N

N

Numerical analysis with error estimates for the
Korteweg-de Vries Equation

Clémentine Courtes, Frédéric Lagoutiere, Frédéric Rousset

» To cite this version:

Clémentine Courtes, Frédéric Lagoutiere, Frédéric Rousset. Numerical analysis with error estimates
for the Korteweg-de Vries Equation. 2017. hal-01656394v1

HAL Id: hal-01656394
https://hal.science/hal-01656394v1

Preprint submitted on 5 Dec 2017 (v1), last revised 29 Oct 2018 (v3)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-01656394v1
https://hal.archives-ouvertes.fr

Numerical analysis with error estimates for the Korteweg-de Vries
Equation

Clémentine Courteés!, Frédéric Lagoutiére?, Frédéric Rousset!

November 20, 2017

Abstract

This article deals with the numerical analysis of the Cauchy problem for the Korteweg-de Vries equation
with a finite difference scheme. We consider the Rusanov scheme for the hyperbolic flux term and a 4-points
0-scheme for the dispersive term. We prove the convergence under a hyperbolic Courant-Friedrichs-Lewy
condition when 6 > % and under an "Airy" Courant-Friedrichs-Lewy condition when 6 < % More precisely,
we get the first order convergence rate for strong solutions in the Sobolev space H*(R), s > 6 and extend this
result to the non-smooth case for initial data in H*(R), with s > % , to the price of a loss in the convergence
order. The orders of convergence seem optimal with numerical simulations in some cases, at least when
s> 3.

1 Introduction

We are interested in the Korteweg-de Vries equation (called the KdV equation thereafter) which is a model for
wave propagation on shallow water surfaces in a channel and was first established by D.J. Korteweg and G. de
Vries in 1895 [KdV95]. We focus on the numerical analysis of the Cauchy problem

’LL2

Opu(t, ) + Oy <2> (t,x) + u(t,x) =0, (t,2)€[0,T] xR, (1a)

Ul—o (LL') = UQ(I'), S ]R, (]_b)

for which the local well-posedness in Sobolev spaces H*(R) is well-established. (In particular, well-posedness
was proved for s > 2 in [ST76], s > 2 in [BS75], s > 2 in [KPV91], s > 0 in [Bou93], s > —35 in [KPV93],
note that one of the first existence result was obtained by proving the convergence of a semi-discrete scheme
[Sj670]). Due to the conservation of the L? norm, this yields global well-posedness for any s > 0. Note that
global well-posedness is even known below L? (see [CKS*03|, for example). There are two antagonist effects
in the KdV equation: the Burgers nonlinearity tends to create singularities (shock waves, which yield a blow
up in finite time) whereas the linear term tends to smooth the solution due to dispersive effects (and creates
dispersive oscillating waves of Airy type). In some sense the above global well-posedness results come from the
fact that dispersive effects dominate.

Given the practical importance of the KdV equation in concrete physical situations, there exists a wide
range of numerical schemes to solve it. A very classical numerical approach is the finite difference method
which consists in approximating the exact solution u by a numerical solution (U§")(n,j) in such a way that
vy~ u(t", z;) in which " = nAt, z; = jAz with At and Az respectively the time and space steps. In most
cases, the convergence is ensured only if a stability condition between At and Ax is satisfied. Let us mention
for instance the explicit leap-frog scheme designed by Zabusky and Kruskal in [ZK65] with periodic boundaries
conditions, or the Lax-Friedrichs scheme studied by Vliegenthart in [V1i71]. Both are formally convergent to the
second order in space under a very restrictive stability condition At = O(Az3). The price to pay to avoid a so
restrictive stability condition At = O(Az?) is to design formally an implicit scheme, as in [Win80], for example,
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with a twelve-points implicit finite difference scheme with three time levels or in [TA84] with a pentagonal
implicit scheme.

The analysis and the rigorous justification of the stability condition started in [V1i71], where Vliegenthart
computed rigorously the amplification factor for a linearized equation. More recently, Holden, Koley and
Risebro in [HKR15] prove the convergence of the Lax-Friedrichs scheme with an implicit dispersion under the
stability condition At = O(Ax%) without obtaining convergence rates. More precisely, they obtain the strong
convergence without rate of the numerical scheme towards a classical solution if ug € H3(R) and a strong
convergence towards a weak solution L?(0,T; L% (R)) if ug € L*(R).

The aim of this paper is to prove rigorously the convergence of some finite difference schemes by analyzing
the rate of convergence and in particular its dependence on the regularity of the initial datum.

Let us mention that many types of numerical methods can be used to solve the KdV equation sometimes
with the aim of capturing the long time behavior or the low dispersion regime. The equation being Hamiltonian
(the Hamiltonian is the energy), symplectic schemes based on compact finite differences that conserve the energy
have been designed. We refer for example to [KMY12], [LV06], [AMO05]. Splitting methods (the equation being
split into the linear Airy part and the nonlinear Burgers part) are also widely studied. For example, a rigorous
analysis of such schemes has been performed in [HKRT11|, [HLR13]. One can also use spectral methods see
[NS89] for example or [HS17] where a Fourier pseudo spectral method is combined with an exponential-type
time-integrator. A quite widespread discretization is related to finite element type schemes, see for example
[BDKS83|, [DK85] for Galerkin methods and the recent work [BCKX13| where a non-dissipative scheme is derived
and applied to the computation of traveling waves.

In the present paper, we discretize Equation (la) together with the initial datum (1b) in a finite difference
way and our aim is to determine the convergence rate of this numerical scheme. We exhibit the error estimate
on the convergence error by a method which suits both non-linear term and dispersive term of KdV.

Let us introduce some notations and present the finite difference scheme here under study.

Notations and numerical scheme We use a uniform time- and space-discretization of (1a). Let At be the
constant time step and Az the constant space step. We note t" = nAt for all n € [0, N] = {0,1,.., N} where
N = |-£ | (with |.] the integer part) and z; = jAz for all j € Z.

Numerical scheme. Let ¢ € R’ and 6 € [0,1]. We denote by (v}l)(n,j)eNxz the discrete unknown defined
by the following scheme with parameters ¢ and 6 :

n+1 n n 2 n 2 n+1 n+1 n+1 n+1
v — v N (vj+1) — (vj_l) N 0Uj+2 — 3vj+1 + 3vj —v;
At 4Azx Az3
ol 5 —3vt , + 3T — v ot =207 + v
+(1-10) Jjt2 ]+A1x3 J J 1:c<J+1 2ij J 1)7 nel0,N], jeZ (2)
with
0 1 T .

v; uo(y)dy, j € Z. (3)

T Az,

If 6 = 0, we recognize the explicit scheme whereas § = 1 corresponds to the implicit scheme (with respect
77,+173’Un+1+3v;1,+17 n41

to the dispersi Without the dispersi plitz ~Hin Uit (1 — ) St S
o the dispersive term). Without the dispersive term A3 +(1-10) A3 , We

recognize the Rusanov scheme applied to the Burgers equation, which consists in a centered hyperbolic flux
(v741)" (o5 0)° Vi 20 v
Ax 2Ax
In the following, the constant ¢ will be called the Rusanov coefficient.
Without the non-linear term and the right hand side, we recognize the #-right winded finite difference scheme
for the Airy equation

and an added artificial viscosity ¢ ( ) in order to ensure the stability of the scheme.

ot —pn ntl 3yl 4 3v;’+1 — o tl

! v A o
N I 4 gIt2 e =+ (1-9)

vy — 3uF 30T — vl
I =0, ne[0.N], jeZ.
T

Remark 1. All the results are valid with a variable time step At™ and a variable Rusanov coefficient ¢. For
simplicity, we will keep them constant.



Remark 2. The choice of the right winded scheme for the dispersive part is dictated by the result in [Coul6]
on numerical schemes applied to high-order dispersive equations Oyu+ 02PT1u = 0, with p € N, which brought to
light that right winded schemes are stable under a Courant-Friedrichs-Lewy type condition (CFL-type condition)
for p odd (including the Airy equation) and left winded schemes are stable under a CFL-type condition for p
even.

Remark 3. This scheme (2)-(3) is a generalization of the one studied by Holden, Koley and Risebro [HKR15].
Indeed, they consider the Laz-Friedrichs scheme for the hyperbolic flux term together with the implicit scheme
for the dispersive term, which consists in taking cAt = Ax and 0 =1 in Scheme (2)-(3).

Discrete operators. For notational convenience for Scheme (2)-(3), let us use the notations introduced in
[HKR15| and define the following discrete operators. For any sequence (a})(n j)enxz

L, ap—aj . ai . —af . Dy(a)} +D_(a)}
D_(a)} = %a Di(a)} = ﬁa D(a)} = . B) - (4)
Equation (2) rewrites
U;H_l —vf v2\" il n  cAx n

J

Function spaces. In the following, we denote by H"(R), with r € R, the Sobolev space whose norm is

Nl

Il = ([ (1-+16)" @oPR) (6)

with u the Fourier transform of w. If there is ambiguity, an 'z’ will be added in H], for the Sobolev space with
respect to the space variable.
We study the convergence in the discrete space £°°([0, N, ¢4 (Z)) whose norm is defined by

2

> Azlapf] (7)

JEL

llallgoe (o, n],02 (z)) = sup [la"]|z = sup
(10,N1,64(2)) €0, N] 2 nefo,N]

for all @ = (a")nego,n] = (@) (n,j)efo,n]xz- This norm is a relevant discrete equivalent for the L>([0, T1; L*(R))-
norm.

Convergence error. Let u be the exact solution of (1a)-(1b). From u, we construct the following sequence

1 inf(t"+1,T) Tjt+1
wal} = ST = ). [ utaduts, i) € LN 2
1 Tjt1 ' (8)
[UA]? = E/ uo(y)dy, if j € Z.

Zj

From the averaged exact sequence ([u A]?) and the numerical one (U?) ()’ We define two piecewise constant

(n.9)

functions ua and va by, for all n € [0, N] and j € Z,

ua(t,z) = (ua)?,
( ) ( )j if (t,l’) S [t”,inf (thrl,T) [x[zj,xj+1[. (9)
UA(tv :E) = U;'La
We define the convergence error by the following difference
el =va(t",z;) —ua(t",z;), (n,j) € [0,N] x Z. (10)

Thanks to the definition (7), the convergence error satisfies

||e||é°°([[0,N]],€2A(Z)) = |lva — UA||L°°([0,T],L2(R))~



Consistency error. We denote by ( ) the consistency error defined by the following relation

(n,5)€[0,N]XZ

n+1 n 2 n
UA ) - — (UuA ) ;
6-;1:( )_] At( )] —|—D<U/2A>+9D+D+D (A)n+1
J

+(1=0)DyDyD_(ua)j — ——DiD_(ua)j, (n,j) € [0,N]xZ. (11)

Main result In our first main result we handle the case of smooth enough initial data, ug € H® (R), s > 6.

Theorem 1 (Convergence rate in the smooth case). Let s > 6 and ug € H*(R). Let T > 0 and ¢ > 0 such that
the unique global solution u of (la)-(1b) wverifies

sup ||u(t,-)|[z~®) < c. (12)
t€[0,T)

Let By € (0,1) and 6 € [0,1]. There exists Wy > 0 such that, for every Ax < @y and At satisfying

By "
17 At
{C‘F 2} Ar <1-— P, (13b)

the finite difference scheme (2)-(3) with parameters ¢ and 0 and time- and space discretization steps At, Ax
satisfies, for any n € (0,s — %}
l[uol| o
€™ [|e (ro,n7,62. (2)) < AT o] i (1 + ||Uo||2%+n> <c+ + [luoll s + lluoll 3+ lluoll e | Ac. (14)
2

In this estimate, e is defined as in (10)-(8)-(9) and Aq |y, , is defined by

3

AT Juo|l 5 = oXP (g (1+¢?) <1+ (( ;éo)) ) (T+(T4 +T2) ol 3¢ T)) Ce"‘TMT{l—i— 1016;}

(15)

IN

in which C'is a constant, k3 and r depend only on lluollz2w)-

Remark 4. Conditions (13a)-(13b) are Courant-Friedrichs-Lewy-type conditions (in short, CFL conditions).

The hypothesis [ + %} ﬁt < 1— By seems to be a technical hypothesis, which probably may be replaced with

the classical hyperbolic CFL condition cAt < Ax. Indeed, experimental results suit with Theorem 1 with this
classical CFL condition, see Section 7.

Remark 5. Thereafter, n should be chosen as small as possible, then norms ||ug||gs+n(w) should be regarded as
||Uo||Hs+(R)-

Thus, the scheme (2)-(3) is convergent to the first order in space in the £>([0, N, (% (Z))-norm.

In our second main result, we improve the previous result to handle non-smooth initial data uwy € H*(R),
s > 3/4. To perform the analysis, we first have to approximate in a suitable way the initial datum. Let x be a
C*°-function such that

e 0<x<1,
e x =1 in the ball B (0, %) and y is supported in the ball 5 (0, 1),
o X(=§) =x()

Let ¢ be such as P&
such that cp 0 (&) =x(

= x (€), where @ stands for the Fourier transform of ¢, and for all § > 0, we define (°

)
5¢), which implies ¢ = 590( ) Eventually,



e we shall still denote by u the exact solution of (1a) starting from the initial datum wug.

e Let u® be the solution of (la) with uf = ug * ¢° as initial datum, where x stands for the convolution
product.

e We denote then by (U?)(n,j)eﬂo, N]xz the numerical solution obtained by applying the numerical scheme
(2) from the initial datum (ud)a:

0 5 I s
W= =55 [ Sy (16)

Theorem 2 (Convergence rate in the non-smooth case). Let s > 3 and ug € H*(R). Let T > 0 and ¢ > 0 such
that the unique global solution u of (1a)-(1b) verifies

sup |[u(t, -)||Lem®) < c
t€[0,T)

Let By € (0,1) and 0 € [0,1]. There exists Wy > 0 such that for every Ax <@g and At satisfying

A
112020 <1- 5,

Az
11 At (17)
21

{C—’— 2] Ax — Po,

the finite difference scheme (2)-(16) with parameters ¢ and 6 and time- and space discretization steps At, Ax
satisfies, for any n € (0,s — 1],

1
2
I lem otz < Doty (14 00l 30,) (g 1+ Tl ) ol 827

In this estimate, e™ is defined as in (10)-(8)-(9),
© =1y if§<s<3,

° = 7minés’6) if 3 <s,

and Uy |y, is defined by

3
H4

3 k3T
TiCse 1

3
Lol g = C | ATl 5 +exp | ————lluoll ;2 )|

3 3
HA4 H4

3

where AT’”“OHH is defined by (15), C' and C's are two constants and k3 depends only on |Juol|L2(r).-

If ug € H™(R) with m > 6, then Theorem 2 implies an order of convergence equal to 1 and we get back the
result of Theorem 1. Note that the results are valid for any 7" > 0 in agreement with the fact that at this level
of regularity we have global solutions keeping their regularity.

To prove Theorem 1, we prove consistency and stability of the scheme. It is in the control of the consistency
error that we need the exact solution to be smooth. The most challenging part of the proof is the study
of the stability of the scheme in order to take advantage of the fact that the exact solution remains smooth
on the whole [0,7]. The main idea is to transpose at the discrete level the well known weak-strong stability
property for hyperbolic conservation laws that relies on a relative entropy estimate, see [Dafl0] for a detailed
presentation. This method is classical for the study of hyperbolic systems, see for exemple [CMS16] for the
numerical approximation of systems of conservation laws, [Tza05] for a relaxation hyperbolic system or [LV11]
for the approximation of shocks and contact discontinuities. An important outcome of this approach is that
in the stability estimate, the exponential amplification factor only involves the norm fOT |0z u(t, .)||Ldt of the
exact solution, which is bounded thanks to the dispersive properties of the equation. This allows to get the



convergence of the scheme on the full interval of time [0, 7] and also to handle less smooth initial data at the
price of deteriorating the convergence order as stated in Theorem 2. Indeed in order to prove Theorem 2, we
replace the initial data ug with a smoother one ug and just use the triangular inequality

lva = uallzes(o,ry,e2) < llva = udllzoe(o.r),22) + lud = uallL=or),L2),

where u) is the discretization of the exact solution u° of the KAV equation with initial data uj. We then

use the stability in L? for exact solutions of the KAV equation and the stability estimate of Theorem 1. The
amplification factor fOT |0:ul (t,.)|| L dt is finite and can be bounded independently of § as soon as the initial
data is in H*(R), with s > 3/4 because of the Strichartz estimate that ensures that at this level of regularity,
the exact solution is actually also such that d,u € L*([0,T], L>(R)). We then end the proof by optimizing
these estimates in terms of 4 and Ax.

Outline of the paper In Section 2, we state precisely the results of the Cauchy theory of KAV that we shall
use in this paper. Then, in Section 3, we analyze the consistency error of the scheme (postponing the more
technical part to the appendix). The aim of Section 4 is to derive the crucial ¢3 -stability inequality. We study
the discrete equation verified by the convergence error and we obtain the /3 estimates. Eventually, the rate of
convergence is determined in Section 5.

Section 6 is devoted to the study of the convergence rate for a non smooth solution. A convolution product by
mollifiers enables us to counteract the lack of regularity. It requires several general approximation estimates
between initial data and regularized initial data which are gathered in Subsection 6.1. The proof of Theorem 2
is developed in Subsection 6.2. Some numerical results illustrate the theoretical rate of convergence in Section
7. Finally, in Appendix A, we prove an estimate of the consistency error in £ ([[O, Nﬂ,ﬁz (Z))—norm7 and in
Appendix B, some technical lemmas of Section 4 are proved.

Notation Thereafter, the letter C' represents a positive number that may differ from line to line and that can
be chosen independently of At, Ax, u, ug, T and . We denote by « all numbers depending only on |[ug||z2(r)-
2 Known results on the Cauchy problem for the KdV equation

Let us recall the definition of Bourgain spaces. A tempered distribution u(¢,z) on R? belongs to X*? if its
following norm is finite

=

2

lullxen = ( | [a+ier qrir-ep* Iﬂ(T,£)|2d£dT> ,

where @ is the space and time Fourier transform of u. We shall also use a localized version of this space,
u € X**(I) where I C R is an interval if ||u|x..s(;) < +00 where

[ullx ey = nf{|[@llx 0, @1 = u}.

By using results from [KPV91], [Bou93], [KPV93], see for example the book [LP15], we get the following
theorem.

Theorem 3. Consider s > 0, 1 > b > 1/2. There exists a unique global solution w of (la)-(1b), with
ug € H*(R), such that for every T > 0, u € C([0,T], H*(R)) N X**([0,T]). Moreover, there exists ks > 0,
depending only on s and on the norm ||ugl/zz, and Cs > 0, depending only on s, such that, for any T > 0,

¢ Ssup Hu(t)”HS(]R) < Cs||U0||Hs(R)€KsT,
te[0,T]

K

. 3 4—i 3T .
° ifs> 1 |0z ull (o, 1), oo r)) < T 5 HUoHHg(R)Cge i, fori e{1,2}.

The growth rate in the above estimates is not optimal.

Note that a local well-posedness result for s > 3/4 follows directly from [KPV91]. In the present paper, we
will be only interested in s > 3/4, nevertheless, to get the global well-posedness for s € [3/4,1), we need to go
through the L? local well-posedness result.



Proof. Let us just briefly explain how we can organize now classical arguments to get the result. We refer for
example to [KPV93], [LP15] for the details. The existence is proven by a fixed point argument on the following
truncated problem:

v — F(v)

such that

F@)(0) = x(B)e™ P up = x(1) / e, (x (%) ”jm) dr.

where x € [0,1] is a smooth compactly supported function which is equal to 1 on [—1,1] and supported in
[—2,2]. For |t| < é < 1/2, a fixed point of the above equation gives a solution of the original Cauchy problem,
denoted by u.

Fix C' > 0, that does not depend on u, such that

3
Ix(t)e " ug| o0 < Cllug| 22

We can first prove that F is a contraction on a suitable ball of X, provided 8C?||ug| 267 < 1 for some 3 > 0
(that is related to 1 > b > 1/2) that does not depend on 0 nor u. In particular, for the fixed point, we can
ensure that

[oll xo0 < 2C]lug|| 2.

Next, by using again the Duhamel formula, we can obtain, for s > 0,
lollxen < eslluollzrs + es8” vl xou[[vllxen < eslluollms + 2¢5C uollp20% o]l xeu,

where ¢, depends only on s. In particular, by choosing d, possibly smaller than previously, such that 2¢,C|ugl| 126° <
1/2, we thus obtain that
[0l =0 < 2¢s|uoll e

Next, by using that the X*® norm for b > 1/2 controls the C(R, H*) norm (see for example [Tao06] lemma 2.9
page 100), we obtain that
lulleo,6),m:®)) < IVlle,me@)) < Bslluollms(w),

where B, depends only on s. Since the existence time § depends only on the L?-norm of the initial datum and
that the L2-norm is conserved for the KAV equation, we can iterate the above argument to get a global solution.
Moreover, in a quantitative way, by choosing n = |T/d| + 1 and iterating n times, we obtain that

lulleo,ry,me) + 1wl xso0.7y < Billuoll s < Cslluol ase™7,

where ks depends only on s and |[ug|/z2z while Cs depends only on s.
Finally, since the Strichartz estimate in the KdV context (see [KPV91]) reads

1 493
110x 7 €% g 1 r, 2oy < Clluollz2,

by using the embedding properties of the Bourgain spaces (see again [Tao06] lemma 2.9 page 100), we obtain
that

10zull (10,6, 250) < 100l La(r, Loy < Vil 3.0 < Clluoll 3
Again by iterating this estimate, we finally obtain that

k3T
[0zull La jo,1), L) < Cslluoll g€ 3

and the desired estimate follows from the Holder inequality.



3 Consistency error estimate

This section is devoted to the computation of the consistency error defined by Equation (11). As a starting
point, by using Theorem 3, we obtain the following estimates on the averaged solution ua.

Lemma 1. Let u be the ezact solution of (1a)-(1b) from ug € H*(R), s > 1 and ua be defined by (9). Then
there exists C > 0, depending only on s, and ks > 0, depending only on s and ||ug||rz, such that, for any T >0
and any n € [0, N] with N = | L],

o ([ (ua)" lle~ < Ce™ T lluo|la+,

tn+1
3T

e ifs> " At||[Dy (up)" ||iee < / [|0zu(s, )||2§ods <Tw et forie{1,2}. (18)

ol 5 gy

> w

tn

Proof. The Sobolev embedding H*(R) < L>®(R), for s > % yields the inequality

n 1

)l < 27 [ It )lleqeyde < € sup. (e ) coy.
tn te[0,T]

Theorem 3 implies

I (ua)"™ |le= < CClluo| = mye™ ",

which proves the first estimate of Lemma 1.
To prove Equation (18) for i = 1, we use a Taylor expansion:

tn+1

1 Tt
NN} / / u(s,y + Az) — u(s, y)dyds
tn T

1 tn+1 Tjt1 y+Aw
— Oz u(s, z)dzdyds
Ax2At /t /z]. /y ’

tn+1

g/ 18,u(s, )| . ds.
t’”.

At[|Dy (ua)"|lp = At

VAS)

= At

VAS

For i = 2, the same Taylor expansion gives, thanks to the Cauchy-Schwarz inequality,

1 tn+1 Tjt1 erA:E
AZAL /t" /xj /y Oz u(s, z)dzdyds

At ) gl Tjt1 y+Azx | ( |2
< —AtAx / / / Opu(s,.)||7dzdyds
AztAL2 S | z:

tn+1
g/ 18, (s, )12 ds.

tn

2
n 2
At|[Dy (ua)"|lp = At
4

oo

Theorem 3 concludes the proof.
O

Remark 6. The Sobolev regularity of the initial datum is at least Hi (R) in Theorem 2 because we need to
control fOT ||8mu(t,.)||§:oo(R)dt, for i € {1,2} in some of the proofs. This is explicitly needed in Lemma 1,
Theorem 3 and in the definition of Ap |y, i (15).

1

As a consequence, we control the /% -norm of the consistency error €” defined in (11) in terms of the initial
datum thanks to the following proposition.



Proposition 1. Consider ug € H*(R), with s > 6. There exist C > 0 and £ > 0, depending only on |lug|| L2,
such that for any n € (0,8 — %] and for any T > 0,

e e o wpsez 2y < €T (1 luoll? 4., ) { A ol + A [lfuollazs + lluoll g luollen ]}, (19)
Proof. The consistency error satisfies the following inequality (¢f. Appendix A for the proof):
€ lle(fo.x1.62) < B {At sup | (14 Ilullf ) llullarg| + Az sup [(1+ llullze) Ilullzrs + |a$u||L;c|u||H;]},
te[0,T7] t€[0,T7]

with Bj a constant that does not depend on u, ug, T, At and Az. By using the Sobolev embedding H%+”(R) —
L (R), with > 0, we obtain

€™ e po.v1.2) < B {A’ft s [(1 + ||“|Z;+n> |IUIH3] + Az | [(1 + IuIIH;+n> lJllas + IIuIIHgﬁIIuIIH;} } :
€0, < [0, T @

Theorem 3 enables to rewrite

n (261, +r6)T
e e oven) < At BiCoO3 e [(L |, ) ol ]

H%-%—n
+ 82 T | (14 Jhuoll -0 ) ol 1 + ol 5 ol ]
with C = max (BiCy 1,1, BiCy,C1, BiCy ) and 7 = max (K, + ke, Ky + 1, ).
Inequality (19) follows from the fact that there exists a constant By > 2 such that
(1 1huolly 300 ) < Ba (1 +[fuol ., ) -
We fix C' = max (BlCGCE+ ,Bgé) and Kk = max (2/u+ + mg,ﬁ). O
27N 277

4 Stability estimate

The stability property will be proved in stating a discrete weak-strong stability type inequality : Equation (39).
This inequality gives an upper bound of the convergence error at time n + 1 with convergence error at time n.
However, some terms B; of (39) are in factor of derivatives on the convergence error (€})(, j), which are not
controlled at this first step: we will cancel those terms in Section 5.

4.1 Preliminary results

We here collect some discrete "Leibniz’s rules" (Lemma 2), #2-norm identities (Lemma 3) and discrete inte-
grations by parts formulas (Lemma 4) which will be used in Subsection 4.2. Their proofs lie in Appendix
B.

Lemma 2. Let (a;)jez and (bj) ez be two sequences and let D, Dy, D_ be the discrete operators defined in
(4). One has, for any j € Z:

o DyD_(a); = D_D. (a);, (20)

D, (ab); = aj41D4 (b); +b; Dy (a);, (21a)
* D_ (ab); = aj_1D_ (b); + b;D_ (a), . (21b)
. D(ab); = D(a);bj 41 +a;-1D(b);, (22)



. Y [pr@,) =X [ @,

. %[D <0;2>]-r:jz€;[D(a)jr<C%1—2HLj—1)2,
. %[DJFD J Am2§[ j]z_;x?j%[D(a)jr

Applying (27) to Dy (a); rather than a; enables to state
Corollary 1. Let (a;j);.; be a sequence in ¢4 (Z). One has
2 4 2 4 2
3 [D+D+D, (a)]} =232 {D+D, (a)j} -3 {D+D (a)j] .
JEL JEZ JEL

Lemma 4. Let (a;) ;e and (bj);c, be two sequences in ¢4 (Z). One has

. > Di(a);bj ==Y a;D_

JEZ JEZ
. > D(a);bj=-> a;D(b
JEL JEL
Ax 2
. > a;Ds @), ==Y 5 D (@),
JEL JEL
Az? 3
. Y Dy (a);a5a551 ==Y Tx [D+ (a)j] :
JEZL JEZL
A‘Q
o ZD )j aj-1041 = 24 ; [D(a)jr’
JEZ JEZ
. > ;D (ab); = Y Dy (b), <L,
JEZ JEZ

1
o ZD+D, (a); D (ab); = —ZA—xZD+ ;ajaj 41 —|—Z A 5D (b); aj_1a541.

JEL JEZL JEZL
With (32) and (33), taking (b)jez = (%),ez in (34) and (35) gives the following corollary.

Corollary 2. Let (a;),c, be a sequence in ¢4 (Z). One has

: Yoo (%) = 24 oo,

jez j€z
. %D( ) D.D_(a), :;é[D+(a)j]3—§{D(a)jr.

10

(23)

(24a)

(24b)

(29)

(30)

(31)

(36)

(37)



4.2 The (4-stability inequality

We focus on the derivation of the £%-stability inequality (39), which corresponds to a discrete equivalent of a
weak-strong estimate.
Combining (5), (10) and (11), we obtain

e +0AtD D D_ (e)i ™ (38)
62> " n  CATAtL

J

DyD_ ()} — Ate?, (n,j) € [0,N] x Z.

Proposition 2 (¢%-stability inequality). Let (€%)(jn) be the convergence error defined by (10) with respect to
Scheme (2)-(3). For every 6 € [0,1],At > 0 and Az > 0, for every (n,j) € [0,N] x Z and v € [0,3) and

o € {0,1}, one has
[le"™" + 0AtD, D D_ (e)”+1||ji < |[le" +6AtDy DD (e)"||72 + AtBalle" |35 + Atlle” — (1 —6)AtD+D D (e)"|l2
+ALBy || D+ (€)"[[35 + At*Be||D (e)"[[35 + AtBa||D+D— (€)" Iz + AtBe ||D+D (e)" |72 + AtBy ||D+D D (e)" (|35

At
+ At|]€"|2 {1 +4— + At} ,
A x

A
(39)
where the coefficients B;, fori € {a,b,c,d,e, f}, are defined in Equations (40a)-(40f).
n At 2 . 3 n
Ba = I8l + 14 (1) e (204 5% [ae+ Zletllon + Slua) o] )
At2 n||2 At n |2 2
+ 1z 1P+ (a) e + 2o (llualle +2¢7), (40a)
Al‘ n n —0
B, = <6D+ (e); — c> (Az — cAt) + (1 — O)At||Dy (ua)" 1727, (40Db)
Be = le"[i= [+ Az] + [[(ua)" [l = ¢ + 2[le" e [[(ua)"lle= + Z-[le"[le=, (40¢c)
n||o Ax n
Ba= (1= )¢ |[ID(ua)" = + 571D- (wa)" o] (10d)
" Azz=7 + ||e"|[pe + 9]|€"|2 Az~ 2
BeQ(lﬁ)At{HuA) [leso + ||€"]]¢oe + el 5 lle” |l — Az, (40e)
1—0)Ax? Azz— ™| goo |2, Az7"2
By = ard (1 —opy ¢ LZDA L ArET el 4 Olletli AT
2 2
n Az?
HAHL = O)[ D (wa)” [le=} = =~ (40f)

Remark 7. One of our purposes, here below, will be to control the right hand side terms B; withi € {b,c,d, e, f}
only in terms of ua and not v. This is why, this inequality can be viewed as a weak-strong inequality.

Proof. Thanks to (38), one has
(7' + 0AtD, D, D_(e)"*)? = (RHS?)? + (RHS?)? + (RHS!)?

with
: 2 212 AL AR
AL [D (uae) } e

J

(RHS})? = (ef)*+(1-0)°A¢ [D+D+D, (e)j]2+At2

62 "
D(?).
J

11

[pep o],



2 n
(RHS?); =—2(1 - 0)Atej Dy D1 D_ (e)] — 2Atej D (%) - 2Ate D (uae); + cAzAtef Dy D (e)]
J

2\ N
+2(1 = 0)A’Dy Dy D (e)} D (uae)} +2(1 —0)At>Dy Dy D (e)] D<%)
J

2\ " 2\ N
— cAzAt* (1= 0)Dy Dy D (e)} Dy.D— (e)} +2At°D (%) D (uae)? — cAzAt*D (%) DiD_ (e)}
J J

— cAzAED (uae)! DoD_ (e)",
(41)

and

2\ N
(RHS})? = —2Ate) (e; —(1-6)AtDyDD_ (e);) +2A°D <%> €} +2At°D (uae)! €} — cAzA* DD (e)] €}
J

+ A#? (ei)2 .

Right Hand Side (RHS!)?  We here will bound Y., Az (RHS})®.

JEL

e To this aim, we use the discrete integrations by parts formulas of Subsection 4.1, to see that, thanks to

Identity (26),
< > ] ZAI‘AtQ |: n:| (6?4‘1—;6?_1)2.

JEZ

Z AzAt? | D

JEZ

2
e To bound ZjeZ Az At? [D (uAe)ﬂ , we use the following result, proved in Appendix B.

Lemma 5. Let (aj)jEZ and (bj)jEZ be two sequences in (A (Z), then they satisfy the following inequality

> [D(ab) } <Z{ )+ [(D+b) +(D_bj)2}}(Daj)2

JEZ JEZ

N Z% { (bj—1) Xt(bﬂ-l) 4 % (D1b;)* + % (D_bj)z} (a;)°. (42)

JEL

Relation (42) gives

> A [D (uae) } <3 AzAr {( A};)Z + % (s (uA)?)z + % (p- (UA);)Q} (De})”

JEL JEL

+y Atﬁx {([UM?—l)Q + ([UA}?H)Q + 35 <D+ (UA)n)Q * STN <D_ (UA)?)Q} ()"

JEZ

We turn our attention to the term >, AIQM?’ {(D+ (uA)?)Q + (D- (uA)}‘)Q} (De;’)% Definition of De}
gives

AzAt3 . . . . ler\
> S {(Dewa)* 4 (D-a))’} (06)* < X Aaae Dy (ua)" - ()

JEL JEZ

<ZM AtHD+ (ua)" [[7= €} .
JEZL

12



e Thanks to Relation (27), one has
Zw [D.D_(e)7]° = Y PArAz {DJF } -3 A Aa;[ )’ }

JEZ JEZ JEZ

All this yields

3 Az (RHS])? <3 AzAr [D+D+D_ (e)?] S0P (1—20) + 3 EAPAx [D+ (e)?] ’

+ ZAmAR [D (e);?]2 {(e?“;’ey—lf + [(m)?r - 02}
s aw () {1+ 5 (fnal) + (alin)+ 25 (0 wa)) + 258 (Do (ua)y) + 255D (ua) | |

Right Hand Side (RHS}L)i We next focus on ), Az (RHS?)i and on its different ten terms.
e By Relations (29) and (31), one sees that

> —2(1 - 0)AtAze} Dy D D_(e)} = > 20AtAze} D DyD_ ()} + > 2AtAzD_ (e)} DyD_ (e)}

J )

JEZ JEZ JEZ
2
= 20AtAze DL DLD_ (e)" — 3 AtAa® [D+D (e)" }

JEZL JEZ

Equality (28) enables to write

3" —2(1 - 0)AtAwe} DDy D_(e)F = 3 20AtAwe! Dy DL D_(e) =3 AtAa? [D.D.D- (e);r
JEL JEZ JEZ
- Z AtAz? <D+D (e)?) ’
JEZ

e Thanks to Identity (36), one has

Z —2AzAte} D (e;)" = Z Az;At {D_,_ (e)?r

JEL J JEL

o Identity (34) gives

Z —2AzAte} D (une)y Z AzAtDy (up)] ejefq < ZAmAt ) [|Dy (ua)™|]gos -
JEZ JEZ JEZ

e Moreover, Relations (20) and (29) imply

Z cAz’Atel! [DyD_(e)}] = Z —cAz?At {D+ (e)ﬂ ’

jEZ JET

e To bound ;.5 2(1 — 0)At*AzD D, D_(e)} D (uae)y, we use Lemma 6, whose proof lies in Appendix
B.

13



Lemma 6. Let (a;);cy, (b));cy be two sequences in (4 (Z) and o € {0,1}. One has

2

S 0.0, D- (@), D(ah); < 3 51D, 0,1+ 1D ), 1} (DD (@)

JEL JEZ
+ Y {100l - 5= 0, (P40 (0),)’ +Z+|D+ 2 (D4 @,) -0 (DeD@),)]
36Z JEZ

2 fAt {\Df (b); 1+ 1D (), 1} (0))* . (43)

JEL

Thanks to this lemma applied with a; = e

7 and b; = (uA) one has

320 - OARALDL DD (@ D (use); < 3 2EEL1 = 0) (|04 (wa)] |+ 1D- @a)} [} (D4D4D- )])]
+ 32880 0) (1D (a)] |+ 1Ds @a)} 1} (65)?
+ 0= 0 {IDswa) |~ - §ED- (ua); | (DD @)

£ 30 0)2eAR|D: ()" [ (D (0)]) = 3201~ 0)AwA? (wa)} (DeD(e)})

Jj€z JEL
for o € {0,1}.
e To bound 3., 2(1 - 0)At*AzD D, D_(e)} D (%) ~, we use Lemma 7 (proved in Appendix B).
J

Lemma 7. Let (a;);c; be a sequence in (3 (Z) and v € [0,3), one has

& Ak + [lalles +9ljal B Aa7~b :
S .00 @0 () <3 Jollel (D.D_(a);)
JEL J o jez

+_llalle= (D+D(a);)*.

JEZ

Applying this inequality to a; = e

7, one gets

2 n
3" 2(1 - 6)At*AzD, D, D_(e)}D (2)
JEL J

1 1 2
<3 APAz(1-0) (Axf—v +l€] e + 9|\e”|\§mmv—f) (D+D, (e);)
JEZ
+ 37201 - ) AP Az|e" ||~ (D1 D(e)?)” .

JEZ

2
Once again, Relation (28) transforms 3=, At* Az (1-0) (Ax%_'y +[le"™ || + 9||e”||%xAx"f_%) <D+D_ (e)?)
to obtain

2 n
Y 2(1 - 0)APAzDLD.D_(e)} D (e)
J

° 2
JEZ

14



< 3 ARA(1 ) [Act )+ el + 9]l 3 AT ] (DyD(@)7)
JEZL

2

At?Az?
+ 300 S [AeE T e+ 9lle” B A7 H] (D4 Dy D- (o))
JEL
n n 2
+3 201 = )AL Azle"||p~ (D+D(e)})" .
JEZ
Remark 8. Thereafter, a; will be replaced by the unknown e} whereas b; will be replaced by the eract

solution [ual?. We could not use Lemma 6 with b; = % instead of Lemma 7 because D (b); in Lemma
6 will be replaced by D(5); = D1.(5)} which is always unknown.

o Relation (31) gives

A2 AL 0 n n P Ax3AL? n1?
> —cAaAR (1= 0)D4 Dy D_(e); D1 D-(e)] = Y (1= )e="— [D+D+D, (o)
JEZ JEZ

e To deal with >, 2AzAt2D (%) D (uae)j, we use Lemma 8 (see Appendix B for its proof)
j

Lemma 8. Let (a;);c; and (b)), <, be two sequences in (A (Z), then one has

S"D(ab), D (“j) _ Y [pl)) et b

JEL
-3 D) [ }34&” 72 ~DD(b),d%. (44)

JEL ]EZ

Identity (44) with a; = e and b; = (uA) gives

2 n
Z 2AzAt>D <62) uAe Z AzAt? | D [ ﬂ [(“A)?ﬂ eig + (uA)?_l eg‘_l]
J

JEL JEZL
SAx3AL? n nl3 20z AL? n o/ o3
- =D wa)) D)) =Y DD wa)y ()
JEL JEZ
e Relation (37) yields
e2\" cAz?AL? nl3 2cAz2 A2 a3
Z —cAT?At*D (2> D.D_( Z G [D+ (e)j} + Z — 5 {D (e)j} .
j€L J JEZ JEZ

e Relation (35) implies

Z —cAZ?At’D (une)} Dy D_(e)} ZcAt Dy (un)j el — ZcAtzD (ua)j €€y
JEL JEZ JEZ

Thus, thanks to the Cauchy-Schwarz inequality,

3" —cALALRD (uae)] DiD_ (o)} < 3 eAR||Dy (ua)" lle (€2)* + S cA||D (ua)" (o= ().
JEL JEL JETZ

15



Gathering all these relations yields the following inequality, for o € {0,1}.

n n n n||lo A n n
> Az (RHS}), <> 20AtAze} DDy D_(e) + Y (1 - O)At*Ax [\|D+(M) |7 + 7“'“||D_ (un) Woo} (DyD_el)?

JEZ JEL JEZ

2At n  CAt n cAt n 1-46 n n n
+ S anae{ Il - 280D (wa)) & + LHID sl + So DRl + E5 D D]+ 1Dk ()
JEZL

Ax _ cAtAz
+ZAxAt{TD+() —cAx

JEZL

+ZAmAt2 [D (e)j] {(UA)j+1 ejr1+ (ua)j_ ej1 — 3 D (ua)j D () + 3 D(e)j}
JEL

Dy (0} + (- 081Dy )" [ [P @]

+3 " AtAr {—Am —2(1— 0)At (ua)" +2(1 — ) At]le"|[e + At(1 — 0) [Ax%*V 1€ lese + 9]]€™]| 2 Azﬂ*é] } (D4 Del)?
JEZ

+ 3 anae { A0 4 LZOATEL SO0 [1p, (ua)y |+ 1D- (ua); |

2
+a 76)AtAx

2
(Am%ﬂ + €™ [ee +9||e"\|§mm7*%)} [D+D+D, (e);] .

Right Hand Side (RHS?)C Let us now focus on }_;, Az (RHS?)? and its four different terms.

e From Young’s inequality,
2
-3 20z (eg (1-6)AtD.D,D_ ())e <ZAxAt( —(1-6)AtD,D,D_ (e)?)

JEL JEL
+3° Azat ()

JEL
JEZL JEZ JEZ

2
2 J
Then, Identity (26) gives

n n 2
> 2AzA#D <2>_e"<ZAt2 n +2At2m[ )}Q(W;Jl>

JEL JEZL JEL

e Once again, we apply Young’s inequality to obtain

ZQAQ:A?SD( ) €5 <ZAt2 ?2+2At2Aaj2
j

e One also has

Z 2AzAt2D (UA@)? €j < Z At (e?)z [(ua)™|17= + Z At? (G?)Q

JEL JEZ JEZ
e Finally, we see that, thanks to Young’s inequality,
3" —cA?APDLD_ ()T € < Y 22 A2 ()" + Y 2482 (e

JEZL JEZ JEZ

Thus, we have

n\2 n At n n At
> e (RiS))? < Al { 50 leua)" B + 2] b+ adfert {a4agh 4 aef

JEZ
2 2 en+1 + @T.L71 2
+3 Azt (ey —(1—9)AtD,D,D_ (e)?) +3 A?AL? [D (e)ﬂ (J2J> .
JET jez

16



Final inequality To conclude, the convergence error satisfies the following inequality

3 Az (e;“ +OAtD, DL D_ (e);’“)2 <3 Az (e; +OAtDL DD (e);‘)2 + Atle”|[% A

JEZ JEZ
+3 AtAz (eg — (1-6)AtD,D,D-_ (e);?) g 3 AzAta, [D+ (e)j] 4 Y AzArA, [D (e)ﬂ ’
JEL JEZ JEZ

+Y " ArAta, <D+D_ (e);)2 +Y AzAtA, <D+D (e);) g 3 AtAzA; {D+D+D_ (e)ﬂ ’
JEL JEZ JEZ

At
+ At||e"||§2A {1 Ao+ At} ,

with

Aoo ([“Ag-l) + <[“A]2j“) 5 B (0 way)’+ 3 (0s ) | + 51D )

(1-90)
2

+ [ID= (a)} |+ 1D (ua)} 1] + 1Dy (ua)" lle= (1 + CN)

Az
cAt 2At

n n o At .
+ 3 1D @a)" lle = ==DD (ua); + = (Ilua)™|Z= +2¢%)

7 Ax
Ax? cAzAt n Y
Ay = EAt+ =D ()] — eda — “=E=D. (] + (1 - 0) AU D (ua)" 127,
n n 2
€ir +€-71 n 2 n n n n 8A12 n n 2cAz n
A, = (3*23> 1+ Ax}—i—([uA]j) _02+(uA)j+1 el t(ua);_y ejfl_TD (ua); D(e);+ 3 D(e); ,

n||o Az n
Aa= (1= )¢ 1D (ua)" 5 + 571D- (wa)" =]

Ao = —2(1 = )AL (up)? + 2(1 — O)At]|e" ||~ — Az + A#(1 — 0) [Ax%ﬂ + 1€ e + 9\|e7l\|,§mmv*%] :

and

DA A= D, sy 4 1D (ua)] |
Ax?

4

A = At {(1 _ap) 4+ U

_ A

+(1-96) 1

(8t ljelem +9len 07 )]
o Since DD (ua)" [le= < 21D (ua)" li=. 1D (ua)" lle= < 1D (ua)" fle= and AL|D (ua)" [l < 22 .
then

Aa S Ba7

where B, is defined by (40a).
e For A,, we recognize the definition (40b) of By.
e For the term A., we have

Ac < le™l7 1+ Aa] + [|(ua)"[[7= — ¢ + zefi (ua)jiy +

562’_1 (UA)?—1 +3 (UA);L-H 6?—1 +3 (UA);'L—1 6?-1—1

3 3
1l e

Thus, one has A, < B, (40c).
e Furthermore, from (40d) and (40e)
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and

o At last, we see that Ay < By defined by (40f).

5 Rate of convergence

In the left hand side of the /3 -stability inequality (39), e?“ appears in the operator I + At0D D, D_. The
study of this dispersive operator is the aim of Subsection 5.1.

In the right hand side of (39), D (e)}, Dy D_(e)? appear in factor of some terms B;. Since we have no

control on these derivatives of the convergence error, we reorganize terms B; in Subsection 5.2 to obtain non-
positive terms : the C; and E; terms of Corollaries 3 and 4. We notice that the reorganization is not exactly
the same for 6 > % and 0 < %, therefore, we state two corollaries.

In Subsection 5.3, the correct CFL hypothesis enables to cancel extra terms C; and E; and an induction
method concludes the convergence proof.

5.1 Properties of the operator [ +0AtD,D,D_
For more simplicity, we denote by A the operator
A=I1+0AtD, D, D_, (45)
where [ is the identity operator in (3 (Z).
Proposition 3. For every At > 0 and Ax >0, A is
e continuous (with a norm depending on AA—;g) from (34 to (%4,
e invertible.

Moreover, one has the following inequalities, for any sequence (aj)jGZ € (A(Z)

160 At 40At
lally, < hdaliy < {1+ 5" |1+ T | bl (46)

Azx3 Ax3

Reriltark 9. Inequality (46) implies that the inverse of A is continuous from (4 to {4 with a norm independent
of x5+

Proof. Given a € (3 (Z), we may define the function @ € L?(0,1) by

a(e) =Y ae®™* e (0,1),

kEZ
(the sequence a is seen as the Fourier-series of the function @). Parseval identity yields
1
S Acfa]? = Am/ 1@ (€) [2de. (47)
JEL 0
We define furthermore the shift operator S¢ with ¢ € Z by

4
Sta = (ajJrg)jEz ,

the associated function verifies - '
Sta(§) =e ™ (g), €€ (0,1).

18



The function associated to Aa is
- At , .
Aa (f) —a+ GT ( —4imé — 3e —2im€ 43— 62171'5) , &€ (0’ 1)’
At ) )
{1 + GF [—2ie™ " sin (37¢) + 6ie ™™ sin (€)] } , £€(0,1).

As sin (37€) = 3sin (7€) — 4sin® (7€), we obtain

Aa(§) =3 {1 + 8if AA; e gin® (wg)} .

The operator A is thus inversible and its inverse is defined by ﬁ(g) = L a().

148i0 2k e~ i€ sin? (7€)

Moreover, this operator and its inverse are continuous since

1
el = A |

and the module |1 + 8i0 £k e~ sin® (n€) |2 satisfies

1+ 8if At

ALS e sin® (w€)

a(e)l*de,

2

At 2 At 2 At
. —imE 343 — 4 3
1+ SZG—Am3e sin” (7¢) (1 + 80A 5 sin (7r§)> + <89 A 008 (7€) sin (ﬂ'f))

A 4 At -2
=1+ 169A 5 sin” (7€) (1 —|—49ﬁ sin (775))

At At
1,14+160—— (1 49—
Thus, the operator A verifies

1
Ax/o () 2d < |lAall% < {1+169A (1+4e )}Am/ [a(e)Pde.

We conclude by using Identity (47). O

Remark 10. The norm of the inverse operator A~!

pendence is crucial to be able to impose a hyperbolic Courant-Friedrichs-Lewy condition ( [c + ] < 1) for
0> 3 L to establish Equation (66) for example.

The operator A enables us to control not only the ¢%-norm (as proved in Proposition 3) but also an h%-
discrete norm and h3-discrete norm as in the following proposition.

Proposition 4. Let A be the operator defined by (45), then for any sequence (a;);cz, one has
1AaliZ, = llall3, + 0AtAT|Dy D—(a)|[3 + 0*A(|D Dy D_(a)] .

Proof. We develop the square of the ¢4 -norm of (‘Aaj)jeZ :

> Ax(aj+0AtD.D.D_(a);)” =Y Ax(a;)*+ Y 20AzAta;D.D.D_(a); + Y 0*°AzAt* (DD D_(a);)".
JEZ JEL JEZ JEZ

Let us focus on the cross term. Discrete integration by parts (29) together with (31) (with D_(a); instead of
a;) give

> 20AtAza;D D D_(a); = — Y 20AtAzD_(a);D4D_(a); = Y 0AtAz* (DyD_(a);)*,
JEL JEL JEL
which concludes the proof. O
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The following proposition enables to deal with the term e — (1 —0)AtD; Dy D_ (e)} in Equation (39).

Proposition 5. For 6 € [0,1], assume the CFL condition At(1—20) < ATﬁ is satisfied. Then, for any sequence
(aj) ;g it holds

2
3 Ax (aj (1 - 6)AtD,D.D-— ()j) < || Aall?, - (48)

JEZL

Proof. We develop the expression:

3 As (aj —(1-6)AtD.D,D_ (a)j)2 =Y Ax (aj Y 9AtD.D.D_ (a) j>2 ~ 3" 2A2Ata; DL DD (a),
= JEZ JET
+3 ArAr(1 - 26) (D+D+D, (a)j)2 .
JEL

By applying Relations (29) and (31) (with D_ (a); instead of a;), the previous equation becomes

> Aa (aj —0)AtD, D, D_ (a) ) Zm (aj—l—HAtDJrDJrD (a) ) Zm?m (D+D ())2

2
+3 " AzAR(1 - 26) (D+D+D, (a)j) .
JEL
If > L1, Proposition 5 is proved.
If 6 < 5, thanks to Identity (28), we have

3 Az (aj —(1-6)AtD,D,D_ (a)j)2 =Y Ae (aj Y 9AtD.D,.D_ (a)j)2 -3 At (D+D_ (a)j)2

JEZ JEZL JEZ
4A2(1 — 20) 2 4A2 (1 — 20) 2
+ Z; Sa (DeD-@),) - Z; = a (DeD(@))

2
Since At(1 — 20) < AT””B, the term W is upper bounded by AtAz?, which transforms the previous
equation into

3 As (ar(179)AtD+D+D_( j) <Y Az (a]+0AtD+D+D (a) ) =3 Ax?At (D+D ())2

JEZL JEZ JEZ
2(1 —
+ Z AtAz? (D+D_ (a)j>2 — Z W (D+D (a)j)2 :
JEL JEZL

The conclusion of the proposition is a straightforward consequence, since 1 — 26 > 0.

5.2 Simplification of Inequality (39)

The previous study of the dispersive operator A enables us to reorganize terms in ¢3-stability inequality (39)
in a way simpler to study : signs of new terms are easier to identify. The reorganization is not exactly the same
for 0 > % and 6 < %, as seen in the two following corollaries of Proposition 2.

Corollary 3 (Corollary of Proposition 2). Consider Scheme (2)-(3), Let (€7)(jn) be the convergence error
defined by (10). Then, for every n € [0,N], v € [0,%) and 6 > 3, one has
[ Ae™ (2 <[l Ae™[[%; [+ AtE,] + AtCy || Dy (e)" |l + ACe ||D (e)" Iz, + AtCe [ID1D (e)" Iy

nn2 ni2 At (49)
+ AtCr D+ DD (e) [lig + Atlle”|liz 1 +41 + At
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with

. At At . 3
Fo = a3l (1 52 ) #1104 (o)l (74 5 |20+ Sl + S0l
VAL At At
n||2 2
D)l VYRS + S5 12T (s
Ax
Cy = 5 — D (e)] —c) (Az —cAt), (50b)
e = lua )l + { el 1+ ] + 2eem ua) e + 5 el b = 2 (500)
n 1 [ Az 4 [e"]|e= + 9] 2 Az7—3
Ge=2<1—e>At{|<uA> T }—Ax, (50d)
1—6)Az? 1 Axz=? oo + 9|20 Az~ 3 A3
Cf:At{(1—29)+(2)x 3+ * el ; "l Ac H—Z. (50¢)

Remark 11. Corollary 3 is, in fact, true for all 6 #0 (if 0 <
hypothesis At(1 — 20) < Af ), but we essentially use it for 0 >

we have to add the dispersive CFL condition

N N

Proof. We choose o = 0 in Inequality (39).
e First, we upper bound ||e™ — (1 — 09)A15D_~_D_~_D_(e)”||?2A in (39) by |le™ + 0A1§D.~.D.~_D_(e)”||?2A thanks to
Proposition 5
e We tranform By, in (40b) into
= Cy + (1 = O)At][ D (ua)"|[7~,

with A
Cy = < 6$D+( o) c> (Az — cAt) . (51)
The Bp-term in (39) thus is
> AzAtB, (Dyel)® = > AzAtC, (Dye)® + (1 - 0)AL|| D ulp |7 || D™ ([ (52)
JEZL JEZ

For any sequence (a;),ez, the following Gagliardo-Nirenberg inequality
1D+ (@)lI7z < llallez [1D+D—(a)ll ez,

is valid even with the (3 -norm. We will use it on ||[D,(e)"[|?, in (52), to obtain
A

lle"||2, VIAEAZ| D1 D_(€)" ||,

1—0)A#?||D "12.||Dye™||% < (1 —0)At?||D "2,
( )AL Dy (ua)™ [z [[D1e™[lpz < ( YA || Dy (ua)" [ NI

Proposition 4 enables to make ||.Ae™||2, appear and
A

le" +0ALD, D, D_(c)"|%
VOAtAx
VLA (ua) | lle” + 0ALD, DL D_(e)" |5

(1= )AL ([ Dy (un)"|[7< 1D+e™[I72 < (1= )AL D (ua)"| |7
< (1-06) VAL
="Vi Vs

e As a third step, we transform the Bg-term of (39) (recall that o = 0):

S AzAtB, (DyD-(e)2)” = S (1-0)A Az (D4 D_(e)7) + (1 _99)

JEL JEZ

2

A D+ (ua)"lo=6AtA]| D2 D_ ()"
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Relation (28) allows to rewrite the term > ., (1 — 0)At? Az (D+D,(e)?)2:

t2A
L (DyDyD_(e)7).

S (- 0)ArAz (DyD_(e)7) =S (1 - 0)At2Az (D D(e)?)” + > (1~

JEL JEL JEZL
Proposition 4 gives

(1-0)
26

—0)
20

n 1 n n n
At||D+ (ua)"|le<0AtAZ|| D D—(e)" || S( At|| D (ua)"llele™ + 0AtD D D—(e)"||7; -

e Eventually, we focus on the B-term in (39). We decompose By into
By = By + At*(1 = 0)[| Dy (ua)"||e=

with

1— A2 A%—'y LTI nQOQA 'y—% A3
Bg:m{(l_z(m( 002 [y Ard Tt e 4 Oll7l A H_Z

which leads to the following inequality (thanks to Proposition 4):

(1-6)
02
(1-6)

AtBy||[Dy Dy D_(e)" ||e2 = AtBy|[Dy D D_(e)" Hz2 + AtHDJr(UA)nHE‘X’||9AtD+D+D—(€)n||?2A

< AtBy||[Dy DD (e)"[|7 + At||D (ua)" llelle” + 0AtD DD (e)"||7; -

Thanks to all the previous relations, we rewrite Inequality (39) as

A2y <IlAe™|[7y [14 AtCu] + AtCy || D (e)"[[75 + AL Be |ID ()" |l + At [Be + (1= )AL |D1-D (e)" 172

AtAz? n At
+ At {BQ+(10) = } 1D+ DD ()" + Atlle|1% {1+4A +At}
with
. At 1-60 1-60 At . 3.
Co = bl (14 50 ) + 1D+ (un)" llew (2= 0+ 222 2280 2 [t 2penom 4 ua)" e )
v [0=0) VL o A
D eyl AV 20 1 ae 2

For 0 € [% 1], one has C, < F, with F,, defined in (50a). Finally, we define C. := B, and C, := B, + (1 — §)At
2
and Cy := B, + (1 — §) 8182,
O]

Corollary 4 (Corollary of Proposition 2). Consider Scheme (2)—(3), Let (€7)(jn) be the convergence error
defined by (10). Then, for every n € [0,N], v € [0,1) and 6 < , one has, if At(1—26) < AfB

A2, < (A2, [1+ Fulbt] 4+ AtE Do ()% + APE]D(e)" Py + AtEy| Dy D_(e)" |2

At
ni2 n|2
+ ALE|| Dy D(e)"[% + Atlle"|[2, {1+4A +At}

with
. At At . 3.
Fo = [l (14 52 ) + 1D (ws)"llem (74 5 |24 3l llem + Sllcua)"le=] )
VAL A At
D "2, 22—+ — 1422— 4
D4 (wa)" [Wmmxz R e (54
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E, = <MD+ (e) — c) (Az — cAt) + (1 — O)At]| Dy (un)™ ||e, (54b)

6
n n n n 2c n
Be = a1 + {11 1+ A+ 2l ua) e + 5 el b= 2 (540
_ 4 (=002 [ Ard= 4 [Jer]o +9[Je"] e Aar—
FE;= N {At l(l - 29) + 5 |f+ D)
n 1—0)Ax? n Az n Ax?
#atl1 = 0104 wa)” e + S P {104 ) llem + GHID- (wa)" =} - S Gta)
n " Azz 7 + |[e"|[pee + 9||e™||2 AzY 2 4AL

Ee—zaemt{um e + e e + el el ]}M{aw)

(1—0)Az?

Az + [[e" ]| + 9][€"|[3 Az~ 3
5 +

2

+ At(1 - 0)||Dy (ua)" ||eoo} . (54e)

Remark 12. The variables F, are identical in both previous corollaries. It is noticed that Corollary 4 is valid
for all 0 but thereafter, it will be mainly used for 6 < %

Proof. We choose o =1 in Inequality (39).
e From Relation (28), we transform the By-term in Inequality (39) into

(D.D_e")? — - L (D, Den)?.

S AtAzBy (DD D_e?) =3 AtAzB; { A4 e

; ; 2

JEL JEZ
e We upper bound |le" — (1 — 0)AtD, D, D_(e)"||?, by ||e® +0AtD D D_(e)"||?, thanks to Proposition 5,

A A
to obtain, instead of Inequality (39),
|len T 4 9AtD+D+D_(e)"||§2A <|le™ + At9D+D+D_(e)”|\§2A [1+ B,At + At] + AtBb||D+(e)"\|§2A
+ At*B.||D(e)™||7: + At< By + 4By ||[DyD_(e)™]2
‘ ‘A 4T A2 T €A

AB;

caifn, 1

At

We note E, := B, + 1 and verify E, < F,. Finally, we fix E, := B, with 0 = 1, E, := B,, Eq := By + 2%

iB Ax?
with o = 1 and E, := B. — 3 5.

O

In the following, we will have to show that C; and F; are non-positive to loop the estimates.

5.3 Induction method

We are now able to prove, by induction, the main result for a smooth initial datum: Theorem 1.

Proof of Theorem 1. Let T' > 0 and s > 6 with ug € H*(R). Let the Rusanov coefficient ¢ be such that (12)
is true. This choice is possible because of Theorem 3 which proves that the exact solution belongs to L$° for
t € [0,77.

Remark 13. Thanks to Hypothesis (12) : sup |[u(t,-)||r=m®) < ¢, there exists a constant g > 0 such that,
t€[0,T]

for all At > 0, Az > 0 and for all n € [0, NJ,

[[(ua)™[|gee(z) + o < [|uallee (o, N]5e0 (z)) + 0 < SEupT]HU(t’ Mo @) + o < e
telo,
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Let Sy € (0,1), 8 € [0,1] and ~ € (0, %) We fix @y > 0 such that

- [[uoll zs
@y = |:AT,||u0|H2 (1 + ||U0||2%+,,,> < op 1 ol ol g [uoll ; (55)
2

2=

defined in (15).

We also fix wo > 0 such that following Inequalities (56) and (57a)-(57d) if > 1 and following Inequalities (56)
and (58a)-(58d) if § < 1 are verified

3

with AT,HUOH
H

wi ™ <3, (56)
e for 0 > %,
1_xa 1_ 3_ 2
wg g\/[woz K +w§ q +2 sup |[|u(t,-)||po®) + = < ap, (57a)
t€[0,T] 3
13(1 — Bo) 14
<
2er1 W0 =ho (57b)
(1—0)w? 111 14 ) 1
_ Az 770 Z4 = < —
(1-20)+ 5 c+2—1— 5 W0 <0, 1ft9>27 (57¢)
11(1 = 6) 3o Lo
< ——
2 + 1 0 = 507 if 0 9’ (57d)
e for 6 < %,
1_xa 1_ 3_ 2
(-L)04 g\/[u}g v +w02 'Y:| +2 sup ||u(t,)||Loc(R) + gc < «p, (58&)
t€[0,T]
1
12w " < ao, (58Db)
1
(1—6)(1 —po) (1—=Bo) 31— w5
-7 ™ poo — < 58
g s e + = El ™+ S < (350)
(1-6)1—=5o) - 11 1y (1=50) [ (1=50) o, wo(2+wo)
- — 1-6 ™| poo < By.(58d
51 —29) <0 |cT w0 | A=0a)lleg=50y |57 —2py“0 1 < Bo. (58d)

Remark 14. These conditions on wq are very likely not optimal.

Let us prove by induction on n € [0, N] that
if Az < min(&g,wp) and if CFL conditions (13a) — (13b) hold, one has ||e"||ge < Azz77, for all n € [0, NJ
Initialization : For n = 0, the inequality ||e®|[s~ < Az2~7 is true because Expressions (3) and (8) imply
) =0, jel
Heredity : Let us assume that
if Az < min(@g,wp) and if CFL conditions (13a) — (13b) hold, one has ||e"||s~ < Azz~7 for all k < n. (59)
Then our goal is to prove that

if Az < min(@,wo) and if CFL conditions (13a) — (13b) hold, one has ||e" ||~ < Azz7.
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Step 1 : simplification of Corollaries 3 and 4. Let us prove in this first step that Az < min(@g,wp)
and CFL conditions (13a)-(13b) imply the non-positivity of extra terms C; and E; in Corollaries 3 and 4. We
dissociate two cases according to the value of 6.

CASE 6 > 1 :

We show the non-positivity of coefficients C; in Corollary 3, for i € {b,c,e, f}.
e Sign of C,: We get by developing D (e)”

Az lle™ ||
=D < .
6 (e)j = 3
However, by induction hypothesis, one has Az < wg (with wy verifying, among others, Inequality (56))
and [|e"||ge < Azz 7. Tt gives

LTI 1_4 %77

L

3 -3 - 3 =

Due to the CFL condition (13b), one has

Az — cAt > 0.
Thus, C, < 0.

e Sign of C.: For the term C,, thanks to the hypothesis ||e"||;~ < Azz~7, we obtain

. 2cAz3
Ce < |(ua)"|l7= + {[Afﬂl_” + Az ] 4+ 28027 (ua)" e~ + c?’f} -

Asc> ap+||(ua)" ||e= (see Remark 13) and Az < wg (with wp satisfying Inequality (57a)) by induction
hypothesis, one has

1
_ _ 1_ 2wz !
ccsuuwn%w{[w(% 2w+ 20 ) e + =2 }C2§0~

e Sign of C.: since we suppose ||e"||ge < Az2~7, the term C, satisfies

1 1
C. <201 - B)AL {||<uA>"||em i jm%—v} _ e

As 6 > 1, then 2(1 — ) < 1, and, thanks to the choice of ¢ (12), one has

1 13, 1 At 1 13 At 1
<A —+ Az —Ar=Azxq— | =14 ——Az277;.
C. < t{c+2+ 5 Az } x x{AI {0—1—2} + 5 Ap DT }

Using Az < wp and using hyperbolic CFL (13b), one has

13 At 1_ 13 (1—50) 1_ 13(1—50) 1y
— A T X PN T A PP ,2
2 Az s 2 c—i—% s 2c+1 “o

which is less than Gy thanks to Inequality (57b). Thus one has
C. <0.

e Sign of C}: the dispersive CFL-type condition (13a) together with hypothesis ||e" || < Azz=7 give

1—0)Az? 1 11, Az?
CfSAt{(1—29)+(Z)x c+2+2A3:2_“’]}—Z,

which is non-positive if Ax < wg. Indeed,
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—if 6 > %, one has chosen wy such that

1
2

(1-20) + A=0) np2 {c-l—

11 1 1—
5 + 2A:C2_7:| <(1-20)+ ( e)wg [C-i-

11 14
5 +§W02 ]SO,

1

2
thanks to Inequality (57c¢),

—ifg=1,

2 3 3
CfSAtAx [c L1 ]_A:E :A:r {At [c ﬂ HAtAx§V}7

z Agpz = = S I i

T R T 11 \Be MYy

and Condition (13b) together with Az < wq for wy verifying Inequality (57d) enable us to conclude
about the non-positivity of Cf.

CASE 6 <  :

In the same way, from Corollary 4, we show the non-positivity of E;, for i € {b,c,d, e}.

e Sign of Ej: one has, by definition of E, and by hypothesis ||e™||ge < Az

Az n At n

Azl cA]e?]|o At
< Arlletlle= | cAtlle"]le — AT + AL+ 2(1 — 0) = || (ua)" ||~

- 3 3 Az
Agz= Az At
< - — —2(1-0)—— ™| goe
<cleAt <1+ " ) Az (1 " ( ) Agzall(wa)"lle )]
At | At Azz—) Azz—? At
<cA — 4+ — -1 2(1 —60)—— "]gee | -
< cAx ch+Ax 3 + 3 +2( )AxQCH(UA) Ile ]
The hyperbolic CFL condition (13b) and the dispersive one (13a) (we recall that 1 — 20 > 0 in that case)
imply
(1 - Bo)Azz— Axz=7 Az(1 — fo)
Ey, <cAzx |1- — 1 1-0)————= "]gee |
b > CAT ﬁ0+ 3C+% + 3¢ +( )26(1—29) H(UA) ||£

The choice of wg small enough to satisfy Inequalities (58¢) implies Ej, < 0.
e Sign of E.: since E. = C,, we follow exactly the same proof as for 6 > % to show E, < 0.

e Sign of E;: thanks to Definition (54d), one has

4 1 — 0)Az? Axz=7 " | oo |2, Az 2
Ed:{Atl(1—29)+( JAz lc+ 2 F e + 9lle” e A ]

Ax? 2 2

_ 0)Ax? . 3
FAHL =)Dy (ua)" [l + T2 {|D+<uA>”||eoe + 221D (ua)" e }] - i}

Since ||e™][gee < Az277, it becomes, thanks to dispersive CFL (13a),
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Ed:Ax{iig(l—Qe)JrQAA;u_a) c “A;%”]
+8§:;(1—9)|UZ|éoc+2(1—9)AA;2||uZ|200+(1_9)§i||uz|€w_1}
gAx{iAxg(l—za)+W(1_a) cﬁ”g“] (12(—16:))22?)23:2(1_0”'“2"@&
+(1—9)Wluﬁllzw+(1—6)m||uz|Zoo_1}
:Ax{iii(l—%)-i-m(l—ﬁ) c+1m§%_7
+1 = Ol e 00 [ D= B pg2 SO}

Thanks to Az < wy, with wy verifying (58d) and thanks to the CFL condition (13a), one has

Ey<0.
e Sign of E.: we develop F. to obtain
13 . ANt 11Azz 7
< _ " oo —_ YN T (1 — _ — -
E. <2(1 H)At{”(uA) e + QAm } Ax2(1 20) —2(1 — 0)At [c 5 ]
SAL? n
—Tx?,(l—g)ﬂ(ua.) I
1 4At 2At
<2(1 - i 77—l T (1= gy [ oo
<201 = )8t {Jlua)" = + 128087 = o} = 355 =20+ 220 = O)lua) =

Since § < %, one has 1 — 20 > 0 then —42L [(1 —26) + 22£(1 — 6)||(ua)"|[e=] < 0. The hypothesis
Az < wy, with wy satisfying (58b) and the choice of ¢ (12) give E. < 0.

ALL IN ALL :

We have proved that, under the induction hypothesis, the following equality holds, for all 8 € [0, 1]

|| Ae +1H?’z < ||4e ||§2A {1+ AtF,} + Atle ||§2A {1+4A35+At}’ (60)

with F, defined by (50a).

Step 2 : From e" to e¢"! thanks to discret Gréonwall lemma. By splitting F, and using the first
inequality of (18) to upper bound At||D; (ua)" ||e= and At||Dy (ua)" ||3-, Inequality (60) becomes

2 g1
n i n At
[|Ae —HH?Z < ||«4@”H?2A {1 + AtF) + Z (/tn |8mu(s,.)||Lgods> FC”Z} + Atlle H?Z {1 +4E + At} ,

i=1

with
At At At At
n _ n (2 2 < 2 2
and
At 2 1 3 At 2 1 3
o= AN = 277 - n oo < —_— — 3= _ oo poo
Fc,l |:7+ Ar (20+ SA(E? + 2||(UA) [|e >:| < [7+ Az <26+ 3A:E2 + 2||UAH£ £ >:|
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and
\/t At?
Fy = V2 —
) /7 Az2

Due to the CFL condition, we have, denoting by C' a number independent of ¢, u}, At and Ax

At
P < 1+ (1+=—))=F 1
peo(ive(1+2)) = n @
At
. < 1+ —1J1 =: F. 2
e (14 gred) = F (62)

and
\/7 At?
V2 N

We can now apply a discrete Grénwall Lemma (noticing that e} = 0, j € Z). It provides, for every
n e o,N —1],

||Aen+1”£ < exp <tn+lFb+Z/

Finally, Theorem 3 and Proposition 1 give, for 0 <n <6 — 5

n__
Fc,2_

=i L¢2- (63)

tn+1

|axu<s7.>||L;e(R>Fc,i) sup 17,7 firagtead. o)

n€fo,N

2
[ Aem | < M? (1 + H“OHZ%M) {At2||u0§,6 + Az [||U0||§14 + |\U0Hf{g+nHUO||§p} } : (65)
with

. At
M? =exp (TFb +lluoll, 3 Cae™t” [FCJT% + FCVQT%D C2e2°TT {1 T+ At}

2

At R o ) A
<exp <C (14 ¢%) <1+Aa:2) (T+(T4 +12)uo| 2 e i )) 22 TT{1+M},

with C independent of ug and &, K 2 dependent only on ||ug||r2. Thanks to the CFL condition (13b), an upper
bound for M is
M? < AT jug

3

H4

with

(].—ﬁo) 3 1 k3T K 1—50
AT ol 5 = €XP (C(1+02) <1+ T le <T+(T4+T2)||u0||H%efi ) Cc?e*Tr i1+ 1)

Since |[e" 1|2, < |[|Ae™tt||%, (Proposition 3), Inequality (65) gives
A A

H4

2
e 2y < Ay, (1 Dol 5, ) { A uol3e + A2 [uollfye + lluol? 5., luoll3 |}

HA4

(66)

H4

o3
< My (15 Tl ) <H+u s+ ol ., ol | A2,

(c+ 2)

where the last inequality is obtained thanks to the CFL condition (13b).

Conclusion : It remains to verify the induction hypothesis (59) at step n+1. The definition of the ¢4 -norm,
Identity (7), together with the inclusion ¢? C £>°, holds

[le™ llex

VAz

[le"|le <
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According to the upper bound (66), the £*°-norm is bounded as follow

+1 2 l[uo]| e
1™ Ml < Azjuop g (1 + ||U0||H%+n) ( o + luollzs + lluoll g4n luoll ) VAZ.
The choice of a small Ax satisfying Az < min(@g,wy) with @y defined in (55) implies thus ||e"*|[pe <
Ax2=7. The induction hypothesis is then true for n + 1. O

Thus, we have proved Equation (14) with A ., , defined by (15) and Wy = min(wo, o).

3
H4
Remark 15. The choice of a time average in the definition of ua, Equation (9), is dictated by the dis-
crete Gronwall Lemma on (64). Indeed, applying discrete Gronwall Lemma introduces the following term

Zg:o At||Dy (un)" ||iee which is controlled thanks to the estimate (18), where the time integral plays a crucial
role.

Regarding the space average in the definition of ua, its necessity comes from controlling the sum on j € Z in
the consistency estimates (75).

Remark 16. This method is a process to find the CFL condition which suits also for the Airy equation
Owu(t, ) + O3u(t,z) =0, (t,z) € [0,T] x R,

with the finite difference scheme

vt —yn . evyj; = 3vl ]+ 3uP T — o B Uipr =30 + 30 — vy ©7)
At Az3 Az3 '
The analogue of Equation (39) is here
Az (e 1 0AtD, D, D_ (e)") < A " OAD,D.D_ ()")
Z x(ej +0AtDL Dy D_ (e); ) <{1+ t}Z(ej—i- tDy D, ,(e)j)
JEZ JEZ
Ax? n]2 2
+) AzAL{1+ At} (1-20)At — - [D+D+D, (e)j} +) AzAt{1+ At} (e))".
JEZL JEL
CcAiry

f

Imposing C’;\iry < 0 (which corresponds to Step 1 in the previous proof of Theorem 1) leads to

A 3
At(1—20) < =8

This so-called Courant-Friedrichs-Lewy condition, in the case 8 = 0, is exactly the one which is obtained in
[Men83] with a computation of the zeros of the amplification factor in [Men83] and the one obtained by the
Fourier method. Indeed, the amplification factor obtained by Fourier analysis on Airy equation is

1 - 80208 sint (n€) — 81 U502 sin® (n€) cos(r€)
1+ 892L sin® (7€) + 8i 48E sin® (n€) cos(m€)

, £€(0,1).

Requiring that its modulus is less than 1 yields

A 3
Atsin?(r€)(1 - 20) < Tx, for all £ € (0,1).
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Remark 17. For a Rusanov finite difference scheme applied to the non-linear term of the KdV equation: the
Burgers equation

Opu(t, ) + Oy (f) (t,) =0, (t,z)€[0,T] xR,

which corresponds to the discrete equation

vt n (U;.zﬂ)? _ (0?71)2 . (v?H =207 + 07,

+ 2Ax

At 4Ax > o (n,) € [0, N] < Z, (68)

the analogue of Equation (39) would be

2 2
e 12y < llem iy {1+ ALEPE} 4 37 AcAIC™ [ Dy (07| + Y AcARCPE™ | D (o) |

2 At
JEL
with
urgers n n At 2 " > A
i =+ 19y () e (15 5 20t el + 2ol
+ o 1D+ (wa)" 7 + o (lwa)"|[ +26)
A T
C[])Burgers — (;D+ (e)jl _ C) (AZ‘ — CAt) B
and 2
urgers n n n x Sljen
CPY = [e[Be [+ Aa] 4 [k — 2 + 2o ke + e

Therefore, for ug € H%(R) and for Ax small enough, the well-known CFL condition is verified
cAt < Az,
(thanks to the condition Cfurgcrs < 0) and the well-known condition for the Rusanov coefficient is verified
[ e < e,
(thanks to the condition CBWees < ().

Remark 18. For Burgers equation, we know a natural bound for the convergence error: thanks to the mazximum
principle one has ||e™|]se < 2|Jug||pee.

6 Convergence for less smooth initial data

In this section, we relax the hypothesis ug € H%(R) and adapt the previous proof for any solution in H i (R) to
obtain Theorem 2. When ug is not smooth enough to verify ug € H®(R), we regularize it thanks to mollifiers

(305) 5500 8 explained in Introduction. Recall that we denote the mollifiers by (%)sso, whose construction is
based on x a C*°-function such that y =1 on [f%, %], X is supported in [—1, 1] and x(&) = x(—&). We denote

the exact solution from ug by u, the exact solution from ug % ¢° by u° and the numerical solution from (16) by
(V) (n.j)el0,N]xZ-
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6.1 Approximation results

We need to quantify the dependence of the Sobolev norms of the solution u° on §. That result is gathered in
Proposition 6 whose proof needs the following lemma.

Lemma 9. Assume (m,s) € R? with m > s > 0. There exists a constant C > 0 such that, if ug € H*(R) and

§ >0 and uf is such as ul = ug * ©°, then

gl ) < Sy ol La2e vy (69)

Proof. According to (6), the H™(R)-norm of u verifies
o = 1y = [ (1-+1€1)" 1 (66) P17 €) P
< [ 1eR) 1@ (1 )" e 06 P
By hypothesis on x and its support, one has |x (0§)| < 1 and there exists a constant C' > 0 such that
(L+162)™ 7 |x(68))? < qu), which concludes the proof. O

We are now able to estimate the Sobolev norms of u°.

Proposition 6. Assume m > s> 0 and ug € H*(R) then,

et |02 ()
gm—s ’

sup [[u’(t,.)||gm@) < Ce
t€[0,T]

where C is a number which depends on m and k., depends on ||ug||pz and m. Both are independent of §.
Proof. We combine Theorem 3 and Lemma 9. O

We need then to know the rate of convergence of u$ toward ug with respect to § (as ¢ tends to 0), which is
summarized as follows.

Lemma 10. Assume ug € H*(R) with 0 < ¢ < s, then, there exists a number C independent of § such that

llwo — wgl|preqry < C6° ol e (r)-

Proof. By definition of the H*(R)-norm, we have, for s > ¢ :
o = wdlFeqey = 1+ EPYITOPR (1~ x(66))* de

2
=0 [ e mor (s ) e

1-x(2)
PEE

Hypothesis on x implies that sup < (5 for a certain constant Co. Hence, by using the inequality

z€R
(14 [€2)41€26=9 < C(1 + [€)?)%, with C a constant,

o — w2y < 62~ 0CC /R (1+ [€2)° @ (6) e

< CC35°¢Y)] Juol|7re (-
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6.2 Proof of Theorem 2

Let s > 2. Assume ug € H*(R), T > 0 and c such that (12) is true, which implies the existence of ay as in
Remark 13. We construct ug = ug * ¢° as previously.

Let By € (0,1), 6 € [0,1] and (v})(n,j)cfo,N]xz the unknown of the numerical scheme (2)-(16). Thanks to
Theorem 1, there exists Wy > 0 such that for every Az < wy and At satisfying CFL conditions (13a)-(13b), one
has

HA4

, ]| o
[Jo™ — (U(SA)”H[X < AT,||ug|| N (1 + ||u8||2%+n) ( Ci— + HUOHH + ||uo|| 3+n||uo||H1 Az,
2

with Ap s 3 defined by (15).
H

Remark 19. Thanks to Theorem 1, Wy is such that Wy < Wy with

ugnHlﬂ , (70)

2=

~ § [z
oo = [Argugy y (141981 0) (L8 s + 10,
2

H4
where A 5y , 15 defined in (15).
Hi

By using a triangle inequality between the analytical solution starting from uy and the one starting from
ug, the global error is upper bounded by

e llex = [[0" = (ua)"lley < VI[Bi]" +

with

1 inf(t" 1 T)  paja s 5\ 2
ZA (Awmf e+l T)—t"]/ /I u(s,x) —u (S:L'dxds ZAz(uA *[UA]J') ,

JEZ J JEL

with the notation (9), and

A 1 mf(t"'*'1 T) Tj41 s A .2
Z x Asfnf (i, T)—t"]/ /$ u’(s, z)drds — vy Z x uA o).

JEZ J JEZ

Let us first focus on term [B;]™. The Cauchy-Schwarz inequality implies [B;]" < sup ||u(t,.)—u’(t, .)H%Q(R),
te[0,T]

which imposes to study the difference between v and u’.
Since u and u® are two solutions of the initial equation (1a), one has

O (u—u’) + 03 (u—u’) +udy (u—u’) + (u—1u’) dpu’ =0.
Multiplying by (u — u‘s), integrating the equation and changing u® in u — (u — u%) in the latest term yield

d (u(t,z) —ud(t, :c))2 (u(t,z) —ul(t, m))2
%-/R 5 dx — /R(?mu(t,x) 3 dx

+/ (u(t,z) — u‘s(t,x))2 Oy [u(t,z) — (u(t,z) — u‘s(tw))] dx =0,
R

thus

1t ) 0 Mgy _ 1050 e o
2 g T u(r, ) — 0, ) e

The previous inequality looks like the 'weak-strong uniqueness’ of DiPerna [DiP79] or Dafermos [Daf79, Daf10].

The L?(R)-norm of the difference u — u’ is then upper bounded by

¢ fosu(s, oo
R e e ) L[

k3T
e 5112
||U0HH% HUO_UO||L2(R)7

C

ale

T
< exp

[NRES
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where s 3 and C% are defined in Theorem 3. Then

TiCs eK%T
[B1]" < tES[lépT}HU(ta ) = u’(t, )72y < exp —5 Mol ;3 | lluo - ugll72 )
Lemma 10 implies
252 2 ricge"t’
[Ba]" < €57 Juo [y @yexp | ————lluoll 5 | - (71)

In the other hand, the term [B;]™ corresponds to the estimate (66) derived in Subsection 5.3 with a smooth
initial datum. It remains us to quantify the dependency of it upper bound with respect to . Thanks to Theorem
1, one has

s
52 [[ugll o s s )
V [Ba]" < AT,HugHH% (1 + ||Uo||H%+n) ( c—|—% + llugll e + Huo||H%+n ugllgr | Az,
with AT’”UE’”H% defined by (15). As ug belongs to H*(R) with s > 2, then ||ug||H% = HuOHHi and

||ug||H%+n = ||u0||H%+n'
Lemma 11. For every s > 3, there exists C, depending only on s and on ||ug||2, such that, if ug € H*(R),

[EPE
c+%

5 5 5 l|uol| £+ 1
Hllugllre + llugll g4 lugllen < —5==C P L+ [Juo || grmince) ] -
2

Proof. We apply Lemma 9 with s = 6,4, 3 + 1,1 and the biggest power of § is 5. 0O

Thus, an upper bound for [Bs]™ is

1 U s
VIBal" < A7 jul (1 + fJuol? ) (1 +1+ ||u0||Hmm<1,s>) o luollzr: 5,
H4 c+ 5

H3+n §6—s

However, for Theorem 1 to be applied, we need to choose a small Az such that Az < @y < &y where @y is
defined by (70). With the above lemma, this condition rewrites

. N
1 ||u0||H5 g C v
A< Ay (15 ol g0,) (5 + 1 Bl ) 5082 |7 () o

2

2=

Hence, if Az < (56%)

conditions (13a)-(13b) are verified, the convergence error (e}),,;) is upper bounded by

, with C > 0 a constant depending on T, ¢, B9, ||uo||z- and HuOHH% and if CFL

lle™ llex
) 1 T%Cgen%T Az
S C AT ol g (1 + HHOHH%M) (@ +1+ ”uO”H‘“i"(le)) + exp <4|UO|H3>] l[uol| = {F +90 ] ,
(73)
for n € [0, NJ.

The final key point is to find the optimal 0, in other words, the parameter § which makes both terms §°,
coming from /[B1]" and % coming from /[Bs]™ in (73) equal while respecting the constraint (72). Defining
6 = Ax® summarizes the problem in the following system

. us Az
Find a such that : Az = Agal6-5)"

1 1

under the constraint : Apa(6=s) < A

Three cases have to be considered:
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o if % < s < 6 — 6, the constraint is binding and we have to choose a which transforms the constraint

inequality in an equality : a = &. In that case, the rate of convergence is given by the smallest term
between Az®* and % ie. Axc—s.

e If6-67y<s<6,a= % enables both terms Axz%% and
This choice of a gives a rate of convergence of Az?s.

% to be equal without violating the constraint.

e If s > 6, the result of the Theorem 1 applies.

Since + is in (0, %) (cf. Lemma 7 and induction hypothesis (59)), we take the optimal v : v = % —n with 7

small and 1 > 0. The conclusion of the theorem is straightforward consequence.

Remark 20. The choice of § is independent of the regularity s of the initial datum, if 3 < s <6.

7 Numerical results

In this section, the previous results are illustrated numerically by some examples and the numerical convergence
rates are computed for the KdV equation.

7.1 Convergence rates

Through the rest of the paper, the computations are performed with an implicit scheme # = 1 in order to avoid
the dispersive CFL condition. Our purpose is to gauge the relevance of our theoretical results on the rate of
convergence with respect to Az. To this end, the time step is chosen according to the hyperbolic CFL condition.
More precisely, ¢ is numerically chosen such that ¢ = max |Uf| and At™ = %. This choice seems surprising
kelo,n],j€[1,J]

related to the CFL of Theorems 1 and 2 but, as explain in Remark 4, the condition [c + 3]At < Az seems
technical and may be replaced by the classical one cAt < Az. Eventually, we fix the final time 7" = 0.1.

We can not simulate numerical solutions on Z as done in the theoretical results. We have to take into account
numerical boundaries: we use periodic initial data. We fix the space domain to [0, L] with L = 50 (except for
cnoidal wave where L = 1) and fix J = [ £ |.

Remark 21. Notice that the theoretical results do not apply rigorously since the solutions do not belong to
H*(R) because of their periodicity.

The convergence rate r; is computed with

_ log (Ey) —log (E2y)
log(2) '

When the exact solution is known (e.g. for the cnoidal-wave solution), the variable E; corresponds to the
following difference

rJy

h= 7, - Dieon = (1)
v= e 1) gl = s (|08 = (1), .
with (v7');eqo0,s) the numerical solution computed with J cells in space and <[UA]?>je 0] the J-piecewise

constant function from the analytical solution. However, for test cases with an unknown exact solution, the
convergence error is computed from two numerical solutions with a different mesh and E; is replaced by the
following E;

- . .
Br= RESEFN]] H(UJ )jeﬂo,J]] (“J )je[O)J]] H :
is a numerical solution computed with a refined grid

Previously, 07 := wg; for all j € [0, J], where (w?)je[[o,w]]

with 2.J space meshes. In that case, (0}) computed from the refined numerical solution (w)

jelo,Jp j€l0,2J]’

plays the role of the exact one ([uA]? "
jefo,J
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Remark 22. We have considered eractly 2J space meshes for the refined numerical solution. Moreover, in all
cases, 0 is a grid node, therefore, the error Ej is nothing but the difference between every two consecutive values

for (w?)je[[O,w]] and every value for (v?)je[[o,J]]'

7.2 Smooth initial data

To assess the optimality of Theorem 1, the corresponding test cases are carried out with two smooth periodic
initial data, either the sinusoidal initial datum

wo(x) = cos (QL%) ,

or the so-called cnoidal-wave initial datum. This cnoidal-wave solution represents a periodic solitary wave
solution of the Korteweg-de Vries equation whose analytical expression is known as follow:

u(t,z) = uléacn2 (4K(m) (,ﬁ (x - 5) - wﬁt)) :

where y = 517 and en(z) = en(z : m) is the Jacobi elliptic function with modulus m € (0, 1) (we choose m = 0.9)
and the parameters have the values a = 192muK (m)? and v = 64u(2m — 1)K (m)?. K(m) is the complete
elliptic integral of the first kind (cf [BCKX13]).

Both results are gathered in Figure 1 for sinusoidal solution and Figure 2 for cnoidal-wave solution. We display
the values of r with respect to J in the left table and post the corresponding graph in logarithmic scale on the
right. The first order is confirmed for both initial data whether in tables or in graphs.

Sinusoidal solution 104 numerical slope= 1.0081
up(z) = cos(%”x)
error in numerical .
J Az (0, T, (A (Z)) order w
computed with E; ';
1600 | 3,1250.10 2 6,2062.10° g 107
3200 | 1,5625.10~2 3,1033.107° 0.9999 5
6400 | 7,8125.1073 1,5517.1075 0.9999 ®
12800 | 3,9063.103 8,0795.10°6 0.9415
25600 | 1,9531.1073 4,1435.10~6 0.9634 1ol |
51200 | 9,7656.10~4 1,9974.106 1.0527 10° Ay 102

Figure 1: Experimental rate of convergence for sinusoidal solution
numerical slope= 0.99553

Cnoidal-wave 10°}
error in numerical .
J Az 02°(0,T,0%4(Z)) order o
computed with E; =
1600 | 6.2500.10~% 8.9875.10~ 4 Z,
3200 | 3.1250.104 4.5253.10~% 0.9899 S
6400 | 1.5625.10~* 2.2636.10~4 0.9994 ® 107
12800 | 7.8125.107° 1.1292.10~4 1.0034
25600 | 3.9062.107° 5.7102.107° 0.9837 _

10
A X

Figure 2: Experimental rate of convergence for cnoidal-wave solution

7.3 For a regularity between H?(R) and H'°(R)

To illustrate numerically Theorem 2, we initialize the scheme with a less regular initial datum. We test two
kinds of periodic initial data in H*(R), with s > 3. The first one is computed from some integrations of the
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indicator function and leads to initial data in H*(R) with s a half-integer. The second one is computed from
the periodized square root function and leads to initial data in H*(R) with s an integer.

Tests achieved from the indicator function. Since the indicator function 1, £y belongs to H ([0, L])

for all s < %, an idea to construct a periodic function in H*** ([0, L]), with s < % and £ € N* is to integrate ¢
times the periodic indicator function. For instance, after a first integration, the initial datum

uo(x) = zlip 2y + (L - x)]l[é,L]

is periodic and "almost" in H3 ([0, L]). By reiterating the process of periodization and integration, we obtain
initial data in H*([0, L]), with s = 2, 2", 117 .. The numerical results are summarized in the following table.

Sobolev regularity s=1 |s=92 |s=4"

Experimental convergence rate | 0.66016 | 0.78307 | 0.97340

Theoretical convergence rate | 0.58333 | 0.75000 | 0.91667

We detail some tests below : s = %_ in Figure 3, and s = g_ in Figure 4. For each figure, the graph on
the right illustrates the error in £°°(0, T, ¢ (Z)) with respect to the mesh size Az in logarithmic scale. Those
errors and those mesh sizes are detailed in the table on the left. On the graph, we have displayed the points
cloud but also the least squares regression and the numerical slope of that regression line is considered to be
the experimental convergence rate. For more simplicity, we denote H*~(R) the space H* *(R) with £ > 0 as
small as possible.

«10® numerical slope= 0.66016

9

uo € H3— ([0, L]) o

error in numerical N’\/] 6F

J Ax (0, T, (A (Z)) order 2 sl

computed with E; ;3 .

12800 | 3.9063.10~2 8.8562.10~° 5

25600 | 1.9531.1073 5.5291.1076 0.6796 & gl
51200 | 9.7656.10~* 3.4903.10~¢ 0.6637
102400 | 4.8828.10~4 2.2460.10° 0.6360

108 102
A X

Figure 3: Experimental rate of convergence for uy € Hz ([0, L])
numerical slope= 0.78307

uo € Hz ([0, L]) 10
error in numerical
J Ax (0, T, 04 (Z)) order i
computed with E; ,Z'
1600 | 3.1250.10- 2 | 6.5105.10°7 g
3200 | 1.5625.102 | 3.9541.1073 0.71941 =
6400 | 7.8125.1073 2.2620.10~3 0.80574 5 1°
12800 | 3.9063.103 1.3091.1073 0.78909
25600 | 1.9531.1073 7.4923.10~4 0.80504
51200 | 9.7656.10~4 4.4105.107% 0.764470 10‘3 16—2

A X

Figure 4: Experimental rate of convergence for ug € H? ([0, L])
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Remark 23. The relative error between the experimental rate and the theoretical one is sometimes significant,
for example, this relative error is more than 12% in the case s = L However, the theoretical rate is an
asymptotic result for Az and At small enough. As seen in the table on the left of Figure 3, the numerical order
appears to be decreasing when Ax decreases, which agrees closely with the theoretical results.

Tests achieved from the square root function. Since the square root function is in H*~([0, L]) we
construct a H*~ ([0, L]) function by integrating the square root function s — 1 times. However, we need, in
addition, a periodic initial datum, this is why we add the beginning of a Taylor expansion for the function and
its derivatives up to (s — 1)-th to be continuous and periodic. More precisely, we search the coefficients b;,
i € [1, s] such that the function

bs

b )
202 b—gxd
2 3! s!

141
s 1+2—b1I— s

and all its derivatives up to (s — 1)-th be equal for x = 0 and for = = L. To find those coefficients, we just have
to solve the matrix system

I .2 3 4 LS LS*%
28w o T by o lyps—32

0 L L; %3 (f_f. ba (1 2) 3y75—3

% Lsfg' b (s—3)(s—3)L°2
0o 0 L & | |2 = :

. b :
0O 0 0 O L s

(s= s = s =) 4L

The following tests correspond to s € [4,10].

The comparison between the experimental rates of convergence and the theoretical ones are very closed and
gathered in the following table.

Sobolev s=4 s=5 s=6 s=7 s=28 s=9 | s=10
regularity
Experimental 0.67225 | 0.86032 | 0.98708 | 0.99485 | 1.0060 | 1.0148 | 1.0062
convergence rate
Theoretical 0.66667 | 0.83333 | 1.0000 1.0000 | 1.0000 | 1.0000 | 1.0000
convergence rate

Some results are developed below (ug € H*~(R) in Figure 5 and up € H>~(R) in Figure 6).
numerical slope= 0.67225

Figure 5: Experimental rate of convergence for ug € H*~ ([0, L])
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uo € H™ ([0, L]) 10
error in numerical
J Az (0, T, (A (Z)) order i
computed with £ 2
1600 | 3.1250.1072 4.6454.1073 =
3200 | 1.5625.10~2 2.8109.1073 0.72476 T .
6400 | 7.8125.10~3 1.7147.1073 0.71307 5 1°
12800 | 3.9063.1073 1.0892.10~3 0.65474
25600 | 1.9531.10~3 6.8793.10~4 0.66290
51200 | 9.7656.10~% 4.3185.1074 0.67172 e 02




€ H> ([0, L))

numerical slope= 0.86032

Uuo 102
error in numerical
J Ax (0, T, 04 (Z)) order =
computed with E; e
1600 | 3.1250.10~2 1.1066.10~2 gci
3200 | 1.5625.102 6.0878.1073 0.86208 %‘
6400 | 7.8125.1073 3.3067.1073 0.88054 5
12800 | 3.9063.1073 1.8609.1073 0.82941 107}
25600 | 1.9531.103 1.0240.1073 0.86182
51200 | 9.7656.10~4 5.5475.107% 0.88424 103 102

A X

Figure 6: Experimental rate of convergence for ug € H>~ ([0, L])

7.4 For a regularity between L?(R) and H?(R)

Theoretically, the necessity to bound fOT [|0xu(s, .)HiLoo(R)ds in (64) forces to choose s > 3. In addition, the
necessity to bound [|e™||s~ in Fj in (50a) in order to apply the Gronwall lemma leads to choose Az such as
Equation (55) be true which forces to have the constraint s < <= in (72). However, those restrictions may

be only technical and the rate of convergence seems to be Azs for all s € [0,3). This is based on the following
numerical results.

Tests achieved from the indicator function. The integration from the indicator function enables us to

obtain examples of functions in H*(R) with s = 27,27 27 whose results are listed below.
Sobolev regularity s=1" | s=2 | s=5"
Experimental convergence rate | 0.08795 | 0.25500 | 0.42595
"Conjectured" convergence rate | 0.08333 | 0.25000 | 0.41667

More precisions are given in Figures 7 (for ug € Hz~(R)), 8 (for ug € H?~(R)) and 9 (for ug € H?~(R)).
«10 humerical slope= 0.087948

uo € Hz— ([0, L]) "
error in numerical 105
J Az 02°(0,T, (A (Z)) order I
computed with E; ,:' 95
3200 | 1.5625.10 2 1.0567.10 2 S
6400 | 7.8125.103 9.8843.1073 0.0964 z
12800 | 3.9063.10~3 9.2992.10~3 0.0880 5 8°
25600 | 1.9531.1073 8.7490.1073 0.0879 8l
51200 | 9.7656.10~* 8.2289.1073 0.0885
102400 | 4.8828.10~* 7.7468.107° 0.0871 s 107 o
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Figure 7: Experimental rate of convergence for ug € Hz~([0, L])




x107

numerical slope= 0.25500

Tests achieved from the square root function. As before, the second test consists in periodising the

A X

Figure 9: Experimental rate of convergence for ug € H %*([0, L))

square root function to create an initial datum in H*~ (R) with s = 1,2, 3.

uo € HE ([0, L)) 2]
error in numerical 24!
J Az (0, T, ¢4 (Z)) order fplkas
computed with E; ,:' 2r
3200 | 1.5625.10~2 2.6584.10 7 S8
6400 | 7.8125.10° 2.2108.10~* 0.2660 2 O
12800 | 3.9063.1073 1.8624.10~4 0.2474 5 14f
25600 | 1.9531.1073 1.5632.10~* 0.2526 1ol
51200 | 9.7656.10~4 1.3074.10~* 0.2578 '
102400 | 4.8828.1074 1.0949.10~4 0.2560 100 0
A X
Figure 8: Experimental rate of convergence for vy € H %*([0, L))
- «10° numerical slope= 0.42595
uo € H="([0, L]) 8 ‘ ‘
error in numerical 7t
J Az (0, T, ¢4 (Z)) order foNd
computed with E; ,f 5p
3200 | 1.5625.10~2 8.4546.10~° S
6400 | 7.8125.107% 6.1968.10~° 0.4482 s
12800 | 3.9063.10~3 4.6531.107° 0.4133 & 3[
25600 | 1.9531.1073 3.4745.107° 0.4214
51200 | 9.7656.10~4 2.5795.10° 0.4297 ol
102400 | 4.8828.1074 1.9199.107° 0.4260 100 .

numerical slope= 0.16984

*

Sobolev regularity s=1 s=2 s=3
Experimental convergence rate | 0.16984 | 0.33806 | 0.50173
"Conjectured" convergence rate | 0.16667 | 0.33333 | 0.50000
Some precisions for those tests are given in Figures 10, 11 and 12.
uo € A (0, 1)
error in numerical 0.026
o 2 0024
J Az €2(0, T, 6A(Z)) order =
computed with E; o 0022
1600 | 3.1250.10~2 2.6762.10~2 £ oo
3200 | 1.5625.1072 2.3501.102 0.18748 g 0.018
6400 | 7.8125.1073 2.0793.102 0.17660 5
12800 | 3.9063.1073 1.8595.10~2 0.16119 0.016
25600 | 1.9531.1073 1.6602.102 0.16360
51200 | 9.7656.10~* 1.4787.1072 0.16701 001 =
A X

10"

Figure 10: Experimental rate of convergence for ug € H'~([0, L])
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ug € H>=([0, L])
error in numerical
J Ax (0, T, 04 (Z)) order
computed with EJ

1600 | 3.1250.10~2 6.6322.10~3

3200 | 1.5625.102 5.2115.1073 0.34779
6400 | 7.8125.1073 4.0950.10—3 0.34783
12800 | 3.9063.1073 3.2699.1073 0.32461
25600 | 1.9531.103 2.5937.1073 0.33426
51200 | 9.7656.10~4 2.0449.1073 0.34296

ug € H3=([0, L])
error in numerical
J Az (0, T, (A (Z)) order
computed with E;

1600 | 3.1250.10~2 1.2295.102

3200 | 1.5625.1072 8.5386.1073 0.52599
6400 | 7.8125.1073 5.8964.1073 0.53416
12800 | 3.9063.1073 4.1913.1073 0.49245
25600 | 1.9531.1073 2.9576.1073 0.50298
51200 | 9.7656.10~4 2.0778.1073 0.50937

)

2
A
a ~ O o ao

error L*(0,T,L

2

error L*(0,T,L

6.5

55+t

45

35¢

25+

12}
10}

8t
<

61

4t

%10 numerical slope= 0.33806

1078 1072
A X

Figure 11: Experimental rate of convergence for ug € H*~([0, L])

«10° numerical slope= 0.50173

*

107 1072
A X

Figure 12: Experimental rate of convergence for ug € H3~ ([0, L])

We summarize the theoretical and numerical results in Figure 13. The blue line corresponds to the theoret-
ical rate of convergence, the dashed line matches the conjectured rate and the red dots stand for the numerical
rates of convergence. Both are intertwined, which validates the rate of convergence of %&6) with s the Sobolev

regularity of the initial value.
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Figure 13: Rates of convergence according to the Sobolev regularity of ug. — Rates proved in this paper (solid
line) versus experimental rates (dots)
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A Appendix : Consistency error
The consistency error is defined by (11). For simplicity, we note, in this appendix, ¢"*! = inf(¢t"*! T) and
At ="t — " which corresponds to the following expression, for (n,j) € [0, N] x Z
Tj+1
/ u(s + At,y) — u(s, y)dyds

= Atmx /t
=:(a)

¢t - 2 L - 2
1 / /m Ax)dyds | — [~ / /”1( — Az)dyd
*inr | | ams uls,y + Ar)dyds ATAL Jo  f,, YT ETWE

gntl
AtAa:4 /t

AtA.T tn+1

AR
(mm;ﬁ / / u(s,y + Ax) = 2u(s, y) + uls,y - Aar)dyds) :

Let us first deal with (a)-term. In order to simplify the following equations, we denote, for v in R

zj 2
K(v) := (A:I:At/ / (s erVA:c)dsdy)

A straightforward computation yields

tntt

Tj4+1 (74>
/ u(s,y + 2Ax) — 3u(s,y + Az) + 3u(s,y) — u(s,y — Az)dyds

t'n+2

Tj+1
/ u(s,y + 2Az) — 3u(s,y + Ax) + 3u(s,y) — u(s,y — Az)dyds

tn+1

K'(0) / e / " / . / Yu(s,y)dsdgdsdy
AxAt2 4n on ’
Tjt1 wjpr
Mtz/ L[]
!

Tjt1 Ti+1 Tj+1
/n (s,y)0u(s, y)dsdy+AtA / / /
Tipl T4 e
AtQAac/Ij /z]» /tn /tn u(s,y)/S Oru(T,§)drdsdsdydy.

Thus, the (a) term in Equation (74) rewrites

gntl
{3 u(s,y) / 2u(s,v) dv+/ Opru(T, y)dT } u(s,y)dsdydsdy

t'n+1

(s,y / d2u(s,v)dvdsdidy

1 1
(a) = K(1) — K(-1) =2K'(0) +/O K" (w)(1 —w)dw Jr/o K'(—w)(—1 + w)dw,
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and after some Taylor expansions, it holds, since u satisfies (1a)

tn+

j+1 pstAt JHL LT
lej | < AmAt / / |07 u(w y)|dwdsdy—i—AtA 2/ / /

tn+1 tn+1

Tj+1 Tjt1 E
17 g, m K// 1_
AtQAzQ/ / /t ” s,y)/ 0wtu(7',y)dr|dsdsdydy+74Ax/0 |K" (w)|(1 — w)dw
gt

o T atuts, s [T otute. )
K"( w)dw + / / (s, 2 dz—l—/ Lu(s, 2)|dz
4Ax AtAa: in o Y Y

y—Azx 0 Tjq1 y+2Ax y+Azx
+/y |8§§u(s,z)\dzdydsJrm/ﬂ+1 /Ij /y 6‘;1u(5,z)|dz+/y |0%u(s, 2)|dz

y—Ax ¢ gt Tj41 y+Azx y—Azx
+/y |02u(s, 2)|dzdyds + SALAL /tn /xj /y |02u(s, 2)|dz —|—/ |02u(s, 2)|dzdyds.

Y

tn+1 —

]
/ O2u(s,v)dv|dsdydy

Thus, once applying the Cauchy-Schwarz inequality, the previous inequality becomes

S Gt s e [P [ [ szt s
-— u(w,y wdy + / / / / u(s,y)o u(s,v vasdydy
Az [in , t AtAx J,, n @

Tji1 tn+1 tn+1
AtA:vQ/ /

J+1
/ [ [ oot ) ardsigasdy + K v
(1-0)2Ax e
+7

2Ax /
tn

with C' a constant.
However, one has

Tjt+1 Tj41
K"(v) = A2 / / / / (s,y + vAz)u(s,y + vAz)dsdydsdy

Tj+1 Tj41
Atz/ / L vt vt vseisisi

which gives, thanks to the Cauchy-Schwarz inequality

ep]? <C

tn+2

92A$

tn

Tjt1 9
/ (92u(s, 2))” dzds| ,

Tjt1 Tj+1 9
/ (Dpu(s, z)) dzds + / (D3u(s, 2))” dzds

tn+1

gntt

tn+1 g n+1

A 3
ool R TC[ / [ @ty ) dsayas
t tn

2
2A " pwi
( * / (Bpu(s,y + vAz))? dsdy)

K"()P < C

tn

Therefore, it yields

D Aali [ < O AL sup [107u(t, lIE; + 82 sup lfu(t, )Z sup l197u(t. )2

‘ez tefo,T tefo,T] " te(o,7]
+ At? sup IIU<t,.)HL;o sup ||0geult, )|[7z + Aa® sup lu(t,.)[[Ze sup [|07u(t, )72 (75)

te[0,T] te[0,T] te[0,T] te[0,T]

+Az% sup [[0u(t, . )[|7: sup [|0pu(t, )| + Az sup [|0ulf: +Ax? sup [|07ul[]
t€[0,T) t€[0,T] nef0,N] v nef0,N] *
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Let us then compute [|07u|[z2 in (75). Thanks to the KdV equation, the time derivative is equal to
Ofu = 2u (Bpu)® + u?02u + 50, udu + 2udiu + 3 (82u)2 + d5u.
For the term 0,ud2u, we use then the relation, for all u and v in H**#(R)
02000 2 g < € [0l oy ol s oy + 10l oy el sy ] - (76)
Hence
107ullz2 < C |:||u||L;°||aru||%§ +lullZee [10Zull L2 + |lullzee [10zullz + lullzee|0ullrs + [107ull7 + ||3§U|\Lg] :

For the term ||0yu|| 4, we use an integration by parts and the Cauchy-Schwarz inequality to obtain

fo.ullly = [ @eate) duutaras = - [

R3U($)8§U(x) (0su(@))* de < 3lull o [|07u] | [10zul[ 74 -

We thus conclude ||6mu||2L4 < Clul| o H@guHLQ .

For the term [|02u||74, we again use an integration by parts and the Cauchy-Schwarz inequality to write

= 3 = [ =30 ulx ux2ux:v U||T 4 u$2ux2x
62ull4, = / (02u(z))* 62u(z)dz = / 30%u(z) (02u(z))? Opu(z)d < 3107 ||%m\/ / (O3u(2))? (D,u(de))® de,

which implies thanks to Relation (76) ||02u||2, < C'|ul|}« ||6§UHL2.
For the [[0z1u(t,-)||L2-term in (75), it holds

10zt IZe = || = @pult, ) = ult,-)0zult,-) — dgult,)||7:

< O [Ilutt I [102u(t, V12 + 190t Iy + 102ut, |13 ]

To conclude, we obtain with (75)

€™ |l oo (f0,NT302 (2)) < C

At sup. (IIUII%;cllulng. + lllpee Nl s + [l mg + Lo ||ull a2 + HUIIH;%)
te|o,

+Az sup (lll e Mullazz + 100ullLee lullmz + [lullms + IIUIIHg)] ;
tel0,T

what can be simplified into

||€n||z<>o([[o,N]];£2A(Z)) <C

At sup (J[ull3x lullmz + llull e lullars -+ Jullg )
te[0,T]

+Az sup ([[ulpes|[ull gz + [[0sull Lo [l 1 + ||U||H§)] :
t€[0,T]

Thus the consistency error is upper bounded by

€% e o, w152 (2 < C{At sup [ (1+ llull- ) lullg | + Az sup [(1+ ullzz) Il 12 + ||axu||L;o||u||H;]}.
te[0,T] te[0,7]
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B Appendix : Proofs of useful Lemmas of Section 4
Proof of Lemma 2. Identities (20) to (24b) are proved by developing the expressions. O
Proof of Lemma 3. e Relation (25) is obtained by developing the sums.

e Relation (26) is proved by summing the square of Identity (22) with b; = 4.

e Relation (27) is obtained by developing the expression :

S ) ] 2
Z [D+D_ (a)]}2 — Z [%H zt;;;r aj_1

jez JEZ

2 2 2
. Z CLjJrl — 4aj+1aj + 2aj+1aj_1 + 4aj — 4ajaj_1 + ajfl
Azt

JEZ

2 ) ) 2 2 94 . 2
— Z4aj+1 —2aj410; + a5 Ay — 20510541 + a5,

ot Azt Azt
j
2 2 2 2
B Z 4 ajyq —2a;4105 + aj 4 af, - 201041 +aj_4
= Az?2 Az? Az? 4Ax2? '
j

Proof of Lemma 4. e Identities (29) and (30) derive from developing the sums.
e Relation (31) is a straightforward consequence of (24a).

e For (32), one has

Ax 3Ax

2 C—a2a; 3 392 . . 2 _ .3 2 3

N Y% T 4%+ @jyy — 3051405 + 304105 —aj Azx? Tajiq — a;

Dy (a); ajaj41 = - = - =—) — |/
JEZL JEZL JEL JEZ

e Likewise, Identity (33) is proved by the same way

2 9 3 _ a2 2 .3
5 B a1 @j—1 — Qj4105_y d4ajq —3aj105-1 +3a4105_1 —aj_y
(a); aj10541 = =)

, . 2Ax ‘ 8Ax
JEL JEZ JEL
_ Z _4AI2 Q41 —G5-1 3
- 3 2Ax
JEZ

e The proof of (34) is based on a development of the expression of D(ab); as explained below

_ aj410j41 = aj1bj1 N~ bj41054105 —bjaia; = bit — b
a;D(ab), =) aj = = < —aia;.

J J J 2Ax 2Ax T
JEL JEZ JEZ JEL

e For Relation (35), we expand

> DyD_(a); D (ab);

JEZL

-y (aj41 —2a; +a;1) [a;11b501] — (@541 — 205 +a;-1) [a;-1b; 1]

, 2Ax3
jez

2 2
-y (@j4+1)" b1 = 20505410541 + 5105110541 — aj110;1bj 1 + 205051651 — (a;1)"bja

, 2Ax3
JEZ
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_ Z —2ajaj+1bj+1 + 2aj+1ajbj + aj,lajﬂb]qu — aj+1aj,1bj,1

: 2Ax3 2Ax3
JEZ
= Z J+1 aj+1aj + Z J+21A 3 aj+1aj_1.
JEL JEZ
O
Proof of Corollary 2. e Identity (36) is based on (34) with b; = % and Relation (32).
e Proving (37) corresponds to choose b; = % in Identity (35) and using Relations (32) and (33).
O
Proof of Lemma 5. Inequality (42) is based on Relation (23)
2 @i a1 2
3 [D (ab)j} -y [bjD (a), + D4 (1), + LD (b)]}
JEL JET
=3 () (D a j) +Y bjaj11D (a b); + > b;D (a);a;-1D_ (b),
JEZ JEZ JEZ
Qi1 2 Ai41Q5—-1 ai_1 2
3 (S Dsv);) + 3D (1), Do (), + 3 (D))
JEL JET JET
Young inequality implies
2 (b;)* At
Z( ab) <D0 ( ) +Z:2Azt(a]+1 5 ( (a)j> ( + ) +Z2Azf aj-1)"
JEZ JEZ JE JEZL JEZL
At 2 2 3 aj+1 Qj— 1 2
55 (@) (p-0,) + T3 (50e0,) + X5 (U7 0-0))
JEL JEL
O
Proof of Lemma 6. We use relation (23) to develop Dy Dy D_ (a); D (ab); which gives
S DyD.D_(a =Y DiDD_(a); [1;D (@), + 2Dy (0); + D ()]
» + -+ = +&+ ) + 7 ) - j
JEL JEZ
2
<> b,D.DD_ i+ Z <D+D+D_ (a)j) Dy (b), |
JEL JEZ
aj+1 At a] 1
+y +<b>j|+ZI(D+D+D_<a>j) b1+ 3 D= (0,
JEL JEZ jJEZ
(77)

The conclusion comes from the following Lemma.

Lemma 12. Let (a;)
holds

S 4,0 Dy D_(a), D (a), < ;{Axv (|D(2b)j|” + |D(2b)j|"> _ %D b, } (DD (a)j)2

JEZL JEZ
*Zm 1D (), 7 (D +(a)j)272b]— (D+D(a)j)2. (78)

JEZL JEZ

jez and (bj) ;o be two sequences in (A (Z), o be in {0,1} and v be non negative. Then, it
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Proof of Lemma 12. By developing D (a); and using the relation (29), it holds

S ;DD D- <a>jD<a>j:Z%D+D+D (), Dy (), + 3 % D.D.D_ (@), D (a),

JEL J€Z jez
= DyD_ b D (¥p
——Z + Z +D o *(a)j :

JEL JEZ
We focus first on the term — 3>, ., Dy D_ (a); D— ( 4Dy (a); ) Equality (21b) gives
b D_(b); b;
> D.D_(a); D_ (QJ ) ~> DyD_(a ( 5 ———D_(a); + EJD+D_ (a)j) .
JEL JEZ

Eventually, Young inequality provides

00,0 (00 @,) <A (0o 0,) e 3 P (04w

JEL JEZ JEL
2
DIICNON

JEZ

For the term — >, ., D D_ (a); D— (QD_ (a)

~>"D.D_(a), D- (b;D (a)j) =-Y D.D_(a) (D‘Q(b)jD (a); + bj;D,D, (a)j) .

JEL JEZ
Hence, it holds (by Young inequality)
by
=Y DD (a); D- oD (a),
JEZL
AQL‘U|D_bj‘U 2 |D+ (b)j |2_(7 2 bj—1
SZf (D+Df (a)]’> +Zw(D+%‘) —Z 2 *(G’)j D-D- (a)j
JEL JEZL JEL
AmV|D7bj‘a 2 ‘D+ (b)j ‘270 2
< Z 5 (D+D-aj)" + Z Sy e (D+aj)
JEL JEL
D+D_aj —|—D_D_aj 2 bj_l 2 bj_1 2
Yo ( : JEDSLITI-RBIES R
JEZL JEL JEZL
A:CV‘bejrr bjfl —+ bj |D+ (b)] |2_G 2
< Z ( T + 2= (D4D-a;)* =3 b; (D Day)* + Y —— o — (D+ (a)j) .
JEL JEL JEL

By collecting the previous results, one has

> b;D D.D_(a); D(a); <

{A$V|Dbj|g AZL’V|D,b]’|U
JEZL JEL

bj,1 — bj 2
4 + 4 + 4 (D+D7(lj)

D b4270
+Z%(D+( ) ~> b (D4 Day)? .

JEZL JEZ
Lemma 12 is then proved.

Lemma 6 is a consequence, with v = 0.
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Proof of Lemma 7. To prove Lemma 7, the following lemma is useful.

Lemma 13. Let (a;)jez be a sequence in €4 (Z), then one has

ID+alley, < \/3llalle=[1D+D—all -

Proof of Lemma 13. We compute the following sum thanks to the discrete integration by parts (29)

3 (Diaj)* =Y (D))’ Diaj= - > D_ [D+aj } aj. (79)

JEL JEZ JEZ

We use Relation (21b) to develop D_ [(D+aj)3} in (79) and D_ [(D+(a)j)2] in (80)

=Y D [(Dyay)’|a; ==Y Do [<D+<a>j>2} D_(a)ja; — Y (Dya;)? D_D.(a)a, (80)

jez jez jez
=—Y D.D (a);(D-a;)*a; = »_Dy(a);DyD_(a);D_(a);a; — Y (Dya;)* DyD_(a);a;.
JEL JEZ JEZ

We recover D(a); in the second sum, which gives

D 2
> (Diaj)' =-> DiD_a;(D_a;j)*a; =Y 2D.D_(a )+>.DiD_(a ﬂ
JEZ JEZ JEZ JEL
(D—aj)2 2
+ ZD+D—(G)J‘%T — > (D4a;)* Dy D_(a);a,
jez jez
:_ZD+D a] (D— aj) _QZD _(a);a, (Day) ZD (D+a])2
+ i (Day) + 5 .
JEL JEL JEL

Multiplying by Az and applying Cauchy-Schwarz inequality simplify the ¢4 -norm

||a||eoo Hal\ew

IDsallly < "D, D_ ()| 1D-all?y + 2llalle=|1DsD_ (@)l |1 DallZy + 0 1D1D_ (a3, || Dalls

(81)

However, one has

4
4 Gj+1 — aj +aj; —aj—1
L e e e

JEZ

:ZA;C a1 —aj+a;—a; 1\ (a1 —a;+a;—a; 1\’
= 2Ax 2Ax
Q41 — Gy 2 a A5_1 2 Aj41 a 2 a a;_1 2
Jj+ j Y= j+1 — @5 j — Y=
st S 2 L——— p ) e R 2 (L2
() v ()| () o ()

—ZAJ:
2 2 4
gt () o () (252 e (520

JEZ
JEZ

<ZA:¢ (aj“ )4

JEZ
< ||D+a||§i-
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Equation (81) is changed as follows
1Dvallz, < 3llalle= || D+ D—(a)llez [|1DallZa -
Then it holds
1Dalls < 3llalle= || D+ D-(a)ll e, -
Lemma 13 is thus proved. O

Remark 24. Lemma 13 is also valid for the classical discrete {*-norm instead of £} -norm.

To prove Lemma 7, we first develop the left hand side thanks to (23)

>N "DyDD_(a),; D ( ) =>"D.D,D_ [2 D(a), + ¥, (a)j+ajT‘1D_ (a)j].

° 4
JEZ JEZL

o The first term Y, , 5 DDy D (a); D (a); is treated with Lemma 12 of Appendix B with v = i —~and
o = 0, which rewrites

a; Az 1 a;
> QJD+D+D Z { -~ D-a }(D+D a;) +Zr(p+aj)4_zé(p+paj)2.
JEZ jGZ JEL JEZ
e For the second term, we integrate by parts thanks to (29) and (21b)
iy Q41
S DiD.D_ 21D, (a), =Y ~D+D- (a), D- (%m (a)j)
JEL JEZ
2
a; (D+ (a)ﬂ')
=Y -D,D_(a), S DD (a); + ~—
JEZ
Young inequality completes the upper bound
a a;
S DiDyD(a); 2D, (a), = 3~ (DD (a),)" 2 +Z (DD (a), 7+28A = (Di(a))".
JEZ JEZ JEZ JEZ

e For the third term, Relation (29) together with (21a) gives

a; a;—
> DiDiD-(a); 2D =" -DiD: (a ( LD (a)j)
JEZL JEL
a; Dy (a);_
= Z —D+D+ (a)j {4]D+D (a’)j + %D, (a)j
jez
2
o, (DD (@), + DsD(0),\" ~a, o (D (),)
=> -3 . +> 7 (D+D+( j) +> % (D+D ) =3 DDy (a),
JEL JEL JEL JEL
j A
<> -% (D, D), _,_Z%(D D_(a);)*+ 3 zi” L (DaD_( VY (Dala)y)*
JEL JEL JEL JEL 8Al’2
Gathering all these results yields
a? Az2~" Az aj—1— a;
> DyDyD (a) <7> <Z{ -5 D-(a); +J18J}( +Z (Dya;)
JET i jez <z 2AzT

—>_a; (D+D(a);)?

JEZ
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Lemma 13 concludes this proof

Az2=7 + ||al|g= + 9 lla Hfoo

a2 v 2 2
S 000 (5) <% ; (D+D_(a);)* + 3 llalli~ (D+D(a);)”.

JEL i jez JEL
O
Proof of Lemma 8. For Identity (44), the right hand side yields
b b 3 4A
Z[D(a)]} Qi1 j+1+aj 1095—-1 Z.D |: i| x —Z _DD )
JEL JEZL JEZ
-y aj1bj 1 +a34a5-1bj1 — 2031051011 — 2aj+1a§_1bj71 +af_qaj41bj41 +af b
; 8Az2
JEZ
-y ]H - ajyy —3af a1 30540105y —ajy (4A2? 3 1bjp2 =2 +bj-2 4
S8Az3 3 L 3 4Az? 7
JEL JEZL
Adding the first two sums gives
Z a?Hij - 3a§+1aj_1bj_1 3CLJ 1aj+1b]+1 + CLJ 1b] 1+ 2(1 71bj+1 + 2bj 1aj+1
, 24 A2
jez
The sum yields then
CLJ+1bj+1 + aj— 1bj 1 3 4A$2 1 3
> [pw,] S SLICACICH I S RION
JEL JEZ JEL
B Z al i bjpa — 3a?+1aj71bj71 —3a%_yaj41bj 01 4 a3 _1bj 1 4203 bj1 + 20 103,
< 24Ax?
JEZ
B Z 1 bj+1aj_y — 2bjaj +bj_1a3,
, AN 2
JEZ
_ Z a?+1bj+1 - a?+1aj—1bj—1 - a?f1aj+1bj+1 + a?‘flbj—l
T4 8Az2
JEL
-y aji1bj — aj1bj1\ (@ —af
: 2Ax 4Ax
JEZ
a2
=> D(ab); D (2) K
JEZ J
O
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