆x

(
||(u∆)n||2`∞ + 2c2

)
,

Ab = c2∆t+
∆x2

6
D+ (e)

n
j − c∆x−

c∆x∆t

6
D+ (e)

n
j + (1− θ)∆t||D+ (u∆)

n ||2−σ`∞ ,

Ac =

(
enj+1 + enj−1

2

)2

[1 + ∆x]+
(

[u∆]
n
j

)2

−c2+(u∆)
n
j+1 e

n
j+1+(u∆)

n
j−1 e

n
j−1−

8∆x2

3
D (u∆)

n
j D (e)

n
j +

2c∆x

3
D (e)

n
j ,

Ad = (1− θ)∆t
[
||D+(u∆)n||σ`∞ +

∆x

2
||D− (u∆)

n ||`∞
]
,

Ae = −2(1− θ)∆t (u∆)
n
j + 2(1− θ)∆t||en||`∞ −∆x+ ∆t(1− θ)

[
∆x

1
2−γ + ||en||`∞ + 9||en||2`∞∆xγ−

1
2

]
,

and

Af = ∆t

[
(1− 2θ) +

c(1− θ)∆x2

2
+

∆t(1− θ)
2

[
|D+ (u∆)

n
j |+ |D− (u∆)

n
j |
]

+(1− θ)∆x2

4

(
∆x

1
2−γ + ||en||`∞ + 9||en||2`∞∆xγ−

1
2

)]
− ∆x3

4
.

• Since ||DD (u∆)
n ||`∞ ≤ 1

∆x ||D (u∆)
n ||`∞ , ||D (u∆)

n ||`∞ ≤ ||D+ (u∆)
n ||`∞ and ∆t||D+ (u∆)

n ||`∞ ≤ 2∆t
∆x ||u

n
∆||`∞ ,

then
Aa ≤ Ba,

where Ba is defined by (40a).
• For Ab, we recognize the definition (40b) of Bb.
• For the term Ac, we have

Ac ≤ ||en||2`∞ [1 + ∆x] + ||(u∆)n||2`∞ − c2 +
1

3
enj+1 (u∆)

n
j+1 +

1

3
enj−1 (u∆)

n
j−1 +

2

3
(u∆)

n
j+1 e

n
j−1 +

2

3
(u∆)

n
j−1 e

n
j+1

+
2c

3
||en||`∞ .

Thus, one has Ac ≤ Bc (40c).
• Furthermore, from (40d) and (40e)

Ad = Bd
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and
Ae = Be.

• At last, we see that Af ≤ Bf defined by (40f).

5 Rate of convergence
In the left hand side of the `2∆-stability inequality (39), en+1

j appears in the operator I + ∆tθD+D+D−. The
study of this dispersive operator is the aim of Subsection 5.1.

In the right hand side of (39), D+(e)nj , D+D−(e)nj appear in factor of some terms Bi. Since we have no
control on these derivatives of the convergence error, we reorganize terms Bi in Subsection 5.2 to obtain non-
positive terms : the Ci and Ei terms of Corollaries 3 and 4. We notice that the reorganization is not exactly
the same for θ ≥ 1

2 and θ < 1
2 , therefore, we state two corollaries.

In Subsection 5.3, the correct CFL hypothesis enables to cancel extra terms Ci and Ei and an induction
method concludes the convergence proof.

5.1 Properties of the operator I + θ∆tD+D+D−

For more simplicity, we denote by A the operator

A = I + θ∆tD+D+D−, (45)

where I is the identity operator in `2∆(Z).

Proposition 3. For every ∆t > 0 and ∆x > 0, A is

• continuous (with a norm depending on ∆t
∆x3 ) from `2∆ to `2∆,

• invertible.

Moreover, one has the following inequalities, for any sequence (aj)j∈Z ∈ `
2
∆(Z)

||a||2`2∆ ≤ ||Aa||
2
`2∆
≤
{

1 +
16θ∆t

∆x3

[
1 +

4θ∆t

∆x3

]}
||a||2`2∆ . (46)

Remark 9. Inequality (46) implies that the inverse of A is continuous from `2∆ to `2∆ with a norm independent
of ∆t

∆x3 .

Proof. Given a ∈ `2∆ (Z), we may define the function â ∈ L2 (0, 1) by

â (ξ) =
∑
k∈Z

ake
2iπkξ, ξ ∈ (0, 1),

(the sequence a is seen as the Fourier-series of the function â). Parseval identity yields

∑
j∈Z

∆x|aj |2 = ∆x

∫ 1

0

|â (ξ) |2dξ. (47)

We define furthermore the shift operator S` with ` ∈ Z by

S`a = (aj+`)j∈Z ,

the associated function verifies
Ŝ`a (ξ) = e−2iπ`ξâ (ξ) , ξ ∈ (0, 1).
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The function associated to Aa is

Âa (ξ) = â+ θ
∆t

∆x3
â
(
e−4iπξ − 3e−2iπξ + 3− e2iπξ

)
, ξ ∈ (0, 1),

= â

{
1 + θ

∆t

∆x3

[
−2ie−iπξ sin (3πξ) + 6ie−iπξ sin (πξ)

]}
, ξ ∈ (0, 1).

As sin (3πξ) = 3 sin (πξ)− 4 sin3 (πξ), we obtain

Âa (ξ) = â

{
1 + 8iθ

∆t

∆x3
e−iπξ sin3 (πξ)

}
.

The operator A is thus inversible and its inverse is defined by Â−1a(ξ) = 1
1+8iθ ∆t

∆x3 e
−iπξ sin3(πξ)

â(ξ).

Moreover, this operator and its inverse are continuous since

||Aa||2`2∆ = ∆x

∫ 1

0

∣∣∣∣1 + 8iθ
∆t

∆x3
e−iπξ sin3 (πξ)

∣∣∣∣2 |â(ξ)|2dξ,

and the module
∣∣1 + 8iθ ∆t

∆x3 e
−iπξ sin3 (πξ)

∣∣2 satisfies∣∣∣∣1 + 8iθ
∆t

∆x3
e−iπξ sin3 (πξ)

∣∣∣∣2 =

(
1 + 8θ

∆t

∆x3
sin4 (πξ)

)2

+

(
8θ

∆t

∆x3
cos (πξ) sin3 (πξ)

)2

= 1 + 16θ
∆t

∆x3
sin4 (πξ)

(
1 + 4θ

∆t

∆x3
sin2 (πξ)

)
∈ [1, 1 + 16θ

∆t

∆x3

(
1 + 4θ

∆t

∆x3

)
].

Thus, the operator A verifies

∆x

∫ 1

0

|â(ξ)|2dξ ≤ ||Aa||2`2∆ ≤
{

1 + 16θ
∆t

∆x3

(
1 + 4θ

∆t

∆x3

)}
∆x

∫ 1

0

|â(ξ)|2dξ.

We conclude by using Identity (47).

Remark 10. The norm of the inverse operator A−1 is upper bounded by 1 (independent of ∆t
∆x3 ). This inde-

pendence is crucial to be able to impose a hyperbolic Courant-Friedrichs-Lewy condition ( [c + 1
2 ] ∆t

∆x < 1) for
θ ≥ 1

2 , to establish Equation (66) for example.

The operator A enables us to control not only the `2∆-norm (as proved in Proposition 3) but also an h2
∆-

discrete norm and h3
∆-discrete norm as in the following proposition.

Proposition 4. Let A be the operator defined by (45), then for any sequence (aj)j∈Z, one has

||Aa||2`2∆ = ||a||2`2∆ + θ∆t∆x||D+D−(a)||2`2∆ + θ2∆t2||D+D+D−(a)||2`2∆ .

Proof. We develop the square of the `2∆-norm of (Aaj)j∈Z :∑
j∈Z

∆x (aj + θ∆tD+D+D−(a)j)
2

=
∑
j∈Z

∆x (aj)
2

+
∑
j∈Z

2θ∆x∆tajD+D+D−(a)j +
∑
j∈Z

θ2∆x∆t2 (D+D+D−(a)j)
2
.

Let us focus on the cross term. Discrete integration by parts (29) together with (31) (with D−(a)j instead of
aj) give ∑

j∈Z
2θ∆t∆xajD+D+D−(a)j = −

∑
j∈Z

2θ∆t∆xD−(a)jD+D−(a)j =
∑
j∈Z

θ∆t∆x2 (D+D−(a)j)
2
,

which concludes the proof.
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The following proposition enables to deal with the term enj − (1− θ)∆tD+D+D− (e)
n
j in Equation (39).

Proposition 5. For θ ∈ [0, 1], assume the CFL condition ∆t(1−2θ) ≤ ∆x3

4 is satisfied. Then, for any sequence
(aj)j∈Z, it holds ∑

j∈Z
∆x
(
aj − (1− θ)∆tD+D+D− (a)j

)2

≤ ||Aa||2`2∆ . (48)

Proof. We develop the expression:∑
j∈Z

∆x
(
aj − (1− θ)∆tD+D+D− (a)j

)2

=
∑
j∈Z

∆x
(
aj + θ∆tD+D+D− (a)j

)2

−
∑
j∈Z

2∆x∆tajD+D+D− (a)j

+
∑
j∈Z

∆x∆t2(1− 2θ)
(
D+D+D− (a)j

)2

.

By applying Relations (29) and (31) (with D− (a)j instead of aj), the previous equation becomes

∑
j∈Z

∆x
(
aj − (1− θ)∆tD+D+D− (a)j

)2

=
∑
j∈Z

∆x
(
aj + θ∆tD+D+D− (a)j

)2

−
∑
j∈Z

∆x2∆t
(
D+D− (a)j

)2

+
∑
j∈Z

∆x∆t2(1− 2θ)
(
D+D+D− (a)j

)2

.

If θ ≥ 1
2 , Proposition 5 is proved.

If θ < 1
2 , thanks to Identity (28), we have∑

j∈Z
∆x
(
aj − (1− θ)∆tD+D+D− (a)j

)2

=
∑
j∈Z

∆x
(
aj + θ∆tD+D+D− (a)j

)2

−
∑
j∈Z

∆x2∆t
(
D+D− (a)j

)2

+
∑
j∈Z

4∆t2(1− 2θ)

∆x

(
D+D− (a)j

)2

−
∑
j∈Z

4∆t2(1− 2θ)

∆x

(
D+D (a)j

)2

.

Since ∆t(1 − 2θ) ≤ ∆x3

4 , the term 4∆t2(1−2θ)
∆x is upper bounded by ∆t∆x2, which transforms the previous

equation into∑
j∈Z

∆x
(
aj − (1− θ)∆tD+D+D− (a)j

)2

≤
∑
j∈Z

∆x
(
aj + θ∆tD+D+D− (a)j

)2

−
∑
j∈Z

∆x2∆t
(
D+D− (a)j

)2

+
∑
j∈Z

∆t∆x2
(
D+D− (a)j

)2

−
∑
j∈Z

4∆t2(1− 2θ)

∆x

(
D+D (a)j

)2

.

The conclusion of the proposition is a straightforward consequence, since 1− 2θ > 0.

5.2 Simplification of Inequality (39)
The previous study of the dispersive operator A enables us to reorganize terms in `2∆-stability inequality (39)
in a way simpler to study : signs of new terms are easier to identify. The reorganization is not exactly the same
for θ ≥ 1

2 and θ < 1
2 , as seen in the two following corollaries of Proposition 2.

Corollary 3 (Corollary of Proposition 2). Consider Scheme (2)-(3). Let (enj )(j,n) be the convergence error
defined by (10). Then, for every n ∈ J0, NK, γ ∈ [0, 1

2 ) and θ ≥ 1
2 , one has

||Aen+1||2`2∆ ≤||Ae
n||2`2∆ [1 + ∆tFa] + ∆tCb ||D+ (e)

n||2`2∆ + ∆t2Cc ||D (e)
n||2`2∆ + ∆tCe ||D+D (e)

n||2`2∆

+ ∆tCf ||D+D+D− (e)
n||2`2∆ + ∆t||εn||2`2∆

{
1 + 4

∆t

∆x
+ ∆t

}
.

(49)
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with

Fa = ||un∆||2`∞
(

1 +
∆t

∆x

)
+ ||D+ (u∆)

n ||`∞
(

7 +
∆t

∆x

[
2c+

2

3
||en||`∞ +

3

2
||(u∆)n||`∞

])
+ ||D+(u∆)n||2`∞

[
√

2

√
∆t√
∆x

+
∆t2

∆x2

]
+ 1 + 2c2

∆t

∆x
, (50a)

Cb =

(
∆x

6
D+ (e)

n
j − c

)
(∆x− c∆t) , (50b)

Cc = ||(u∆)n||2`∞ +

{
||en||2`∞ [1 + ∆x] + 2||en||`∞ ||(u∆)n||`∞ +

2c

3
||en||`∞

}
− c2, (50c)

Ce = 2(1− θ)∆t

{
|| (u∆)

n ||`∞ + ||en||`∞ +
1

2
+

[
∆x

1
2−γ + ||en||`∞ + 9||en||2`∞∆xγ−

1
2

2

]}
−∆x, (50d)

Cf = ∆t

{
(1− 2θ) +

(1− θ)∆x2

2

[
c+

1

2
+

∆x
1
2−γ + ||en||`∞ + 9||en||2`∞∆xγ−

1
2

2

]}
− ∆x3

4
. (50e)

Remark 11. Corollary 3 is, in fact, true for all θ 6= 0 (if θ < 1
2 we have to add the dispersive CFL condition

hypothesis ∆t(1− 2θ) ≤ ∆x3

4 ), but we essentially use it for θ ≥ 1
2 .

Proof. We choose σ = 0 in Inequality (39).
• First, we upper bound ||en − (1 − θ)∆tD+D+D−(e)n||2

`2∆
in (39) by ||en + θ∆tD+D+D−(e)n||2

`2∆
thanks to

Proposition 5.
• We tranform Bb in (40b) into

Bb = Cb + (1− θ)∆t||D+(u∆)n||2`∞ ,

with
Cb =

(
∆x

6
D+ (e)

n
j − c

)
(∆x− c∆t) . (51)

The Bb-term in (39) thus is∑
j∈Z

∆x∆tBb
(
D+e

n
j

)2
=
∑
j∈Z

∆x∆tCb
(
D+e

n
j

)2
+ (1− θ)∆t2||D+u

n
∆||2`∞ ||D+e

n||2`2∆ . (52)

For any sequence (aj)j∈Z, the following Gagliardo-Nirenberg inequality

||D+(a)||2`2∆ ≤ ||a||`2∆ ||D+D−(a)||`2∆

is valid even with the `2∆-norm. We will use it on ||D+(e)n||2
`2∆

in (52), to obtain

(1− θ)∆t2||D+(u∆)n||2`∞ ||D+e
n||2`2∆ ≤ (1− θ)∆t2||D+(u∆)n||2`∞

||en||`2∆
√
θ∆t∆x||D+D−(e)n||`2∆√

θ∆t∆x
.

Proposition 4 enables to make ||Aen||2
`2∆
appear and

(1− θ)∆t2||D+(u∆)n||2`∞ ||D+e
n||2`2∆ ≤ (1− θ)∆t2||D+(u∆)n||2`∞

||en + θ∆tD+D+D−(e)n||2
`2∆√

θ∆t∆x

≤ (1− θ)√
θ

√
∆t√
∆x

∆t||D+(u∆)n||2`∞ ||en + θ∆tD+D+D−(e)n||2`2∆ .

• As a third step, we transform the Bd-term of (39) (recall that σ = 0):∑
j∈Z

∆x∆tBd
(
D+D−(e)nj

)2
=
∑
j∈Z

(1−θ)∆t2∆x
(
D+D−(e)nj

)2
+

(1− θ)
2θ

∆t||D+(u∆)n||`∞θ∆t∆x||D+D−(e)n||2`2∆ .
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Relation (28) allows to rewrite the term
∑
j∈Z(1− θ)∆t2∆x

(
D+D−(e)nj

)2:
∑
j∈Z

(1− θ)∆t2∆x
(
D+D−(e)nj

)2
=
∑
j∈Z

(1− θ)∆t2∆x
(
D+D(e)nj

)2
+
∑
j∈Z

(1− θ)∆t2∆x3

4

(
D+D+D−(e)nj

)2
.

Proposition 4 gives

(1− θ)
2θ

∆t||D+(u∆)n||`∞θ∆t∆x||D+D−(e)n||2`2∆ ≤
(1− θ)

2θ
∆t||D+(u∆)n||`∞ ||en + θ∆tD+D+D−(e)n||2`2∆ .

• Eventually, we focus on the Bf -term in (39). We decompose Bf into

Bf = Bg + ∆t2(1− θ)||D+(u∆)n||`∞

with

Bg = ∆t

{
(1− 2θ) +

(1− θ)∆x2

2

[
c+

∆x
1
2−γ + ||en||`∞ + 9||en||2`∞∆xγ−

1
2

2

]}
− ∆x3

4
(53)

which leads to the following inequality (thanks to Proposition 4):

∆tBf ||D+D+D−(e)n||2`2∆ = ∆tBg||D+D+D−(e)n||2`2∆ +
(1− θ)
θ2

∆t||D+(u∆)n||`∞ ||θ∆tD+D+D−(e)n||2`2∆

≤ ∆tBg||D+D+D−(e)n||2`2∆ +
(1− θ)
θ2

∆t||D+(u∆)n||`∞ ||en + θ∆tD+D+D−(e)n||2`2∆ .

Thanks to all the previous relations, we rewrite Inequality (39) as

||Aen+1||2`2∆ ≤||Ae
n||2`2∆ [1 + ∆tCa] + ∆tCb ||D+ (e)

n||2`2∆ + ∆t2Bc ||D (e)
n||2`2∆ + ∆t [Be + (1− θ)∆t] ||D+D (e)

n||2`2∆

+ ∆t

[
Bg + (1− θ)∆t∆x2

4

]
||D+D+D− (e)

n||2`2∆ + ∆t||εn||2`2∆

{
1 + 4

∆t

∆x
+ ∆t

}
,

with

Ca = ||un∆||2`∞
(

1 +
∆t

∆x

)
+ ||D+ (u∆)

n ||`∞
(

2− θ +
1− θ

2θ
+

1− θ
θ2

+
∆t

∆x

[
2c+

2

3
||en||`∞ +

3

2
||(u∆)n||`∞

])
+ ||D+(u∆)n||2`∞

[
(1− θ)√

θ

√
∆t√
∆x

+
∆t2

∆x2

]
+ 1 + 2c2

∆t

∆x
.

For θ ∈ [ 1
2 , 1], one has Ca ≤ Fa with Fa defined in (50a). Finally, we define Cc := Bc and Ce := Be + (1− θ)∆t

and Cf := Bg + (1− θ)∆t∆x2

4 .

Corollary 4 (Corollary of Proposition 2). Consider Scheme (2)-(3). Let (enj )(j,n) be the convergence error
defined by (10). Then, for every n ∈ J0, NK, γ ∈ [0, 1

2 ) and θ < 1
2 , one has, if ∆t(1− 2θ) ≤ ∆x3

4

||Aen+1||2`2∆ ≤ ||Ae
n||2`2∆ [1 + Fa∆t] + ∆tEb||D+(e)n||2`2∆ + ∆t2Ec||D(e)n||2`2∆ + ∆tEd||D+D−(e)n||2`2∆

+ ∆tEe||D+D(e)n||2`2∆ + ∆t||εn||2`2∆

{
1 + 4

∆t

∆x
+ ∆t

}
,

with

Fa = ||un∆||2`∞
(

1 +
∆t

∆x

)
+ ||D+ (u∆)

n ||`∞
(

7 +
∆t

∆x

[
2c+

2

3
||en||`∞ +

3

2
||(u∆)n||`∞

])
+ ||D+(u∆)n||2`∞

[
√

2

√
∆t√
∆x

+
∆t2

∆x2

]
+ 1 + 2c2

∆t

∆x
, (54a)
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Eb =

(
∆x

6
D+ (e)

n
j − c

)
(∆x− c∆t) + (1− θ)∆t||D+ (u∆)

n ||`∞ , (54b)

Ec = ||(u∆)n||2`∞ +

{
||en||2`∞ [1 + ∆x] + 2||en||`∞ ||(u∆)n||`∞ +

2c

3
||en||`∞

}
− c2, (54c)

Ed =
4

∆x2

{
∆t

[
(1− 2θ) +

(1− θ)∆x2

2

[
c+

∆x
1
2−γ + ||en||`∞ + 9||en||2`∞∆xγ−

1
2

2

]

+∆t(1− θ)||D+ (u∆)
n ||`∞ +

(1− θ)∆x2

4

{
||D+(u∆)n||`∞ +

∆x

2
||D− (u∆)

n ||`∞
}]
− ∆x3

4

}
, (54d)

Ee = 2(1− θ)∆t

{
|| (u∆)

n ||`∞ + ||en||`∞ +

[
∆x

1
2−γ + ||en||`∞ + 9||en||2`∞∆xγ−

1
2

2

]}
− 4∆t

∆x2

{
(1− 2θ)

1

1

+
(1− θ)∆x2

2

[
c+

∆x
1
2−γ + ||en||`∞ + 9||en||2`∞∆xγ−

1
2

2

]
+ ∆t(1− θ)||D+ (u∆)

n ||`∞
}
. (54e)

Remark 12. The variables Fa are identical in both previous corollaries. It is noticed that Corollary 4 is valid
for all θ but thereafter, it will be mainly used for θ < 1

2 .

Proof. We choose σ = 1 in Inequality (39).
• From Relation (28), we transform the Bf -term in Inequality (39) into

∑
j∈Z

∆t∆xBf
(
D+D+D−e

n
j

)2
=
∑
j∈Z

∆t∆xBf

[
4

∆x2

(
D+D−e

n
j

)2 − 4

∆x2

(
D+De

n
j

)2]
.

• We upper bound ||en − (1− θ)∆tD+D+D−(e)n||2
`2∆

by ||en + θ∆tD+D+D−(e)n||2
`2∆

thanks to Proposition 5,
to obtain, instead of Inequality (39),

||en+1 + θ∆tD+D+D−(e)n||2`2∆ ≤ ||e
n + ∆tθD+D+D−(e)n||2`2∆ [1 +Ba∆t+ ∆t] + ∆tBb||D+(e)n||2`2∆

+ ∆t2Bc||D(e)n||2`2∆ + ∆t

{
Bd +

4Bf
∆x2

}
||D+D−(e)n||2`2∆

+ ∆t

{
Be −

4Bf
∆x2

}
||D+D(e)n||2`2∆ + ∆t||εn||2`2∆

{
1 + 4

∆t

∆x
+ ∆t

}
.

We note Ea := Ba + 1 and verify Ea ≤ Fa. Finally, we fix Eb := Bb with σ = 1, Ec := Bc, Ed := Bd +
4Bf
∆x2

with σ = 1 and Ee := Be − 4Bf
∆x2 .

In the following, we will have to show that Ci and Ei are non-positive to loop the estimates.

5.3 Induction method
We are now able to prove, by induction, the main result for a smooth initial datum: Theorem 1.

Proof of Theorem 1. Let T > 0 and s ≥ 6 with u0 ∈ Hs(R). Let the Rusanov coefficient c be such that (12)
is true. This choice is possible because of Theorem 3 which proves that the exact solution belongs to L∞x for
t ∈ [0, T ].

Remark 13. Thanks to Hypothesis (12) : sup
t∈[0,T ]

||u(t, ·)||L∞(R) < c, there exists a constant α0 > 0 such that,

for all ∆t > 0, ∆x > 0 and for all n ∈ J0, NK,

||(u∆)n||`∞(Z) + α0 ≤ ||u∆||`∞(J0,NK;`∞(Z)) + α0 ≤ sup
t∈[0,T ]

||u(t, ·)||L∞(R) + α0 ≤ c.
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Let β0 ∈ (0, 1), θ ∈ [0, 1] and γ ∈ (0, 1
2 ). We fix ω̃0 > 0 such that

ω̃0 =

[
ΛT,‖u0‖

H
3
4

(
1 + ‖u0‖2

H
1
2

+η

)(‖u0‖H6

c+ 1
2

+ ‖u0‖H4 + ‖u0‖
H

3
2

+η‖u0‖H1

)]− 1
γ

, (55)

with ΛT,‖u0‖
H

3
4

defined in (15).

We also fix ω0 > 0 such that following Inequalities (56) and (57a)-(57d) if θ ≥ 1
2 and following Inequalities (56)

and (58a)-(58d) if θ < 1
2 are verified

ω
1
2−γ
0 ≤ 3c, (56)

• for θ ≥ 1
2 , 

ω
1
4−

γ
2

0

√[
ω

1
2−γ
0 + ω

3
2−γ
0

]
+ 2 sup

t∈[0,T ]

||u(t, ·)||L∞(R) +
2c

3
≤ α0, (57a)

13(1− β0)

2c+ 1
ω

1
2−γ
0 ≤ β0, (57b)

(1− 2θ) +
(1− θ)ω2

0

2

[
c+

1

2
+

11

2
ω

1
2−γ
0

]
≤ 0, if θ >

1

2
, (57c)

11(1− β0)

2c+ 1
ω

1
2−γ
0 ≤ β0, if θ =

1

2
, (57d)

• for θ < 1
2 ,

ω
1
4−

γ
2

0

√[
ω

1
2−γ
0 + ω

3
2−γ
0

]
+ 2 sup

t∈[0,T ]

||u(t, ·)||L∞(R) +
2c

3
≤ α0, (58a)

12ω
1
2−γ
0 ≤ α0, (58b)

(1− θ)(1− β0)

2(1− 2θ)c
||(u∆)n||`∞ω0 +

(1− β0)

3c+ 3
2

ω
1
2−γ
0 +

ω
1
2−γ
0

3c
≤ β0, (58c)

(1− θ)(1− β0)

2(1− 2θ)
ω2

0

[
c+

11

2
ω

1
2−γ
0

]
+ (1− θ)||(u∆)n||`∞

(1− β0)

(1− 2θ)

[
(1− β0)

2(1− 2θ)
ω2

0 +
ω0(2 + ω0)

4

]
≤ β0.(58d)

Remark 14. These conditions on ω0 are very likely not optimal.

Let us prove by induction on n ∈ J0, NK that

if ∆x ≤ min(ω̃0, ω0) and if CFL conditions (13a)− (13b) hold, one has ||en||`∞ ≤ ∆x
1
2−γ , for all n ∈ J0, NK

Initialization : For n = 0, the inequality ||e0||`∞ ≤ ∆x
1
2−γ is true because Expressions (3) and (8) imply

e0
j = 0, j ∈ Z.

Heredity : Let us assume that

if ∆x ≤ min(ω̃0, ω0) and if CFL conditions (13a)− (13b) hold, one has ||ek||`∞ ≤ ∆x
1
2−γ , for all k ≤ n. (59)

Then our goal is to prove that

if ∆x ≤ min(ω̃0, ω0) and if CFL conditions (13a)− (13b) hold, one has ||en+1||`∞ ≤ ∆x
1
2−γ .
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Step 1 : simplification of Corollaries 3 and 4. Let us prove in this first step that ∆x ≤ min(ω̃0, ω0)
and CFL conditions (13a)-(13b) imply the non-positivity of extra terms Ci and Ei in Corollaries 3 and 4. We
dissociate two cases according to the value of θ.

case θ ≥ 1
2 :

We show the non-positivity of coefficients Ci in Corollary 3, for i ∈ {b, c, e, f}.

• Sign of Cb: We get by developing D+(e)nj

∆x

6
D+ (e)

n
j ≤
||en||`∞

3
.

However, by induction hypothesis, one has ∆x ≤ ω0 (with ω0 verifying, among others, Inequality (56))
and ||en||`∞ ≤ ∆x

1
2−γ . It gives

||en||`∞
3

≤ ∆x
1
2−γ

3
≤ ω

1
2−γ
0

3
≤ c.

Due to the CFL condition (13b), one has

∆x− c∆t ≥ 0.

Thus, Cb ≤ 0.

• Sign of Cc: For the term Cc, thanks to the hypothesis ||en||`∞ ≤ ∆x
1
2−γ , we obtain

Cc ≤ ||(u∆)n||2`∞ +

{[
∆x1−2γ + ∆x2−2γ

]
+ 2∆x

1
2−γ ||(u∆)n||`∞ +

2c∆x
1
2−γ

3

}
− c2.

As c ≥ α0 + || (u∆)
n ||`∞ (see Remark 13) and ∆x ≤ ω0 (with ω0 satisfying Inequality (57a)) by induction

hypothesis, one has

Cc ≤ ||(u∆)n||2`∞ +

{[
ω1−2γ

0 + ω2−2γ
0

]
+ 2ω

1
2−γ
0 ||(u∆)n||`∞ +

2cω
1
2−γ
0

3

}
− c2 ≤ 0.

• Sign of Ce: since we suppose ||en||`∞ ≤ ∆x
1
2−γ , the term Ce satisfies

Ce ≤ 2(1− θ)∆t
{
||(u∆)n||`∞ +

1

2
+

13

2
∆x

1
2−γ

}
−∆x.

As θ ≥ 1
2 , then 2(1− θ) ≤ 1, and, thanks to the choice of c (12), one has

Ce ≤ ∆t

{
c+

1

2
+

13

2
∆x

1
2−γ

}
−∆x = ∆x

{
∆t

∆x

[
c+

1

2

]
− 1 +

13

2

∆t

∆x
∆x

1
2−γ

}
.

Using ∆x ≤ ω0 and using hyperbolic CFL (13b), one has

13

2

∆t

∆x
∆x

1
2−γ ≤ 13

2

(1− β0)

c+ 1
2

∆x
1
2−γ ≤ 13(1− β0)

2c+ 1
ω

1
2−γ
0

which is less than β0 thanks to Inequality (57b). Thus one has

Ce ≤ 0.

• Sign of Cf : the dispersive CFL-type condition (13a) together with hypothesis ||en||`∞ ≤ ∆x
1
2−γ give

Cf ≤ ∆t

{
(1− 2θ) +

(1− θ)∆x2

2

[
c+

1

2
+

11

2
∆x

1
2−γ

]}
− ∆x3

4
,

which is non-positive if ∆x ≤ ω0. Indeed,
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– if θ > 1
2 , one has chosen ω0 such that

(1− 2θ) +
(1− θ)

2
∆x2

[
c+

1

2
+

11

2
∆x

1
2−γ

]
≤ (1− 2θ) +

(1− θ)
2

ω2
0

[
c+

1

2
+

11

2
ω

1
2−γ
0

]
≤ 0,

thanks to Inequality (57c),

– if θ = 1
2 ,

Cf ≤
∆t∆x2

4

[
c+

1

2
+

11

2
∆x

1
2−γ

]
− ∆x3

4
=

∆x3

4

{
∆t

∆x

[
c+

1

2

]
− 1 +

11∆t

2∆x
∆x

1
2−γ

}
,

and Condition (13b) together with ∆x ≤ ω0 for ω0 verifying Inequality (57d) enable us to conclude
about the non-positivity of Cf .

case θ < 1
2 :

In the same way, from Corollary 4, we show the non-positivity of Ei, for i ∈ {b, c, d, e}.

• Sign of Eb: one has, by definition of Eb and by hypothesis ||en||`∞ ≤ ∆x
1
2−γ

Eb ≤
(

∆x

6
D+ (e)

n
j − c

)
(∆x− c∆t) + 2(1− θ) ∆t

∆x
||(u∆)n||`∞

≤ ∆x||en||`∞
3

+
c∆t||en||`∞

3
− c∆x+ c2∆t+ 2(1− θ) ∆t

∆x
||(u∆)n||`∞

≤ c

[
c∆t

(
1 +

∆x
1
2−γ

3c

)
−∆x

(
1− ∆x

1
2−γ

3c
− 2(1− θ) ∆t

∆x2c
||(u∆)n||`∞

)]

≤ c∆x

[
c

∆t

∆x
+

∆t

∆x

∆x
1
2−γ

3
− 1 +

∆x
1
2−γ

3c
+ 2(1− θ) ∆t

∆x2c
||(u∆)n||`∞

]
.

The hyperbolic CFL condition (13b) and the dispersive one (13a) (we recall that 1− 2θ > 0 in that case)
imply

Eb ≤ c∆x

[
1− β0 +

(1− β0)∆x
1
2−γ

3c+ 3
2

− 1 +
∆x

1
2−γ

3c
+ (1− θ)∆x(1− β0)

2c(1− 2θ)
||(u∆)n||`∞

]
.

The choice of ω0 small enough to satisfy Inequalities (58c) implies Eb ≤ 0.

• Sign of Ec: since Ec = Cc, we follow exactly the same proof as for θ ≥ 1
2 to show Ec ≤ 0.

• Sign of Ed: thanks to Definition (54d), one has

Ed =
4

∆x2

{
∆t

[
(1− 2θ) +

(1− θ)∆x2

2

[
c+

∆x
1
2−γ + ||en||`∞ + 9||en||2`∞∆xγ−

1
2

2

]

+∆t(1− θ)||D+ (u∆)
n ||`∞ +

(1− θ)∆x2

4

{
||D+(u∆)n||`∞ +

∆x

2
||D− (u∆)

n ||`∞
}]
− ∆x3

4

}
Since ||en||`∞ ≤ ∆x

1
2−γ , it becomes, thanks to dispersive CFL (13a),
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Ed = ∆x

{
4∆t

∆x3
(1− 2θ) +

2∆t

∆x
(1− θ)

[
c+

11∆x
1
2−γ

2

]

+8
∆t2

∆x4
(1− θ)||un∆||`∞ + 2(1− θ) ∆t

∆x2
||un∆||`∞ + (1− θ) ∆t

∆x
||un∆||`∞ − 1

}
≤ ∆x

{
4∆t

∆x3
(1− 2θ) +

∆x2(1− β0)

2(1− 2θ)
(1− θ)

[
c+

11∆x
1
2−γ

2

]
+

(1− β0)2∆x2

2(1− 2θ)2
(1− θ)||un∆||`∞

+(1− θ) (1− β0)∆x

2(1− 2θ)
||un∆||`∞ + (1− θ)∆x2(1− β0)

4(1− 2θ)
||un∆||`∞ − 1

}
= ∆x

{
4∆t

∆x3
(1− 2θ) +

∆x2(1− β0)

2(1− 2θ)
(1− θ)

[
c+

11∆x
1
2−γ

2

]

+(1− θ)||un∆||`∞
(1− β0)

(1− 2θ)

[
(1− β0)

2(1− 2θ)
∆x2 +

∆x(2 + ∆x)

4

]
− 1

}
Thanks to ∆x ≤ ω0, with ω0 verifying (58d) and thanks to the CFL condition (13a), one has

Ed ≤ 0.

• Sign of Ee: we develop Ee to obtain

Ee ≤ 2(1− θ)∆t
{
||(u∆)n||`∞ +

13

2
∆x

1
2−γ

}
− 4∆t

∆x2
(1− 2θ)− 2(1− θ)∆t

[
c− 11∆x

1
2−γ

2

]

− 8∆t2

∆x3
(1− θ)|| (u∆)

n ||`∞

≤ 2(1− θ)∆t
{
||(u∆)n||`∞ + 12∆x

1
2−γ − c

}
− 4∆t

∆x2

[
(1− 2θ) +

2∆t

∆x
(1− θ)||(u∆)n||`∞

]
.

Since θ < 1
2 , one has 1 − 2θ > 0 then − 4∆t

∆x2

[
(1− 2θ) + 2∆t

∆x (1− θ)||(u∆)n||`∞
]
≤ 0. The hypothesis

∆x ≤ ω0, with ω0 satisfying (58b) and the choice of c (12) give Ee ≤ 0.

all in all :
We have proved that, under the induction hypothesis, the following equality holds, for all θ ∈ [0, 1]

||Aen+1||2`2∆ ≤ ||Ae
n||2`2∆ {1 + ∆tFa}+ ∆t||εn||2`2∆

{
1 + 4

∆t

∆x
+ ∆t

}
, (60)

with Fa defined by (50a).

Step 2 : From en to en+1 thanks to discret Grönwall lemma. By splitting Fa and using the first
inequality of (18) to upper bound ∆t||D+ (u∆)

n ||`∞ and ∆t||D+ (u∆)
n ||2`∞ , Inequality (60) becomes

||Aen+1||2`2∆ ≤ ||Ae
n||2`2∆

{
1 + ∆tFnb +

2∑
i=1

(∫ tn+1

tn
||∂xu(s, .)||iL∞x ds

)
Fnc,i

}
+ ∆t||εn||2`2∆

{
1 + 4

∆t

∆x
+ ∆t

}
,

with
Fnb =

[
||un∆||2`∞

(
1 +

∆t

∆x

)
+ 1 + 2c2

∆t

∆x

]
≤
[
1 + ||u∆||2`∞n `∞(1 +

∆t

∆x
) + 2

∆t

∆x
c2
]

and

Fnc,1 =

[
7 +

∆t

∆x

(
2c+

2

3
∆x

1
2−γ +

3

2
||(u∆)n||`∞

)]
≤
[
7 +

∆t

∆x

(
2c+

2

3
∆x

1
2−γ +

3

2
||u∆||`∞`∞n

)]
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and

Fnc,2 =

[
√

2

√
∆t√
∆x

+
∆t2

∆x2

]
.

Due to the CFL condition, we have, denoting by C a number independent of c, un∆, ∆t and ∆x

Fnb ≤ C
(

1 + c2
(

1 +
∆t

∆x

))
=: Fb, (61)

Fnc,1 ≤ C
(

1 +
∆t

∆x
[1 + c]

)
=: Fc,1 (62)

and

Fnc,2 =

[
√

2

√
∆t√
∆x

+
∆t2

∆x2

]
=: Fc,2. (63)

We can now apply a discrete Grönwall Lemma (noticing that e0
j = 0, j ∈ Z). It provides, for every

n ∈ J0, N − 1K,

||Aen+1||2`2∆ ≤ exp

(
tn+1Fb +

2∑
i=1

∫ tn+1

0

||∂xu(s, .)||iL∞x (R)Fc,i

)
sup

n∈J0,NK
||εn||2`2∆T

{
1 + 4

∆t

∆x
+ ∆t

}
. (64)

Finally, Theorem 3 and Proposition 1 give, for 0 < η ≤ 6− 3
2 ,

||Aen+1||2`2∆ ≤M
2
(

1 + ‖u0‖2
H

1
2

+η

)2
{

∆t2‖u0‖2H6 + ∆x2
[
‖u0‖2H4 + ‖u0‖2

H
3
2

+η
‖u0‖2H1

] 1

1

}
, (65)

with

M2 = exp
(
TFb + ‖u0‖

H
3
4
C 3

4
e
κ 3

4
T
[
Fc,1T

3
4 + Fc,2T

1
2

])
C2e2κTT

{
1 + 4

∆t

∆x
+ ∆t

}
≤ exp

(
C
(
1 + c2

)(
1 +

∆t2

∆x2

)(
T + (T

3
4 + T

1
2 )||u0||

H
3
4
e
κ 3

4
T
))

C2e2κTT

{
1 +

∆t

∆x

}
,

with C independent of u0 and κ, κ 3
4
dependent only on ||u0||L2 . Thanks to the CFL condition (13b), an upper

bound for M is
M2 ≤ Λ2

T,||u0||
H

3
4

with

Λ2
T,||u0||

H
3
4

= exp

(
C
(
1 + c2

)(
1 +

(1− β0)2

(c+ 1
2 )2

)(
T + (T

3
4 + T

1
2 )||u0||

H
3
4
e
κ 3

4
T
))

C2e2κTT

{
1 +

1− β0

c+ 1
2

}
.

Since ||en+1||2
`2∆
≤ ||Aen+1||2

`2∆
(Proposition 3), Inequality (65) gives

||en+1||2`2∆ ≤ Λ2
T,‖u0‖

H
3
4

(
1 + ‖u0‖2

H
1
2

+η

)2 {
∆t2‖u0‖2H6 + ∆x2

[
‖u0‖2H4 + ‖u0‖2

H
3
2

+η
‖u0‖2H1

]}
≤ Λ2

T,‖u0‖
H

3
4

(
1 + ‖u0‖2

H
1
2

+η

)2
(
‖u0‖2H6(
c+ 1

2

)2 + ‖u0‖2H4 + ‖u0‖2
H

3
2

+η
‖u0‖2H1

)
∆x2,

(66)

where the last inequality is obtained thanks to the CFL condition (13b).

Conclusion : It remains to verify the induction hypothesis (59) at step n+1. The definition of the `2∆-norm,
Identity (7), together with the inclusion `2 ⊂ `∞, holds

||en||`∞ ≤
||en||`2∆√

∆x
.

28



According to the upper bound (66), the `∞-norm is bounded as follow

||en+1||`∞ ≤ ΛT,‖u0‖
H

3
4

(
1 + ‖u0‖2

H
1
2

+η

)(‖u0‖H6

c+ 1
2

+ ‖u0‖H4 + ‖u0‖
H

3
2

+η‖u0‖H1

)√
∆x.

The choice of a small ∆x satisfying ∆x ≤ min(ω̃0, ω0) with ω̃0 defined in (55) implies thus ||en+1||`∞ ≤
∆x

1
2−γ . The induction hypothesis is then true for n+ 1.

Thus, we have proved Equation (14) with ΛT,||u0||
H

3
4

defined by (15) and ω̂0 = min(ω0, ω̃0).

Remark 15. The choice of a time average in the definition of u∆, Equation (9), is dictated by the dis-
crete Grönwall Lemma on (64). Indeed, applying discrete Grönwall Lemma introduces the following term∑N
n=0 ∆t||D+ (u∆)

n ||i`∞ which is controlled thanks to the estimate (18), where the time integral plays a crucial
role.
Regarding the space average in the definition of u∆, its necessity comes from controlling the sum on j ∈ Z in
the consistency estimates (75).

Remark 16. This method is a process to find the CFL condition which suits also for the Airy equation

∂tu(t, x) + ∂3
xu(t, x) = 0, (t, x) ∈ [0, T ]× R,

with the finite difference scheme

vn+1
j − vnj

∆t
+ θ

vn+1
j+2 − 3vn+1

j+1 + 3vn+1
j − vn+1

j−1

∆x3
+ (1− θ)

vnj+2 − 3vnj+1 + 3vnj − vnj−1

∆x3
= 0. (67)

The analogue of Equation (39) is here

∑
j∈Z

∆x
(
en+1
j + θ∆tD+D+D− (e)

n+1
j

)2

≤ {1 + ∆t}
∑
j∈Z

(
enj + θ∆tD+D+D− (e)

n
j

)2

+
∑
j∈Z

∆x∆t {1 + ∆t}
{

(1− 2θ)∆t− ∆x3

4

}
︸ ︷︷ ︸

CAiry
f

[
D+D+D− (e)

n
j

]2
+
∑
j∈Z

∆x∆t {1 + ∆t}
(
εnj
)2
.

Imposing CAiry
f ≤ 0 (which corresponds to Step 1 in the previous proof of Theorem 1) leads to

∆t(1− 2θ) ≤ ∆x3

4
.

This so-called Courant-Friedrichs-Lewy condition, in the case θ = 0, is exactly the one which is obtained in
[Men83] with a computation of the zeros of the amplification factor in [Men83] and the one obtained by the
Fourier method. Indeed, the amplification factor obtained by Fourier analysis on Airy equation is

1− 8 (1−θ)∆t
∆x3 sin4(πξ)− 8i (1−θ)∆t

∆x3 sin3(πξ) cos(πξ)

1 + 8 θ∆t∆x3 sin4(πξ) + 8i θ∆t∆x3 sin3(πξ) cos(πξ)
, ξ ∈ (0, 1).

Requiring that its modulus is less than 1 yields

∆t sin2(πξ)(1− 2θ) ≤ ∆x3

4
, for all ξ ∈ (0, 1).
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Remark 17. For a Rusanov finite difference scheme applied to the non-linear term of the KdV equation: the
Burgers equation

∂tu(t, x) + ∂x

(
u2

2

)
(t, x) = 0, (t, x) ∈ [0, T ]× R,

which corresponds to the discrete equation

vn+1
j − vnj

∆t
+

(
vnj+1

)2 − (vnj−1

)2
4∆x

= c

(
vnj+1 − 2vnj + vnj−1

2∆x

)
, (n, j) ∈ J0, NK× Z, (68)

the analogue of Equation (39) would be

||en+1||2`2∆ ≤ ||e
n||2`2∆

{
1 + ∆tFBurgers

a

}
+
∑
j∈Z

∆x∆tCBurgers
b

[
D+ (e)

n
j

]2
+
∑
j∈Z

∆x∆t2CBurgers
c

[
D (e)

n
j

]2
+
∑
j∈Z

∆x∆t
(
εnj
)2{

4
∆t

∆x
+ ∆t

}
,

with

FBurgers
a = ||un∆||2`∞ + ||D+ (u∆)

n ||`∞
(

1 +
∆t

∆x

[
2c+

2

3
||en||`∞ +

3

2
||un∆||`∞

])
+

∆t2

∆x2
||D+ (u∆)

n ||2`∞ +
∆t

∆x

(
||(u∆)n||2`∞ + 2c2

)
,

CBurgers
b =

(
∆x

6
D+ (e)

n
j − c

)
(∆x− c∆t) ,

and
CBurgers
c = ||en||2`∞ [1 + ∆x] + ||un∆||2`∞ − c2 + 2||en||`∞ ||un∆||`∞ +

2c

3
||en||`∞ .

Therefore, for u0 ∈ H
3
2 (R) and for ∆x small enough, the well-known CFL condition is verified

c∆t ≤ ∆x,

(thanks to the condition CBurgers
b ≤ 0) and the well-known condition for the Rusanov coefficient is verified

||un∆||`∞ < c,

(thanks to the condition CBurgers
c ≤ 0).

Remark 18. For Burgers equation, we know a natural bound for the convergence error: thanks to the maximum
principle one has ||en||`∞ ≤ 2||u0||L∞ .

6 Convergence for less smooth initial data

In this section, we relax the hypothesis u0 ∈ H6(R) and adapt the previous proof for any solution in H
3
4 (R) to

obtain Theorem 2. When u0 is not smooth enough to verify u0 ∈ H6(R), we regularize it thanks to mollifiers(
ϕδ
)
δ>0

, as explained in Introduction. Recall that we denote the mollifiers by (ϕδ)δ>0, whose construction is
based on χ a C∞-function such that χ ≡ 1 on [− 1

2 ,
1
2 ], χ is supported in [−1, 1] and χ(ξ) = χ(−ξ). We denote

the exact solution from u0 by u, the exact solution from u0 ? ϕ
δ by uδ and the numerical solution from (16) by

(vnj )(n,j)∈J0,NK×Z.
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6.1 Approximation results
We need to quantify the dependence of the Sobolev norms of the solution uδ on δ. That result is gathered in
Proposition 6 whose proof needs the following lemma.

Lemma 9. Assume (m, s) ∈ R2 with m ≥ s ≥ 0. There exists a constant C > 0 such that, if u0 ∈ Hs(R) and
δ > 0 and uδ0 is such as uδ0 = u0 ? ϕ

δ, then

||uδ0||Hm(R) ≤
C

δm−s
||u0||Hs(R). (69)

Proof. According to (6), the Hm(R)-norm of uδ0 verifies

||u0 ? ϕ
δ||2Hm(R) =

∫
R

(
1 + |ξ|2

)m |χ (δξ) |2|û0 (ξ) |2dξ

≤
∫
R

(
1 + |ξ|2

)s |û0|2
(
1 + |ξ|2

)m−s |χ (δξ) |2dξ.

By hypothesis on χ and its support, one has |χ (δξ) | ≤ 1 and there exists a constant C > 0 such that(
1 + |ξ|2

)m−s |χ(δξ)|2 ≤ C
δ2(m−s) , which concludes the proof.

We are now able to estimate the Sobolev norms of uδ.

Proposition 6. Assume m ≥ s ≥ 0 and u0 ∈ Hs(R) then,

sup
t∈[0,T ]

||uδ(t, .)||Hm(R) ≤ CeκmT
||u0||Hs(R)

δm−s
,

where C is a number which depends on m and κm depends on ‖u0‖L2 and m. Both are independent of δ.

Proof. We combine Theorem 3 and Lemma 9.

We need then to know the rate of convergence of uδ0 toward u0 with respect to δ (as δ tends to 0), which is
summarized as follows.

Lemma 10. Assume u0 ∈ Hs(R) with 0 ≤ ` ≤ s, then, there exists a number C independent of δ such that

||u0 − uδ0||H`(R) ≤ Cδs−`||u0||Hs(R).

Proof. By definition of the H`(R)-norm, we have, for s ≥ ` :

||u0 − uδ0||2H`(R) =

∫
R

(1 + |ξ|2)`|û0(ξ)|2 (1− χ(δξ))
2
dξ

= δ2(s−`)
∫
R

(1 + |ξ|2)`|û0(ξ)|2
(

1− χ(δξ)

(δξ)s−`

)2

ξ2(s−`)dξ.

Hypothesis on χ implies that sup
z∈R

∣∣∣ 1−χ(z)
zs−`

∣∣∣ ≤ C2 for a certain constant C2. Hence, by using the inequality

(1 + |ξ|2)`|ξ|2(s−`) ≤ C(1 + |ξ|2)s, with C a constant,

||u0 − uδ0||2H`(R) ≤ δ
2(s−`)CC2

2

∫
R

(
1 + |ξ|2

)s |û0(ξ)|2dξ

≤ CC2
2δ

2(s−`)||u0||2Hs(R).
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6.2 Proof of Theorem 2
Let s ≥ 3

4 . Assume u0 ∈ Hs(R), T > 0 and c such that (12) is true, which implies the existence of α0 as in
Remark 13. We construct uδ0 = u0 ? ϕ

δ as previously.
Let β0 ∈ (0, 1), θ ∈ [0, 1] and (vnj )(n,j)∈J0,NK×Z the unknown of the numerical scheme (2)-(16). Thanks to
Theorem 1, there exists ω̂0 > 0 such that for every ∆x ≤ ω̂0 and ∆t satisfying CFL conditions (13a)-(13b), one
has

||vn − (uδ∆)n||`2∆ ≤ ΛT,‖uδ0‖
H

3
4

(
1 + ‖uδ0‖2

H
1
2

+η

)(‖uδ0‖H6

c+ 1
2

+ ‖uδ0‖H4 + ‖uδ0‖H 3
2

+η‖uδ0‖H1

)
∆x,

with ΛT,‖uδ0‖
H

3
4

defined by (15).

Remark 19. Thanks to Theorem 1, ω̂0 is such that ω̂0 ≤ ω̃0 with

ω̃0 =

[
ΛT,‖uδ0‖

H
3
4

(
1 + ‖uδ0‖2

H
1
2

+η

)(‖uδ0‖H6

c+ 1
2

+ ‖uδ0‖H4 + ‖uδ0‖H 3
2

+η‖uδ0‖H1

)]− 1
γ

, (70)

where ΛT,‖uδ0‖
H

3
4

is defined in (15).

By using a triangle inequality between the analytical solution starting from u0 and the one starting from
uδ0, the global error is upper bounded by

||en||`2∆ = ||vn − (u∆)n||`2∆ ≤
√

[B1]n +
√

[B2]n,

with

[B1]n =
∑
j∈Z

∆x

(
1

∆x[inf(tn+1, T )− tn]

∫ inf(tn+1,T )

tn

∫ xj+1

xj

u(s, x)− uδ(s, x)dxds

)2

=
∑
j∈Z

∆x
(

(u∆)
n
j − [uδ∆]nj

)2

,

with the notation (9), and

[B2]n =
∑
j∈Z

∆x

(
1

∆x[inf(tn+1, T )− tn]

∫ inf(tn+1,T )

tn

∫ xj+1

xj

uδ(s, x)dxds− vnj

)2

=
∑
j∈Z

∆x
(
[uδ∆]nj − vnj

)2
.

Let us first focus on term [B1]n. The Cauchy-Schwarz inequality implies [B1]n ≤ sup
t∈[0,T ]

||u(t, .)−uδ(t, .)||2L2(R),

which imposes to study the difference between u and uδ.
Since u and uδ are two solutions of the initial equation (1a), one has

∂t
(
u− uδ

)
+ ∂3

x

(
u− uδ

)
+ u∂x

(
u− uδ

)
+
(
u− uδ

)
∂xu

δ = 0.

Multiplying by
(
u− uδ

)
, integrating the equation and changing uδ in u− (u− uδ) in the latest term yield

d

dt

∫
R

(
u(t, x)− uδ(t, x)

)2
2

dx−
∫
R
∂xu(t, x)

(
u(t, x)− uδ(t, x)

)2
2

dx

+

∫
R

(
u(t, x)− uδ(t, x)

)2
∂x
[
u(t, x)−

(
u(t, x)− uδ(t, x)

)]
dx = 0,

thus
d

dt

||u(t, .)− uδ(t, .)||2L2(R)

2
≤
||∂xu(t, .)||L∞(R)

2
||u(t, .)− uδ(t, .)||2L2(R).

The previous inequality looks like the ’weak-strong uniqueness’ of DiPerna [DiP79] or Dafermos [Daf79, Daf10].
The L2(R)-norm of the difference u− uδ is then upper bounded by

||u(t, .)− uδ(t, .)||2L2(R) ≤ exp
(∫ t

0

||∂xu(s, .)||L∞(R)

2
ds

)
||u0 − uδ0||2L2(R)

≤ exp

T 3
4C 3

4
e
κ 3

4
T

2
‖u0‖

H
3
4

 ||u0 − uδ0||2L2(R),
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where κ 3
4
and C 3

4
are defined in Theorem 3. Then

[B1]n ≤ sup
t∈[0,T ]

||u(t, .)− uδ(t, .)||2L2(R) ≤ exp

T 3
4C 3

4
e
κ 3

4
T

2
‖u0‖

H
3
4

 ||u0 − uδ0||2L2(R).

Lemma 10 implies

[B1]n ≤ C2δ2s||u0||2Hs(R)exp

T 3
4C 3

4
e
κ 3

4
T

2
‖u0‖

H
3
4

 . (71)

In the other hand, the term [B2]n corresponds to the estimate (66) derived in Subsection 5.3 with a smooth
initial datum. It remains us to quantify the dependency of it upper bound with respect to δ. Thanks to Theorem
1, one has √

[B2]n ≤ ΛT,‖uδ0‖
H

3
4

(
1 + ‖uδ0‖2

H
1
2

+η

)(‖uδ0‖H6

c+ 1
2

+ ‖uδ0‖H4 + ‖uδ0‖H 3
2

+η‖uδ0‖H1

)
∆x,

with ΛT,‖uδ0‖
H

3
4

defined by (15). As u0 belongs to Hs(R) with s ≥ 3
4 , then ||uδ0||H 3

4
= ||u0||

H
3
4

and

||uδ0||H 1
2

+η = ||u0||
H

1
2

+η .

Lemma 11. For every s ≥ 3
4 , there exists C, depending only on s and on ‖u0‖L2 , such that, if u0 ∈ Hs(R),

‖uδ0‖H6

c+ 1
2

+ ‖uδ0‖H4 + ‖uδ0‖H 3
2

+η‖uδ0‖H1 ≤ ‖u0‖Hs
δ6−s C

(
1

c+ 1
2

+ 1 + ‖u0‖Hmin(1,s)

)
.

Proof. We apply Lemma 9 with s = 6, 4, 3
2 + η, 1 and the biggest power of δ is 1

δ6−s .

Thus, an upper bound for [B2]n is√
[B2]n ≤ ΛT,‖u0‖

H
3
4

(
1 + ‖u0‖2

H
1
2

+η

)( 1

c+ 1
2

+ 1 + ‖u0‖Hmin(1,s)

)
C
‖u0‖Hs
δ6−s ∆x.

However, for Theorem 1 to be applied, we need to choose a small ∆x such that ∆x ≤ ω̂0 ≤ ω̃0 where ω̃0 is
defined by (70). With the above lemma, this condition rewrites

∆x ≤
[
ΛT,‖u0‖

H
3
4

(
1 + ‖u0‖2

H
1
2

+η

)( 1

c+ 1
2

+ 1 + ‖u0‖Hmin(1,s)

)
C
‖u0‖Hs
δ6−s

]− 1
γ

=

(
C̃

δ6−s

)− 1
γ

. (72)

Hence, if ∆x ≤
(

C̃
δ6−s

)− 1
γ

, with C̃ > 0 a constant depending on T , c, β0, ||u0||Hs and ||u0||
H

3
4
and if CFL

conditions (13a)-(13b) are verified, the convergence error (enj )(n,j) is upper bounded by

||en||`2∆

≤ C

ΛT,‖u0‖
H

3
4

(
1 + ‖u0‖2

H
1
2

+η

)( 1

c+ 1
2

+ 1 + ‖u0‖Hmin(1,s)

)
+ exp

T 3
4C 3

4
e
κ 3

4
T

4
‖u0‖

H
3
4

 ‖u0‖Hs
[

∆x

δ6−s + δs
]
,

(73)

for n ∈ J0, NK.

The final key point is to find the optimal δ, in other words, the parameter δ which makes both terms δs,
coming from

√
[B1]n and ∆x

δ6−s coming from
√

[B2]n in (73) equal while respecting the constraint (72). Defining
δ = ∆xa summarizes the problem in the following system

Find a such that : ∆xas =
∆x

∆xa(6−s) ,

under the constraint :
1

∆xa(6−s) <
1

∆xγ
.

Three cases have to be considered:
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• if 3
4 ≤ s ≤ 6 − 6γ, the constraint is binding and we have to choose a which transforms the constraint

inequality in an equality : a = γ
6−s . In that case, the rate of convergence is given by the smallest term

between ∆xas and ∆x
∆xa(6−s) i.e. ∆x

γs
6−s .

• If 6−6γ ≤ s ≤ 6, a = 1
6 enables both terms ∆xas and ∆x

∆xa(6−s) to be equal without violating the constraint.
This choice of a gives a rate of convergence of ∆x

s
6 .

• If s ≥ 6, the result of the Theorem 1 applies.

Since γ is in (0, 1
2 ) (cf. Lemma 7 and induction hypothesis (59)), we take the optimal γ : γ = 1

2 − η with η
small and η > 0. The conclusion of the theorem is straightforward consequence.

Remark 20. The choice of δ is independent of the regularity s of the initial datum, if 3 ≤ s ≤ 6.

7 Numerical results
In this section, the previous results are illustrated numerically by some examples and the numerical convergence
rates are computed for the KdV equation.

7.1 Convergence rates
Through the rest of the paper, the computations are performed with an implicit scheme θ = 1 in order to avoid
the dispersive CFL condition. Our purpose is to gauge the relevance of our theoretical results on the rate of
convergence with respect to ∆x. To this end, the time step is chosen according to the hyperbolic CFL condition.
More precisely, c is numerically chosen such that cn = max |vkj |

k∈J0,nK,j∈J1,JK
and ∆tn = ∆x

cn . This choice seems surprising

related to the CFL of Theorems 1 and 2 but, as explain in Remark 4, the condition [c + 1
2 ]∆t < ∆x seems

technical and may be replaced by the classical one c∆t ≤ ∆x. Eventually, we fix the final time T = 0.1.
We can not simulate numerical solutions on Z as done in the theoretical results. We have to take into account

numerical boundaries: we use periodic initial data. We fix the space domain to [0, L] with L = 50 (except for
cnoidal wave where L = 1) and fix J = b L∆xc.

Remark 21. Notice that the theoretical results do not apply rigorously since the solutions do not belong to
Hs(R) because of their periodicity.

The convergence rate rJ is computed with

rJ =
log (EJ)− log (E2J)

log(2)
.

When the exact solution is known (e.g. for the cnoidal-wave solution), the variable EJ corresponds to the
following difference

EJ = sup
n∈J0,NK

||
(
enj
)
j∈ J0,JK ||`2∆ = sup

n∈J0,NK

∣∣∣∣∣∣∣∣(vnj )j∈J0,JK −
(

[u∆]
n
j

)
j∈ J0,JK

∣∣∣∣∣∣∣∣
`2∆

,

with (vnj )j∈J0,JK the numerical solution computed with J cells in space and
(

[u∆]
n
j

)
j∈ J0,JK

the J-piecewise

constant function from the analytical solution. However, for test cases with an unknown exact solution, the
convergence error is computed from two numerical solutions with a different mesh and EJ is replaced by the
following ẼJ

ẼJ = sup
n∈J0,NK

∣∣∣∣∣∣(vnj )j∈J0,JK −
(
ṽnj
)
j∈J0,JK

∣∣∣∣∣∣ .
Previously, ṽnj := wn2j for all j ∈ J0, JK, where

(
wnj
)
j∈J0,2JK

is a numerical solution computed with a refined grid
with 2J space meshes. In that case,

(
ṽnj
)
j∈J0,JK

, computed from the refined numerical solution
(
wnj
)
j∈J0,2JK

,

plays the role of the exact one
(

[u∆]
n
j

)
j∈J0,JK

.
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Remark 22. We have considered exactly 2J space meshes for the refined numerical solution. Moreover, in all
cases, 0 is a grid node, therefore, the error ẼJ is nothing but the difference between every two consecutive values
for

(
wnj
)
j∈J0,2JK

and every value for
(
vnj
)
j∈J0,JK

.

7.2 Smooth initial data
To assess the optimality of Theorem 1, the corresponding test cases are carried out with two smooth periodic
initial data, either the sinusoidal initial datum

u0(x) = cos

(
2π

L
x

)
,

or the so-called cnoidal-wave initial datum. This cnoidal-wave solution represents a periodic solitary wave
solution of the Korteweg-de Vries equation whose analytical expression is known as follow:

u(t, x) =
1

µ
1
5

acn2

(
4K(m)

(
µ

2
5

(
x− L

2

)
− vµ 1

5 t

))
,

where µ = 1
242 and cn(z) = cn(z : m) is the Jacobi elliptic function with modulusm ∈ (0, 1) (we choosem = 0.9)

and the parameters have the values a = 192mµK(m)2 and v = 64µ(2m − 1)K(m)2. K(m) is the complete
elliptic integral of the first kind (cf [BCKX13]).
Both results are gathered in Figure 1 for sinusoidal solution and Figure 2 for cnoidal-wave solution. We display
the values of r with respect to J in the left table and post the corresponding graph in logarithmic scale on the
right. The first order is confirmed for both initial data whether in tables or in graphs.

Sinusoidal solution
u0(x) = cos(2π

L x)
error in numerical

J ∆x `∞(0, T, `2∆(Z)) order
computed with EJ

1600 3, 1250.10−2 6, 2062.10−5

3200 1, 5625.10−2 3, 1033.10−5 0.9999
6400 7, 8125.10−3 1, 5517.10−5 0.9999
12800 3, 9063.10−3 8, 0795.10−6 0.9415
25600 1, 9531.10−3 4, 1435.10−6 0.9634
51200 9, 7656.10−4 1, 9974.10−6 1.0527

 ∆ x
10

-3
10

-2

 e
rr

o
r 

L
∞

(0
,T

,L
2 ∆

 )

10
-6

10
-5

10
-4

numerical slope= 1.0081

Figure 1: Experimental rate of convergence for sinusoidal solution

Cnoidal-wave
error in numerical

J ∆x `∞(0, T, `2∆(Z)) order
computed with EJ

1600 6.2500.10−4 8.9875.10−4

3200 3.1250.10−4 4.5253.10−4 0.9899
6400 1.5625.10−4 2.2636.10−4 0.9994
12800 7.8125.10−5 1.1292.10−4 1.0034
25600 3.9062.10−5 5.7102.10−5 0.9837

 ∆ x
10

-4
10

-3

 e
rr

o
r 

L
∞

(0
,T

,L
2 ∆

 )

10
-4

10
-3

numerical slope= 0.99553

Figure 2: Experimental rate of convergence for cnoidal-wave solution

7.3 For a regularity between H3(R) and H10(R)

To illustrate numerically Theorem 2, we initialize the scheme with a less regular initial datum. We test two
kinds of periodic initial data in Hs(R), with s ≥ 3. The first one is computed from some integrations of the
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indicator function and leads to initial data in Hs(R) with s a half-integer. The second one is computed from
the periodized square root function and leads to initial data in Hs(R) with s an integer.

Tests achieved from the indicator function. Since the indicator function 1[0,L2 ] belongs to Hs([0, L])

for all s < 1
2 , an idea to construct a periodic function in Hs+` ([0, L]), with s < 1

2 and ` ∈ N∗ is to integrate `
times the periodic indicator function. For instance, after a first integration, the initial datum

u0(x) = x1[0,L2 ] + (L− x)1[L2 ,L]

is periodic and "almost" in H
3
2 ([0, L]). By reiterating the process of periodization and integration, we obtain

initial data in Hs([0, L]), with s = 7
2

−
, 9

2

−
, 11

2

−
... The numerical results are summarized in the following table.

Sobolev regularity s = 7
2

−
s = 9

2

−
s = 11

2

−

Experimental convergence rate 0.66016 0.78307 0.97340

Theoretical convergence rate 0.58333 0.75000 0.91667

We detail some tests below : s = 7
2

− in Figure 3, and s = 9
2

− in Figure 4. For each figure, the graph on
the right illustrates the error in `∞(0, T, `2∆(Z)) with respect to the mesh size ∆x in logarithmic scale. Those
errors and those mesh sizes are detailed in the table on the left. On the graph, we have displayed the points
cloud but also the least squares regression and the numerical slope of that regression line is considered to be
the experimental convergence rate. For more simplicity, we denote Hs−(R) the space Hs−`(R) with ` > 0 as
small as possible.

u0 ∈ H
7
2−([0, L])

error in numerical
J ∆x `∞(0, T, `2∆(Z)) order

computed with ẼJ
12800 3.9063.10−3 8.8562.10−6

25600 1.9531.10−3 5.5291.10−6 0.6796
51200 9.7656.10−4 3.4903.10−6 0.6637
102400 4.8828.10−4 2.2460.10−6 0.6360

 ∆ x
10

-3
10

-2

 e
rr

o
r 

L
∞

(0
,T

,L
2 ∆

 )

×10
-6

3

4

5

6

7

8

9
numerical slope= 0.66016

Figure 3: Experimental rate of convergence for u0 ∈ H
7
2−([0, L])

u0 ∈ H
9
2−([0, L])

error in numerical
J ∆x `∞(0, T, `2∆(Z)) order

computed with ẼJ
1600 3.1250.10−2 6.5105.10−3

3200 1.5625.10−2 3.9541.10−3 0.71941
6400 7.8125.10−3 2.2620.10−3 0.80574
12800 3.9063.10−3 1.3091.10−3 0.78909
25600 1.9531.10−3 7.4923.10−4 0.80504
51200 9.7656.10−4 4.4105.10−4 0.764470

 ∆ x
10

-3
10

-2

 e
rr

o
r 

L
∞

(0
,T

,L
2 ∆

 )

10
-3

10
-2

numerical slope= 0.78307

Figure 4: Experimental rate of convergence for u0 ∈ H
9
2−([0, L])
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Remark 23. The relative error between the experimental rate and the theoretical one is sometimes significant,
for example, this relative error is more than 12% in the case s = 7

2−. However, the theoretical rate is an
asymptotic result for ∆x and ∆t small enough. As seen in the table on the left of Figure 3, the numerical order
appears to be decreasing when ∆x decreases, which agrees closely with the theoretical results.

Tests achieved from the square root function. Since the square root function is in H1−([0, L]) we
construct a Hs−([0, L]) function by integrating the square root function s − 1 times. However, we need, in
addition, a periodic initial datum, this is why we add the beginning of a Taylor expansion for the function and
its derivatives up to (s − 1)-th to be continuous and periodic. More precisely, we search the coefficients bi,
i ∈ J1, sK such that the function

xs−1+ 1
2 − b1x−

b2
2
x2 − b3

3!
x3...− bs

s!
xs

and all its derivatives up to (s− 1)-th be equal for x = 0 and for x = L. To find those coefficients, we just have
to solve the matrix system


L L2

2
L3

3!
L4

4! . . . Ls

s!

0 L L2

2
L3

3! . . . Ls−1

(s−1)!

0 0 L L2

2 . . . Ls−2

(s−2)!

. . .
0 0 0 0 . . . L




b1
b2
b3
...
bs

 =



Ls−
1
2

(s− 1
2 )Ls−

3
2

(s− 1
2 )(s− 3

2 )Ls−
5
2

...

...
(s− 1

2 )(s− 3
2 )(s− 5

2 ) . . . 3
2L

1/2


.

The following tests correspond to s ∈ J4, 10K.
The comparison between the experimental rates of convergence and the theoretical ones are very closed and

gathered in the following table.

Sobolev s = 4 s = 5 s = 6 s = 7 s = 8 s = 9 s = 10
regularity

Experimental 0.67225 0.86032 0.98708 0.99485 1.0060 1.0148 1.0062
convergence rate

Theoretical 0.66667 0.83333 1.0000 1.0000 1.0000 1.0000 1.0000
convergence rate

Some results are developed below (u0 ∈ H4−(R) in Figure 5 and u0 ∈ H5−(R) in Figure 6).

u0 ∈ H4−([0, L])
error in numerical

J ∆x `∞(0, T, `2∆(Z)) order
computed with ẼJ

1600 3.1250.10−2 4.6454.10−3

3200 1.5625.10−2 2.8109.10−3 0.72476
6400 7.8125.10−3 1.7147.10−3 0.71307
12800 3.9063.10−3 1.0892.10−3 0.65474
25600 1.9531.10−3 6.8793.10−4 0.66290
51200 9.7656.10−4 4.3185.10−4 0.67172

 ∆ x
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10
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rr
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10
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10
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numerical slope= 0.67225

Figure 5: Experimental rate of convergence for u0 ∈ H4−([0, L])
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u0 ∈ H5−([0, L])
error in numerical

J ∆x `∞(0, T, `2∆(Z)) order
computed with ẼJ

1600 3.1250.10−2 1.1066.10−2

3200 1.5625.10−2 6.0878.10−3 0.86208
6400 7.8125.10−3 3.3067.10−3 0.88054
12800 3.9063.10−3 1.8609.10−3 0.82941
25600 1.9531.10−3 1.0240.10−3 0.86182
51200 9.7656.10−4 5.5475.10−4 0.88424

 ∆ x
10
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10
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 e
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∞
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10
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10
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numerical slope= 0.86032

Figure 6: Experimental rate of convergence for u0 ∈ H5−([0, L])

7.4 For a regularity between L2(R) and H3(R)

Theoretically, the necessity to bound
∫ T

0
||∂xu(s, .)||iL∞(R)ds in (64) forces to choose s ≥ 3

4 . In addition, the
necessity to bound ||en||`∞ in Fa in (50a) in order to apply the Grönwall lemma leads to choose ∆x such as
Equation (55) be true which forces to have the constraint 1

δ6−s <
1

∆xγ in (72). However, those restrictions may
be only technical and the rate of convergence seems to be ∆x

s
6 for all s ∈ [0, 3). This is based on the following

numerical results.

Tests achieved from the indicator function. The integration from the indicator function enables us to
obtain examples of functions in Hs(R) with s = 1

2

−
, 3

2

−
, 5

2

−, whose results are listed below.

Sobolev regularity s = 1
2

−
s = 3

2

−
s = 5

2

−

Experimental convergence rate 0.08795 0.25500 0.42595

"Conjectured" convergence rate 0.08333 0.25000 0.41667

More precisions are given in Figures 7 (for u0 ∈ H
1
2−(R)), 8 (for u0 ∈ H

3
2−(R)) and 9 (for u0 ∈ H

5
2−(R)).

u0 ∈ H
1
2−([0, L])

error in numerical
J ∆x `∞(0, T, `2∆(Z)) order

computed with ẼJ
3200 1.5625.10−2 1.0567.10−2

6400 7.8125.10−3 9.8843.10−3 0.0964
12800 3.9063.10−3 9.2992.10−3 0.0880
25600 1.9531.10−3 8.7490.10−3 0.0879
51200 9.7656.10−4 8.2289.10−3 0.0885
102400 4.8828.10−4 7.7468.10−3 0.0871
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numerical slope= 0.087948

Figure 7: Experimental rate of convergence for u0 ∈ H
1
2−([0, L])

38



u0 ∈ H
3
2−([0, L])

error in numerical
J ∆x `∞(0, T, `2∆(Z)) order

computed with ẼJ
3200 1.5625.10−2 2.6584.10−4

6400 7.8125.10−3 2.2108.10−4 0.2660
12800 3.9063.10−3 1.8624.10−4 0.2474
25600 1.9531.10−3 1.5632.10−4 0.2526
51200 9.7656.10−4 1.3074.10−4 0.2578
102400 4.8828.10−4 1.0949.10−4 0.2560
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Figure 8: Experimental rate of convergence for u0 ∈ H
3
2−([0, L])

u0 ∈ H
5
2−([0, L])

error in numerical
J ∆x `∞(0, T, `2∆(Z)) order

computed with ẼJ
3200 1.5625.10−2 8.4546.10−5

6400 7.8125.10−3 6.1968.10−5 0.4482
12800 3.9063.10−3 4.6531.10−5 0.4133
25600 1.9531.10−3 3.4745.10−5 0.4214
51200 9.7656.10−4 2.5795.10−5 0.4297
102400 4.8828.10−4 1.9199.10−5 0.4260
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Figure 9: Experimental rate of convergence for u0 ∈ H
5
2−([0, L])

Tests achieved from the square root function. As before, the second test consists in periodising the
square root function to create an initial datum in Hs−(R) with s = 1, 2, 3.

Sobolev regularity s = 1 s = 2 s = 3

Experimental convergence rate 0.16984 0.33806 0.50173

"Conjectured" convergence rate 0.16667 0.33333 0.50000

Some precisions for those tests are given in Figures 10, 11 and 12.

u0 ∈ H1−([0, L])
error in numerical

J ∆x `∞(0, T, `2∆(Z)) order
computed with ẼJ

1600 3.1250.10−2 2.6762.10−2

3200 1.5625.10−2 2.3501.10−2 0.18748
6400 7.8125.10−3 2.0793.10−2 0.17660
12800 3.9063.10−3 1.8595.10−2 0.16119
25600 1.9531.10−3 1.6602.10−2 0.16360
51200 9.7656.10−4 1.4787.10−2 0.16701
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Figure 10: Experimental rate of convergence for u0 ∈ H1−([0, L])
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u0 ∈ H2−([0, L])
error in numerical

J ∆x `∞(0, T, `2∆(Z)) order
computed with ẼJ

1600 3.1250.10−2 6.6322.10−3

3200 1.5625.10−2 5.2115.10−3 0.34779
6400 7.8125.10−3 4.0950.10−3 0.34783
12800 3.9063.10−3 3.2699.10−3 0.32461
25600 1.9531.10−3 2.5937.10−3 0.33426
51200 9.7656.10−4 2.0449.10−3 0.34296
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Figure 11: Experimental rate of convergence for u0 ∈ H2−([0, L])

u0 ∈ H3−([0, L])
error in numerical

J ∆x `∞(0, T, `2∆(Z)) order
computed with ẼJ

1600 3.1250.10−2 1.2295.10−2

3200 1.5625.10−2 8.5386.10−3 0.52599
6400 7.8125.10−3 5.8964.10−3 0.53416
12800 3.9063.10−3 4.1913.10−3 0.49245
25600 1.9531.10−3 2.9576.10−3 0.50298
51200 9.7656.10−4 2.0778.10−3 0.50937

 ∆ x
10

-3
10

-2

 e
rr

o
r 

L
∞

(0
,T

,L
2 ∆

 )

×10
-3

2

4

6

8

10

12

numerical slope= 0.50173

Figure 12: Experimental rate of convergence for u0 ∈ H3−([0, L])

We summarize the theoretical and numerical results in Figure 13. The blue line corresponds to the theoret-
ical rate of convergence, the dashed line matches the conjectured rate and the red dots stand for the numerical
rates of convergence. Both are intertwined, which validates the rate of convergence of min(s,6)

6 with s the Sobolev
regularity of the initial value.
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Figure 13: Rates of convergence according to the Sobolev regularity of u0. – Rates proved in this paper (solid
line) versus experimental rates (dots)
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A Appendix : Consistency error
The consistency error is defined by (11). For simplicity, we note, in this appendix, tn+1 = inf(tn+1, T ) and
∆t = tn+1 − tn, which corresponds to the following expression, for (n, j) ∈ J0, NK× Z

εnj =
1

∆t2∆x

∫ tn+1

tn

∫ xj+1

xj

u(s+ ∆t, y)− u(s, y)dyds

+
1

4∆x

=:(a)︷ ︸︸ ︷( 1

∆t∆x

∫ tn+1

tn

∫ xj+1

xj

u(s, y + ∆x)dyds

)2

−

(
1

∆x∆t

∫ tn+1

tn

∫ xj+1

xj

u(s, y −∆x)dyds

)2


+
1− θ

∆t∆x4

∫ tn+1

tn

∫ xj+1

xj

u(s, y + 2∆x)− 3u(s, y + ∆x) + 3u(s, y)− u(s, y −∆x)dyds

+
θ

∆t∆x4

∫ tn+2

tn+1

∫ xj+1

xj

u(s, y + 2∆x)− 3u(s, y + ∆x) + 3u(s, y)− u(s, y −∆x)dyds

− c

(
1

2∆t∆x2

∫ tn+1

tn

∫ xj+1

xj

u(s, y + ∆x)− 2u(s, y) + u(s, y −∆x)dyds

)
.

(74)

Let us first deal with (a)-term. In order to simplify the following equations, we denote, for ν in R

K(ν) :=

(
1

∆x∆t

∫ xj+1

xj

∫ tn+1

tn
u(s, y + ν∆x)dsdy

)2

.

A straightforward computation yields

K ′(0) =
2

∆x∆t2

∫ xj+1

xj

∫ tn+1

tn

∫ xj+1

xj

∫ tn+1

tn
∂xu(s̄, ȳ)u(s, y)ds̄dȳdsdy

=
2

∆x∆t2

∫ xj+1

xj

∫ tn+1

tn

∫ xj+1

xj

∫ tn+1

tn

[
∂xu(s, y) +

∫ ȳ

y

∂2
xu(s, v)dv +

∫ s̄

s

∂xtu(τ, ȳ)dτ

]
u(s, y)ds̄dȳdsdy

=
2

∆t

∫ xj+1

xj

∫ tn+1

tn
u(s, y)∂xu(s, y)dsdy +

2

∆t∆x

∫ xj+1

xj

∫ xj+1

xj

∫ tn+1

tn
u(s, y)

∫ ȳ

y

∂2
xu(s, v)dvdsdȳdy

+
2

∆t2∆x

∫ xj+1

xj

∫ xj+1

xj

∫ tn+1

tn

∫ tn+1

tn
u(s, y)

∫ s̄

s

∂xtu(τ, ȳ)dτds̄dsdȳdy.

Thus, the (a) term in Equation (74) rewrites

(a) = K(1)−K(−1) = 2K ′(0) +

∫ 1

0

K ′′(w)(1− w)dw +

∫ 1

0

K ′′(−w)(−1 + w)dw,
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and after some Taylor expansions, it holds, since u satisfies (1a)

|εnj | ≤
1

∆x∆t

∫ tn+1

tn

∫ xj+1

xj

∫ s+∆t

s

|∂2
t u(w, y)|dwdsdy +

1

∆t∆x2

∫ xj+1

xj

∫ xj+1

xj

∫ tn+1

tn
|u(s, y)

∫ ȳ

y

∂2
xu(s, v)dv|dsdȳdy

+
1

∆t2∆x2

∫ xj+1

xj

∫ xj+1

xj

∫ tn+1

tn

∫ tn+1

tn
|u(s, y)

∫ s̄

s

∂xtu(τ, ȳ)dτ |ds̄dsdȳdy +
1

4∆x

∫ 1

0

|K ′′(w)|(1− w)dw

+
1

4∆x

∫ 1

0

|K ′′(−w)|(1− w)dw +
1− θ
∆t∆x

∫ tn+1

tn

∫ xj+1

xj

∫ y+2∆x

y

|∂4
xu(s, z)|dz +

∫ y+∆x

y

|∂4
xu(s, z)|dz

+

∫ y−∆x

y

|∂4
xu(s, z)|dzdyds+

θ

∆t∆x

∫ tn+2

tn+1

∫ xj+1

xj

∫ y+2∆x

y

|∂4
xu(s, z)|dz +

∫ y+∆x

y

|∂4
xu(s, z)|dz

+

∫ y−∆x

y

|∂4
xu(s, z)|dzdyds+

c

2∆x∆t

∫ tn+1

tn

∫ xj+1

xj

∫ y+∆x

y

|∂2
xu(s, z)|dz +

∫ y−∆x

y

|∂2
xu(s, z)|dzdyds.

Thus, once applying the Cauchy-Schwarz inequality, the previous inequality becomes

|εnj |2 ≤ C

[
∆t

∆x

∫ tn+1

tn

∫ xj+1

xj

(
∂2
t u(w, y)

)2
dwdy +

1

∆t∆x

∫ xj+1

xj

∫ tn+1

tn

∫ xj+1

xj

∫ ȳ

y

[
u(s, y)∂2

xu(s, v)
]2
dvdsdydȳ

+
1

∆t∆x2

∫ xj+1

xj

∫ tn+1

tn

∫ xj+1

xj

∫ tn+1

tn

∫ s̄

s

[u(s, y)∂xtu(τ, ȳ)]
2
dτds̄dȳdsdy +

1

8∆x2
||K ′′||2L∞([−1,1])

+
(1− θ)2∆x

∆t

∫ tn+1

tn

∫ xj+1

xj

(
∂4
xu(s, z)

)2
dzds+

θ2∆x

∆t

∫ tn+2

tn+1

∫ xj+1

xj

(
∂4
xu(s, z)

)2
dzds

+
c2∆x

∆t

∫ tn+1

tn

∫ xj+1

xj

(
∂2
xu(s, z)

)2
dzds

]
,

with C a constant.
However, one has

K ′′(ν) =
2

∆t2

∫ xj+1

xj

∫ tn+1

tn

∫ xj+1

xj

∫ tn+1

tn
∂2
xu(s, y + ν∆x)u(s̄, ȳ + ν∆x)ds̄dȳdsdy

+
2

∆t2

∫ xj+1

xj

∫ tn+1

tn

∫ xj+1

xj

∫ tn+1

tn
∂xu(s, y + ν∆x)∂xu(s̄, ȳ + ν∆x)ds̄dȳdsdy,

which gives, thanks to the Cauchy-Schwarz inequality

|K ′′(ν)|2 ≤ C

[
∆x3

∆t2

∫ tn+1

tn
||u(s̄, .)||2L∞x

∫ xj+1

xj

∫ tn+1

tn

(
∂2
xu(s, y + ν∆x)

)2
dsdyds̄

+

(
2∆x

∆t

∫ tn+1

tn

∫ xj+1

xj

(∂xu(s, y + ν∆x))
2
dsdy

)2
 .

Therefore, it yields

∑
j∈Z

∆x|εnj |2 ≤ C

[
∆t2 sup

t∈[0,T ]

||∂2
t u(t, .)||2L2

x
+ ∆x2 sup

t∈[0,T ]

||u(t, .)||2L∞x sup
t∈[0,T ]

||∂2
xu(t, .)||2L2

x

+ ∆t2 sup
t∈[0,T ]

||u(t, .)||2L∞x sup
t∈[0,T ]

||∂xtu(t, .)||2L2
x

+ ∆x2 sup
t∈[0,T ]

||u(t, .)||2L∞x sup
t∈[0,T ]

||∂2
xu(t, .)||2L2

x

+∆x2 sup
t∈[0,T ]

||∂xu(t, .)||2L2
x

sup
t∈[0,T ]

||∂xu(t, .)||2L∞x + ∆x2 sup
n∈J0,NK

||∂4
xu||2L2

x
+ ∆x2 sup

n∈J0,NK
||∂2

xu||2L2
x

]
.

(75)
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Let us then compute ||∂2
t u||L2

x
in (75). Thanks to the KdV equation, the time derivative is equal to

∂2
t u = 2u (∂xu)

2
+ u2∂2

xu+ 5∂xu∂
3
xu+ 2u∂4

xu+ 3
(
∂2
xu
)2

+ ∂6
xu.

For the term ∂xu∂
3
xu, we use then the relation, for all u and v in Hα+β(R)∣∣∣∣∂αx u∂βxv∣∣∣∣L2(R)

≤ C
[
||u||L∞(R) ||v||Hα+β(R) + ||v||L∞(R) ||u||Hα+β(R)

]
. (76)

Hence

||∂2
t u||L2

x
≤ C

[
||u||L∞x ||∂xu||

2
L4
x

+ ||u||2L∞x ||∂
2
xu||L2

x
+ ||u||L∞x ||∂

4
xu||L2

x
+ ||u||L∞x ||∂

4
xu||L2

x
+ ||∂2

xu||2L4
x

+ ||∂6
xu||L2

x

]
.

For the term ||∂xu||L4
x
, we use an integration by parts and the Cauchy-Schwarz inequality to obtain

||∂xu||4L4
x

=

∫
R

(∂xu(x))
3
∂xu(x)dx = −

∫
R

3u(x)∂2
xu(x) (∂xu(x))

2
dx ≤ 3 ||u||L∞x

∣∣∣∣∂2
xu
∣∣∣∣
L2
x
||∂xu||2L4

x
.

We thus conclude ||∂xu||2L4
x
≤ C ||u||L∞x

∣∣∣∣∂2
xu
∣∣∣∣
L2
x
.

For the term ||∂2
xu||2L4

x
, we again use an integration by parts and the Cauchy-Schwarz inequality to write

||∂2
xu||4L4

x
=

∫
R

(
∂2
xu(x)

)3
∂2
xu(x)dx =

∫
R
−3∂3

xu(x)
(
∂2
xu(x)

)2
∂xu(x)dx ≤ 3||∂2

xu||2L4
x

√∫
R

(∂3
xu(x))

2
(∂xu(dx))

2
dx,

which implies thanks to Relation (76) ||∂2
xu||2L4

x
≤ C ||u||L∞x

∣∣∣∣∂4
xu
∣∣∣∣
L2
x
.

For the ||∂xtu(t, ·)||L2
x
-term in (75), it holds

||∂txu(t, ·)||2L2
x

= || − (∂xu(t, ·))2 − u(t, ·)∂2
xu(t, ·)− ∂4

xu(t, ·)||2L2
x

≤ C
[
||u(t, ·)||2L∞x ||∂

2
xu(t, ·)||2L2

x
+ ||∂xu(t, ·)||4L4

x
+ ||∂4

xu(t, ·)||2L2
x

]
.

To conclude, we obtain with (75)

||εn||`∞(J0,NK;`2∆(Z)) ≤ C

[
∆t sup

t∈[0,T ]

(
||u||2L∞x ||u||H2

x
+ ||u||L∞x ||u||H4

x
+ ||u||H6

x
+ ||u||L∞x ||u||H2

x
+ ||u||H4

x

)
+∆x sup

t∈[0,T ]

(
||u||L∞x ||u||H2

x
+ ||∂xu||L∞x ||u||H1

x
+ ||u||H4

x
+ ||u||H2

x

)]
,

what can be simplified into

||εn||`∞(J0,NK;`2∆(Z)) ≤ C

[
∆t sup

t∈[0,T ]

(
||u||2L∞x ||u||H2

x
+ ||u||L∞x ||u||H4

x
+ ||u||H6

x

)
+∆x sup

t∈[0,T ]

(
||u||L∞x ||u||H2

x
+ ||∂xu||L∞x ||u||H1

x
+ ||u||H4

x

)]
.

Thus the consistency error is upper bounded by

||εn||`∞(J0,NK;`2∆(Z)) ≤ C

{
∆t sup

t∈[0,T ]

[(
1 + ||u||2L∞x

)
||u||H6

x

]
+ ∆x sup

t∈[0,T ]

[(
1 + ||u||L∞x

)
||u||H4

x
+ ||∂xu||L∞x ||u||H1

x

]}
.
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B Appendix : Proofs of useful Lemmas of Section 4
Proof of Lemma 2. Identities (20) to (24b) are proved by developing the expressions.

Proof of Lemma 3. • Relation (25) is obtained by developing the sums.

• Relation (26) is proved by summing the square of Identity (22) with bj =
aj
2 .

• Relation (27) is obtained by developing the expression :

∑
j∈Z

[
D+D− (a)j

]2
=
∑
j∈Z

[
aj+1 − 2aj + aj−1

∆x2

]2

=
∑
j∈Z

a2
j+1 − 4aj+1aj + 2aj+1aj−1 + 4a2

j − 4ajaj−1 + a2
j−1

∆x4

=
∑
j∈Z

4
a2
j+1 − 2aj+1aj + a2

j

∆x4
−
a2
j+1 − 2aj−1aj+1 + a2

j−1

∆x4

=
∑
j∈Z

4

∆x2

a2
j+1 − 2aj+1aj + a2

j

∆x2
− 4

∆x2

a2
j+1 − 2aj−1aj+1 + a2

j−1

4∆x2
.

Proof of Lemma 4. • Identities (29) and (30) derive from developing the sums.

• Relation (31) is a straightforward consequence of (24a).

• For (32), one has

∑
j∈Z

D+ (a)j ajaj+1 =
∑
j∈Z

a2
j+1aj − a2

jaj+1

∆x
=
∑
j∈Z
−
a3
j+1 − 3a2

j+1aj + 3aj+1a
2
j − a3

j

3∆x
= −

∑
j∈Z

∆x2

3

[
aj+1 − aj

∆x

]3

.

• Likewise, Identity (33) is proved by the same way

∑
j∈Z

D (a)j aj−1aj+1 =
∑
j∈Z

a2
j+1aj−1 − aj+1a

2
j−1

2∆x
=
∑
j∈Z
−4

3

a3
j+1 − 3a2

j+1aj−1 + 3aj+1a
2
j−1 − a3

j−1

8∆x

=
∑
j∈Z
−4∆x2

3

[
aj+1 − aj−1

2∆x

]3

.

• The proof of (34) is based on a development of the expression of D(ab)j as explained below∑
j∈Z

ajD (ab)j =
∑
j∈Z

aj
aj+1bj+1 − aj−1bj−1

2∆x
=
∑
j∈Z

bj+1aj+1aj − bjaj+1aj
2∆x

=
∑
j∈Z

bj+1 − bj
2∆x

aj+1aj .

• For Relation (35), we expand∑
j∈Z

D+D− (a)j D (ab)j

=
∑
j∈Z

(aj+1 − 2aj + aj−1) [aj+1bj+1]− (aj+1 − 2aj + aj−1) [aj−1bj−1]

2∆x3

=
∑
j∈Z

(aj+1)
2
bj+1 − 2ajaj+1bj+1 + aj−1aj+1bj+1 − aj+1aj−1bj−1 + 2ajaj−1bj−1 − (aj−1)

2
bj−1

2∆x3
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=
∑
j∈Z

−2ajaj+1bj+1 + 2aj+1ajbj
2∆x3

+
aj−1aj+1bj+1 − aj+1aj−1bj−1

2∆x3

=
∑
j∈Z
−bj+1 − bj

∆x3
aj+1aj +

∑
j∈Z

bj+1 − bj−1

2∆x3
aj+1aj−1.

Proof of Corollary 2. • Identity (36) is based on (34) with bj =
aj
2 and Relation (32).

• Proving (37) corresponds to choose bj =
aj
2 in Identity (35) and using Relations (32) and (33).

Proof of Lemma 5. Inequality (42) is based on Relation (23)∑
j∈Z

[
D (ab)j

]2
=
∑
j∈Z

[
bjD (a)j +

aj+1

2
D+ (b)j +

aj−1

2
D− (b)j

]2
=
∑
j∈Z

(bj)
2
(
D (a)j

)2

+
∑
j∈Z

bjaj+1D (a)j D+ (b)j +
∑
j∈Z

bjD (a)j aj−1D− (b)j

+
∑
j∈Z

(aj+1

2
D+ (b)j

)2

+
∑
j∈Z

aj+1aj−1

2
D+ (b)j D− (b)j +

∑
j∈Z

(aj−1

2
D− (b)j

)2

.

Young inequality implies

∑
j∈Z

(
D (ab)j

)2

≤
∑
j∈Z

(bj)
2
(
D (a)j

)2

+
∑
j∈Z

(bj)
2

2∆t
(aj+1)

2
+
∑
j∈Z

∆t

2

(
D (a)j

)2 (
D+ (b)j

)2

+
∑
j∈Z

(bj)
2

2∆t
(aj−1)

2

+
∑
j∈Z

∆t

2

(
D (a)j

)2 (
D− (b)j

)2

+
∑
j∈Z

3

2

(aj+1

2
D+ (b)j

)2

+
∑
j∈Z

3

2

(aj−1

2
D− (b)j

)2

.

Proof of Lemma 6. We use relation (23) to develop D+D+D− (a)j D (ab)j which gives∑
j∈Z

D+D+D− (a)j D (ab)j =
∑
j∈Z

D+D+D− (a)j

[
bjD (a)j +

aj+1

2
D+ (b)j +

aj−1

2
D− (b)j

]
≤
∑
j∈Z

bjD+D+D− (a)j D (a)j +
∑
j∈Z

∆t

4

(
D+D+D− (a)j

)2

|D+ (b)j |

+
∑
j∈Z

(aj+1)
2

4∆t
|D+ (b)j |+

∑
j∈Z

∆t

4

(
D+D+D− (a)j

)2

|D− (b)j |+
∑
j∈Z

(aj−1)
2

4∆t
|D− (b)j |.

(77)

The conclusion comes from the following Lemma.

Lemma 12. Let (aj)j∈Z and (bj)j∈Z be two sequences in `2∆(Z), σ be in {0, 1} and ν be non negative. Then, it
holds

∑
j∈Z

bjD+D+D− (a)j D (a)j ≤
∑
j∈Z

1

2

{
∆xν

(
|D−(b)j |σ

2
+
|D−(b)j |σ

2

)
− ∆x

2
D−bj

}(
D+D− (a)j

)2

+
∑
j∈Z

1

2∆xν
|D+ (b)j |

2−σ
(
D+ (a)j

)2

−
∑
j∈Z

bj

(
D+D (a)j

)2

. (78)
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Proof of Lemma 12. By developing D (a)j and using the relation (29), it holds

∑
j∈Z

bjD+D+D− (a)j D (a)j =
∑
j∈Z

bj
2
D+D+D− (a)j D+ (a)j +

∑
j∈Z

bj
2
D+D+D− (a)j D− (a)j

= −
∑
j∈Z

D+D− (a)j D−

(
bj
2
D+ (a)j

)
−
∑
j∈Z

D+D− (a)j D−

(
bj
2
D− (a)j

)
.

We focus first on the term −
∑
j∈ZD+D− (a)j D−

(
bj
2 D+ (a)j

)
. Equality (21b) gives

−
∑
j∈Z

D+D− (a)j D−

(
bj
2
D+ (a)j

)
= −

∑
j∈Z

D+D− (a)j

(
D− (b)j

2
D− (a)j +

bj
2
D+D− (a)j

)
.

Eventually, Young inequality provides

−
∑
j∈Z

D+D− (a)j D−

(
bj
2
D+ (a)j

)
≤
∑
j∈Z

∆xν |D−bj |σ

4

(
D+D− (a)j

)2

+
∑
j∈Z

|D+ (b)j |2−σ

4∆xν

(
D+ (a)j

)2

−
∑
j∈Z

bj
2

(
D+D− (a)j

)2

.

For the term −
∑
j∈ZD+D− (a)j D−

(
bj
2 D− (a)j

)
, one has thanks to Equality (21b),

−
∑
j∈Z

D+D− (a)j D−

(
bj
2
D− (a)j

)
= −

∑
j∈Z

D+D− (a)j

(
D− (b)j

2
D− (a)j +

bj−1

2
D−D− (a)j

)
.

Hence, it holds (by Young inequality)

−
∑
j∈Z

D+D− (a)j D−

(
bj
2
D− (a)j

)

≤
∑
j∈Z

∆xν |D−bj |σ

4

(
D+D− (a)j

)2

+
∑
j∈Z

|D+ (b)j |
2−σ

4∆xν
(D+aj)

2 −
∑
j∈Z

bj−1

2
D+D− (a)j D−D− (a)j

≤
∑
j∈Z

∆xν |D−bj |σ

4
(D+D−aj)

2 +
∑
j∈Z

|D+ (b)j |
2−σ

4∆xν
(D+aj)

2

−
∑
j∈Z

bj−1

(
D+D−aj +D−D−aj

2

)2

+
∑
j∈Z

bj−1

4
(D+D−aj)

2 +
∑
j∈Z

bj−1

4
(D−D−aj)

2

≤
∑
j∈Z

(
∆xν |D−bj |σ

4
+
bj−1 + bj

4

)
(D+D−aj)

2 −
∑
j∈Z

bj (D+Daj)
2 +

∑
j∈Z

|D+ (b)j |
2−σ

4∆xν

(
D+ (a)j

)2

.

By collecting the previous results, one has

∑
j∈Z

bjD+D+D− (a)j D (a)j ≤
∑
j∈Z

{
∆xν |D−bj |σ

4
+

∆xν |D−bj |σ

4
+
bj−1 − bj

4

}
(D+D−aj)

2

+
∑
j∈Z

|D+ (b)j |2−σ

2∆xν

(
D+ (a)j

)2

−
∑
j∈Z

bj (D+Daj)
2
.

Lemma 12 is then proved.

Lemma 6 is a consequence, with ν = 0.
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Proof of Lemma 7. To prove Lemma 7, the following lemma is useful.

Lemma 13. Let (aj)j∈Z be a sequence in `2∆(Z), then one has

||D+a||`4∆ ≤
√

3||a||`∞ ||D+D−a||`2∆ .

Proof of Lemma 13. We compute the following sum thanks to the discrete integration by parts (29)∑
j∈Z

(D+aj)
4

=
∑
j∈Z

(D+aj)
3
D+aj = −

∑
j∈Z

D−

[
(D+aj)

3
]
aj . (79)

We use Relation (21b) to develop D−
[
(D+aj)

3
]
in (79) and D−

[
(D+(a)j)

2
]
in (80)

−
∑
j∈Z

D−

[
(D+aj)

3
]
aj = −

∑
j∈Z

D−

[
(D+(a)j)

2
]
D−(a)jaj −

∑
j∈Z

(D+aj)
2
D−D+(a)jaj (80)

= −
∑
j∈Z

D+D−(a)j (D−aj)
2
aj −

∑
j∈Z

D+(a)jD+D−(a)jD−(a)jaj −
∑
j∈Z

(D+aj)
2
D+D−(a)jaj .

We recover D(a)j in the second sum, which gives

∑
j∈Z

(D+aj)
4

= −
∑
j∈Z

D+D−aj (D−aj)
2
aj −

∑
j∈Z

2D+D−(a)jaj (D(a)j)
2

+
∑
j∈Z

D+D−(a)jaj
(D+aj)

2

2

+
∑
j∈Z

D+D−(a)jaj
(D−aj)

2

2
−
∑
j∈Z

(D+aj)
2
D+D−(a)jaj

= −
∑
j∈Z

D+D−(a)jaj (D−aj)
2

2
− 2

∑
j∈Z

D+D−(a)jaj (Daj)
2 −

∑
j∈Z

D+D−(a)j
aj (D+aj)

2

2
.

Multiplying by ∆x and applying Cauchy-Schwarz inequality simplify the `4∆-norm

||D+a||4`4∆ ≤
||a||`∞

2
||D+D−(a)||`2∆ ||D−a||

2
`4∆

+ 2||a||`∞ ||D+D−(a)||`2∆ ||Da||
2
`4∆

+
||a||`∞

2
||D+D−(a)||`2∆ ||D+a||2`4∆ .

(81)

However, one has

||Da||4`4∆ =
∑
j∈Z

∆x

(
aj+1 − aj + aj − aj−1

2∆x

)4

=
∑
j∈Z

∆x

(
aj+1 − aj + aj − aj−1

2∆x

)2(
aj+1 − aj + aj − aj−1

2∆x

)2

=
∑
j∈Z

∆x

[
2

(
aj+1 − aj

2∆x

)2

+ 2

(
aj − aj−1

2∆x

)2
][

2

(
aj+1 − aj

2∆x

)2

+ 2

(
aj − aj−1

2∆x

)2
]

≤
∑
j∈Z

∆x
1

4

(
aj+1 − aj

∆x

)4

+
1

2
∆x

(
aj+1 − aj

∆x

)2(
aj − aj−1

∆x

)2

+
1

4
∆x

(
aj − aj−1

∆x

)4

≤
∑
j∈Z

∆x

(
aj+1 − aj

∆x

)4

≤ ||D+a||4`4∆ .
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Equation (81) is changed as follows

||D+a||4`4∆ ≤ 3||a||`∞ ||D+D−(a)||`2∆ ||D+a||2`4∆ .

Then it holds

||D+a||2`4∆ ≤ 3||a||`∞ ||D+D−(a)||`2∆ .

Lemma 13 is thus proved.

Remark 24. Lemma 13 is also valid for the classical discrete `4-norm instead of `4∆-norm.

To prove Lemma 7, we first develop the left hand side thanks to (23)

∑
j∈Z

D+D+D− (a)j D

(
a2

2

)
j

=
∑
j∈Z

D+D+D− (a)j

[aj
2
D (a)j +

aj+1

4
D+ (a)j +

aj−1

4
D− (a)j

]
.

• The first term
∑
j∈Z

aj
2 D+D+D− (a)j D (a)j is treated with Lemma 12 of Appendix B with ν = 1

2 − γ and
σ = 0, which rewrites∑
j∈Z

aj
2
D+D+D−(a)jD(a)j ≤

∑
j∈Z

1

4

{
∆x

1
2−γ − ∆x

2
D−aj

}
(D+D−aj)

2
+
∑
j∈Z

1

4∆x
1
2−γ

(D+aj)
4−
∑
j∈Z

aj
2

(D+Daj)
2
.

• For the second term, we integrate by parts thanks to (29) and (21b)∑
j∈Z

D+D+D− (a)j
aj+1

4
D+ (a)j =

∑
j∈Z
−D+D− (a)j D−

(aj+1

4
D+ (a)j

)

=
∑
j∈Z
−D+D− (a)j

aj4 D+D− (a)j +

(
D+ (a)j

)2

4

 .

Young inequality completes the upper bound∑
j∈Z

D+D+D− (a)j
aj+1

4
D+ (a)j =

∑
j∈Z
− (D+D−(a)j)

2 aj
4

+
∑
j∈Z

1

8
(D+D−(a)j)

2
∆x

1
2−γ +

∑
j∈Z

1

8∆x
1
2−γ

(D+(a)j)
4
.

• For the third term, Relation (29) together with (21a) gives∑
j∈Z

D+D+D− (a)j
aj−1

4
D− (a)j =

∑
j∈Z

−D+D+ (a)j D+

(aj−1

4
D− (a)j

)

=
∑
j∈Z

−D+D+ (a)j

{
aj
4
D+D− (a)j +

D+ (a)j−1

4
D− (a)j

}

=
∑
j∈Z

−aj
2

(
D+D+ (a)j +D+D− (a)j

2

)2

+
∑
j∈Z

aj
8

(
D+D+ (a)j

)2

+
∑
j∈Z

aj
8

(
D+D− (a)j

)2

−
∑
j∈Z

D+D+ (a)j

(
D− (a)j

)2

4

≤
∑
j∈Z

−aj
2

(D+D(a)j)
2 +

∑
j∈Z

aj + aj−1

8
(D+D−(a)j)

2 +
∑
j∈Z

∆x
1
2
−γ

8
(D+D−(a)j)

2 +
∑
j∈Z

1

8∆x
1
2
−γ

(D+(a)j)
4 .

Gathering all these results yields

∑
j∈Z

D+D+D−(a)jD

(
a2

2

)
j

≤
∑
j∈Z

{
∆x

1
2
−γ

2
− ∆x

8
D−(a)j +

aj−1 − aj
8

}
(D+D−(a)j)

2 +
∑
j∈Z

1

2∆x
1
2
−γ

(D+aj)
4

−
∑
j∈Z

aj (D+D(a)j)
2 .
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Lemma 13 concludes this proof

∑
j∈Z

D+D+D−(a)jD

(
a2

2

)
j

≤
∑
j∈Z

∆x
1
2−γ + ||a||`∞ + 9

||a||2`∞
∆x

1
2
−γ

2

 (D+D−(a)j)
2

+
∑
j∈Z
||a||`∞ (D+D(a)j)

2
.

Proof of Lemma 8. For Identity (44), the right hand side yields

∑
j∈Z

[
D (a)j

]2 aj+1bj+1 + aj−1bj−1

2
−
∑
j∈Z

D (b)j

[
D (a)j

]3 4∆x2

3
−
∑
j∈Z

1

3
DD (b)j a

3
j

=
∑
j∈Z

a3
j+1bj+1 + a2

j+1aj−1bj−1 − 2a2
j+1aj−1bj+1 − 2aj+1a

2
j−1bj−1 + a2

j−1aj+1bj+1 + a3
j−1bj−1

8∆x2

−
∑
j∈Z

(
bj+1 − bj−1

2∆x

)
a3
j+1 − 3a2

j+1aj−1 + 3aj+1a
2
j−1 − a3

j−1

8∆x3

(
4∆x2

3

)
−
∑
j∈Z

1

3

bj+2 − 2bj + bj−2

4∆x2
a3
j .

Adding the first two sums gives

∑
j∈Z

a3
j+1bj+1 − 3a2

j+1aj−1bj−1 − 3a2
j−1aj+1bj+1 + a3

j−1bj−1 + 2a3
j−1bj+1 + 2bj−1a

3
j+1

24∆x2
.

The sum yields then∑
j∈Z

[
D (a)j

]2 aj+1bj+1 + aj−1bj−1

2
−
∑
j∈Z

D (b)j

[
D (a)j

]3 4∆x2

3
−
∑
j∈Z

1

3
DD (b)j a

3
j

=
∑
j∈Z

a3
j+1bj+1 − 3a2

j+1aj−1bj−1 − 3a2
j−1aj+1bj+1 + a3

j−1bj−1 + 2a3
j−1bj+1 + 2bj−1a

3
j+1

24∆x2

−
∑
j∈Z

1

3

bj+1a
3
j−1 − 2bja

3
j + bj−1a

3
j+1

4∆x2

=
∑
j∈Z

a3
j+1bj+1 − a2

j+1aj−1bj−1 − a2
j−1aj+1bj+1 + a3

j−1bj−1

8∆x2

=
∑
j∈Z

(
aj+1bj+1 − aj−1bj−1

2∆x

)(
a2
j+1 − a2

j−1

4∆x

)
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∑
j∈Z

D (ab)j D

(
a2

2

)
j

.

References
[AM05] U.M. Ascher and R.I. McLachlan. On symplectic and multisymplectic schemes for the KdV equation.

J. Sci. Comput., 25(1):83–104, 2005. → page(s) 2

[BCKX13] J.L. Bona, H. Chen, O. Karakashian, and Y. Xing. Conservative, discontinuous Galerkin-methods
for the generalized Korteweg-de Vries equation. Math. Comp., 82:1401–1432, 2013. → page(s) 2, 35

[BDK83] G.A. Baker, V.A. Dougalis, and O.A. Karakashian. Convergence of Galerkin approximations for the
Korteweg-de Vries equation. Math. Comp., 40(162):419–433, 1983. → page(s) 2

49



[Bou93] J. Bourgain. Fourier restriction phenomena for certain lattice subsets and applications to nonlinear
evolution equations. Geometric and Fontional Anal., 3:107–156, 209–262, 1993. → page(s) 1, 6

[BS75] J.L. Bona and R. Smith. The initial-value problem for the Korteweg-de Vries equation. Philos.
Trans. Roy. Soc. London Ser. A, 278(1287):555–601, 1975. → page(s) 1

[CKS+03] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao. Sharp global well-posedness for KdV
and modified KdV on R and T. J. Amer. Math. Soc, 16:705–749, 2003. → page(s) 1

[CMS16] C. Cancès, H. Mathis, and N. Seguin. Error estimate for time-explicit finite volume approximation
of strong solutions to systems of conservation laws. SIAM Journal on Numerical Analysis (SINUM),
54(2):1263–1287, 2016. → page(s) 5

[Cou16] C. Courtès. Convergence for PDEs with an arbitrary odd order spatial derivative term. Submitted
in Springer Proceedings in Mathematics and Statistics, November 2016. → page(s) 3

[Daf79] C.M. Dafermos. The second law of thermodynamics and stability. Arch. Rational Mech. Anal.,
70(2):167–179, 1979. → page(s) 32

[Daf10] C.M. Dafermos. Hyperbolic Conservation Laws in Continuum Physics, volume 325. Springer Berlin
Heidelberg, 3rd edition, 2010. → page(s) 5, 32

[DiP79] R.J. DiPerna. Uniqueness of solutions to hyperbolic conservation laws. Indiana Univ. Math. J.,
28(1):137–188, 1979. → page(s) 32

[DK85] V.A. Dougalis and O.A. Karakashian. On Some High-Order Accurate Fully Discrete Galerkin Meth-
ods for the Korteweg-de Vries Equation. Mathematics of Computations, 45(172):329–345, 1985.
→ page(s) 2

[HKR15] H. Holden, U. Koley, and N.H. Risebro. Convergence of a fully discrete finite difference scheme
for the Korteweg-de Vries equation. IMA Journal of Numerical Analysis, 35(3):1047–1077, 2015.
→ page(s) 2, 3

[HKRT11] H. Holden, K.H. Karlsen, N.H. Risebro, and T. Tao. Operator splitting for the KdV equation. Math.
Comp., 80(274):821–846, 2011. → page(s) 2

[HLR13] H. Holden, C. Lubich, and N.H. Risebro. Operator splitting for partial differential equations with
Burgers nonlinearity. Math. Comp., 82(281):173–185, 2013. → page(s) 2

[HS17] M. Hofmanová and K. Schratz. An exponential-type integrator for the KdV equation. Numer. Math,
136(4):1117–1137, 2017. → page(s) 2

[KdV95] D.J. Korteweg and G. de Vries. On the change of form of long waves advancing in a rectangular
canal, and on a new type of long stationary waves. Philos. Mag., 5(39):422–443, 1895. → page(s) 1

[KMY12] H. Kanazawa, T. Matsuo, and T. Yaguchi. A conservative compact finite difference scheme for the
KdV equation. JSIAM Letters, 4:5–8, 2012. → page(s) 2

[KPV91] C.E. Kenig, G. Ponce, and L. Vega. Well-posedness of the initial value problem for the Korteweg-de
Vries equation. J. Amer. Math. Soc, 4(2):323–347, 1991. → page(s) 1, 6, 7

[KPV93] C.E. Kenig, G. Ponce, and L. Vega. The Cauchy problem for the Korteweg-de Vries equation in
Sobolev spaces of negative indices. Duke Math. J., 77(1):1–21, 1993. → page(s) 1, 6, 7

[LP15] F. Linares and G. Ponce. Introduction to nonlinear dispersive equations. Springer Verlag, 2nd edition,
2015. → page(s) 6, 7

[LV06] J. Li and M.R. Visbal. High-order compact schemes for nonlinear dispersive waves. J. Sci. Comput.,
6(1):1–23, 2006. → page(s) 2

50



[LV11] N. Leger and A. Vasseur. Relative entropy and the stability of socks and contact discontinuities for
systems of conservation laws with non-BV perturbations. Arch. Ration. Mech. Anal., 201(1):271–302,
2011. → page(s) 5

[Men83] Q. Mengzhao. Difference schemes for the dispersive equation. Computing, 31(3):261–267, 1983.
→ page(s) 29

[NS89] F.Z. Nouri and D.M. Sloan. A Comparison of Fourier Pseudospectral Methods for the Solution of
the Korteweg-de Vries Equation. J. Comp. Phys, 83:324–344, 1989. → page(s) 2

[Sjö70] A. Sjöberg. On the Korteweg-de Vries equation : existence and uniqueness. J. Math. Anal. Appl.,
29:569–579, 1970. → page(s) 1

[ST76] J.-C. Saut and R. Temam. Remarks on the Korteweg-de Vries equation. Israel Journal of Mathe-
matics, 24(1):78–87, 1976. → page(s) 1

[TA84] T.R. Taha and M.J. Ablowitz. Analytical and Numerical Aspects of Certain Nonlinear Evolution
Equation. III Numerical, Korteweg-de Vries Equation. J. Comp. Phys, 55:231–253, 1984. → page(s)
2

[Tao06] T. Tao. Nonlinear Dispersive Equations : Local and Global Analysis. CBMS Regional Conference
Series in Mathematics. American Mathematical Society, 2006. → page(s) 7

[Tza05] A.E. Tzavaras. Relative entropy in hyperbolic relaxation. Commun. Math. Sci., 3(2):119–132, 2005.
→ page(s) 5

[Vli71] A.C. Vliegenthart. On finite-difference methods for the Korteweg-de Vries equation. Journal of
Engineering Mathematics, 5(2):137–155, 1971. → page(s) 1, 2

[Win80] R. Winther. A conservative finite element method for the Korteweg-de Vries equation. Math. Comp.,
34(149):23–43, 1980. → page(s) 1

[ZK65] N.J. Zabusky and M.D. Kruskal. Interaction of "solitons" in a collisionless plasma and the recurrence
of initial states. Phys. Rev. Lett., 15(6):240–243, 1965. → page(s) 1

51


	Introduction
	Known results on the Cauchy problem for the KdV equation
	Consistency error estimate
	Stability estimate
	Preliminary results
	The 2-stability inequality 

	Rate of convergence
	Properties of the operator I+tD+D+D-
	Simplification of Inequality (39)
	Induction method

	Convergence for less smooth initial data
	Approximation results
	Proof of Theorem 2

	Numerical results
	Convergence rates
	Smooth initial data
	For a regularity between H3(R) and H10(R)
	For a regularity between L2(R) and H3(R)

	Appendix : Consistency error
	Appendix : Proofs of useful Lemmas of Section 4

