
HAL Id: hal-01656342
https://hal.science/hal-01656342

Submitted on 5 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reasoning with Temporal Preferences over Data Streams
Marcos Roberto Ribeiro, Maria Camila Barioni, Sandra de Amo, Claudia

Roncancio, Cyril Labbé

To cite this version:
Marcos Roberto Ribeiro, Maria Camila Barioni, Sandra de Amo, Claudia Roncancio, Cyril Labbé.
Reasoning with Temporal Preferences over Data Streams. Thirtieth International Florida Artificial
Intelligence Research Society Conference, 2017, Marco Island, Florida, United States. �hal-01656342�

https://hal.science/hal-01656342
https://hal.archives-ouvertes.fr

Reasoning with Temporal Preferences over Data Streams

Marcos Roberto Ribeiro
Instituto Federal de Minas Gerais, Bambuı́, Brazil

Universidade Federal de Uberlândia, Uberlândia, Brazil
marcos.ribeiro@ifmg.edu.br

Maria Camila N. Barioni, Sandra de Amo
Universidade Federal de Uberlândia, Uberlândia, Brazil

camila.barioni@ufu.br, deamo@ufu.br

Claudia Roncancio, Cyril Labbé
Univ. Grenoble Alpes, LIG, F-38000 Grenoble, France

claudia.roncancio@imag.fr, cyril.labbe@imag.fr

Abstract

The growing emergence of new applications where the data
changes rapidly has boosted the development of several re-
searches related to data streams processing. Preference rea-
soning is an example of a useful task that can be used to mon-
itor data streams for information that best fit the users wishes.
In this paper, we revisited the formalism TPref in order to pro-
pose a new approach for processing data streams according
to temporal conditional preferences. Our approach, named
StreamPref, covers important issues not addressed yet in pref-
erence reasoning with temporal conditional preferences.

1 Introduction

The development of data streams monitoring technologies
are primordial to support real-time decisions in several
domain applications such as stock markets, sport players
monitoring, among others. The issues related to the pro-
vision of efficient techniques to extract useful informa-
tion from these possibly infinite data sets has challenged
many research fields including artificial intelligence (AI)
and databases (DB). Preference queries (Petit et al. 2012;
de Amo and Bueno 2011) are interesting examples of tasks
being tailored to couple with data streams.

A fundamental research issue related to preference
queries is the development of techniques for preference rea-
soning. Such techniques allow the selection of data that best
fit the user preferences. In the field of preference reasoning,
which is the focus of this paper, the works based on the con-
ditional preferences model have proved especially useful to
this task (Boutilier et al. 2004; Cornelio 2015). In this model
the user preferences over an attribute can be affected by val-
ues of another attribute. If we consider the temporal aspect,
the preference specification becomes more expressive as an
instant of time may influence the preferences in a future time
moment (See Example 1).
Example 1. Let us suppose a soccer coach who has access
to an information system that provides real-time data about
soccer matches. These data include the current player posi-
tioning, ball possession and the type of player moves. The
coach wishes to select the best players according to the fol-
lowing preferences: [P1] If, in a given moment, the team has

Copyright © 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the ball possession and, immediately before this moment, the
player was at defensive intermediary then I prefer middle-
field place than defensive intermediary place, independent
of move type; [P2] If, in a given moment, the team does
not have the ball possession and, immediately before this
moment, the player was at offensive intermediary and, al-
ways before this moment, the team had the ball, then I prefer
middle-field place than offensive intermediary place; [P3]
Lateral moves are better than forward moves.

Although there are research works that employs the con-
ditional preference model (de Amo and Bueno 2011; Petit
et al. 2012) in the context of data streams, to the best of
our knowledge, there is no proposal concerning data stream
processing according to temporal conditional preferences. In
this paper we present the formalism StreamPref that revisits
the TPref formalism proposed in (de Amo and Giacometti
2007) with the aim of allowing the specification and reason-
ing with temporal conditional preferences over sequences
extracted from data streams.

The main contributions of this paper are summarized as
follows: (1) A new formalism for preference reasoning over
data streams according to temporal conditional preferences;
(2) A feasible consistency test for any set of rules in our
language; (3) An incremental algorithm for the extraction of
sequences from data streams; (4) Algorithms for dominance
tests of sequences (i.e. comparison of sequences according
to preferences); (5) A set of experiments that enforces the
effectiveness of our approach.

2 The StreamPref Language

A remarkable feature of data streams environments is the se-
quential format of the data. Taking advantage of this charac-
teristic, the StreamPref language was designed for reasoning
over sequences of objects (Definition 1).
Definition 1 (Sequence). Let X = {A1, ..., Al} be a set
of attributes and O(X) = Dom(A1) × ... × Dom(Al) be
the set of objects over X , where Dom(Ai) is the domain of
Ai. A sequence s = 〈o1, ..., ok〉 over X is an ordered set of
objects, such that oi ∈ O(X) for all i ∈ {1, ..., k}.

The length of a sequence s = 〈o1, ..., ok〉 is denoted by
|s| = k. An object in a position i of s is denoted by s[i]
and the notation s[i].A represents the attribute A in s[i]. We
denote by Seq(X) the set of all possible sequences over a

Proceedings of the Thirtieth International Florida Artificial Intelligence Research Society Conference

700

set of attributes X . Given two sequences s = 〈o1, ..., ok〉
and s′ = 〈o′1, ..., o′k′〉, the concatenation between s and s′,
denoted by s+ s′, is s′′ = 〈o1, ..., ok, o′1, ..., o′k′〉.
Example 2. Consider the set of attributes Pl (player po-
sitioning), Tb (ball possession of team) and Mp (moving
type). The values for Pl are defensive area (da), defensive
intermediary (di), middle field (mf), offensive intermediary
(oi) and offensive area (oa). We use 1 when the team has
ball possession and 0 for otherwise. The moving types are
forward (fw), rewind (rw) and lateral (la). The sequence
s1 = 〈(mf, 0, fw), (mf, 1, la), (di, 1, rw)〉 represents the
player 1 moves displayed on Figure 1(a). The circled num-
bers means that team has the ball possession.

The StreamPref language employs rules that follows the
logical formalism proposed in the TPref (de Amo and Gi-
acometti 2007) to express the user preferences. Basically,
these rules have the format “if certain condition is true then
I have this preference”.

The Preference Specification. Our formalism uses past
and present formulas based on Propositional Temporal
Logic (PTL) (Prior 1967). In PTL, the propositions are vari-
ables Q1, ..., Qn. In the present work, a proposition is a
predicate (Aθa), where a ∈ Dom(A) and θ ∈ {<,≤,=
, �=,≥, >}. We use the notation a |= Q(A) to state that
the value a satisfies the proposition Q(A). The notation
SQ(A) = {a ∈ Dom(A) | a |= Q(A)} denotes the set
of values satisfying Q(A). The propositions are used to con-
struct basic formulas (Definition 2).

Definition 2 (Basic Formulas). Basic formulas are defined
as follows: (1) True and False are basic formulas; (2) If F
is a proposition then F is a basic formula; (3) If F and G
are basic formulas then ¬F , ¬G, (F ∧ G), (F ∨ G) and
(F Since G) are basic formulas. The notation Att(F) de-
notes the attributes appearing in F .

The notion of satisfaction of a formula F by a sequence
s = 〈o1, ..., ok〉 at a position i ∈ {1, ..., k}, denoted by
(s, i) |= F , is inductively defined as follows: (1) (s, i) |=
Q(A) if and only if s[i].A |= Q(A); (2) (s, i) |= (F ∧G) if
and only if (s, i) |= F and (s, i) |= G; (3) (s, i) |= (F ∨G)
if and only if (s, i) |= F or (s, i) |= G; (4) (s, i) |= ¬F
if and only if (s, i) �|= F ; (5) (s, i) |= (F Since G) if and
only if there exists j where 1 ≤ j < i and (s, j) |= G and
(s, k) |= F for all k such that j < k ≤ i. The True formula
is always satisfied and the False formula is never satisfied.
We also define the following derived formulas:
Prev Q(A): Equivalent to False Since Q(A), (s, i) |=

Prev Q(A) if and only if i > 1 and (s, i− 1) |= Q(A);
SomePrev Q(A): Equivalent to True Since Q(A), (s, i) |=

SomePrev Q(A) if and only if there exists j such that
1 ≤ j < i and (s, j) |= Q(A);

AllPrev Q(A): Equivalent to ¬SomePrev¬Q(A), (s, i) |=
AllPrev Q(A) if and only if (s, j) |= Q(A) for all 1 ≤
j < i;

First: Equivalent to ¬Prev True, (s, i) |= First if and only
i = 1.

The propositions and the derived formulas are called by
atomic formulas. These atomic formulas are used to com-
pose the temporal conditions (Definition 3). So, the tempo-
ral conditions are employed in the construction of tcp-rules
and tcp-theories (Definition 4).
Definition 3 (Temporal Conditions). A temporal condition
is an empty formula or a formula F = (F1∧ ...∧Fp), where
the terms F1, ..., Fp are atomic formulas. The notation F−
is the conjunction of all derived formulas in F . The notation
F 0 is the conjunction of all propositions in F and not in F−.
Definition 4 (TCP-Rules and TCP-Theories). Let X be a set
of attributes. A temporal conditional preference rule, or tcp-
rule, is an expression in the format ϕ : Cϕ → Q+

ϕ (Aϕ) �
Q−ϕ (Aϕ)[Wϕ], where: (1) Aϕ ∈ X is the preference at-
tribute and Wϕ ⊂ X is the set of indifferent attributes such
that Aϕ /∈ Wϕ; (2) Q+

ϕ (Aϕ) and Q−ϕ (Aϕ) are propositions
representing the preferred values and non preferred values
for Aϕ, respectively, such that SQ+

ϕ (Aϕ) ∩ SQ−ϕ (Aϕ) = ∅;
(3) Cϕ is a temporal condition such that Att(C0

ϕ)∩ ({Aϕ}∪
Wϕ) = ∅. A temporal conditional preference theory, or tcp-
theory, is a finite set of tcp-rules.
Example 3. Consider the preferences of Example 1 and the
attributes of Example 2. We can express [P1], [P2] and [P3]
by the tcp-theory Φ = {ϕ1, ϕ2, ϕ3}, where:
ϕ1 : Prev(Pl = di) ∧ (Tb = 1) → (Pl = mf) � (Pl =

di)[Mp];
ϕ2 : AllPrev(Tb = 1) ∧ (Tb = 0) ∧ Prev(Pl = oi) →

(Pl = mf) � (Pl = oi);
ϕ3 : → (Mp = la) � (Mp = fw).

Let Φ be a tcp-theory. Let ϕ ∈ Φ be a tcp-rule. Let s
and s′ be two sequences. We say that s is preferred to s′
according to ϕ, denoted by s �ϕ s′, if there exists i such
that: (1) s[j] = s′[j] for all j ∈ {1, ..., i−1}; (2) (s, i) |= Cϕ

and (s′, i) |= Cϕ; (3) s[i].Aϕ |= Q+
ϕ (Aϕ) and s′[i].Aϕ |=

Q−ϕ (Aϕ) and (4) s[i].A′ = s′[i].A′ for all A′ /∈ ({Aϕ} ∪
Wϕ).

The notation �Φ represents the transitive closure of⋃
ϕ∈Φ �ϕ. Let two sequences s, s′ ∈ Seq(X), the notation

s �Φ s′ means that s is preferred to s′ according to Φ. When
two sequences cannot be compared, they are incomparable.
Example 4. Let us consider the tcp-theory Φ =
{ϕ1, ϕ2, ϕ3} of Example 3 and the sequences sa =
〈(di, 1, fw), (mf, 1, fw), (oi, 1, fw), (oi, 0, la)〉, sb =
〈(di, 1, fw), (mf, 1, fw), (oi, 1, fw), (mf, 0, la)〉, sc =
〈(di, 1, fw), (di, 1, la), (mf, 1, fw), (mf, 0, rw)〉.

We have that sa �ϕ1
sc and sb �ϕ1

sc (at position 2) and
sb �ϕ2

sa at (position 4). Therefore, sb �Φ sa �Φ sc.

Consistency Test. Consistency issues have to be carefully
analyzed when dealing with the order induced by rules, since
the irreflexive property is desirable during reasoning tasks.
The transitive closure of

⋃
ϕ∈Φ �ϕ may generate an incon-

sistent preference order, that is, it can be inferred that “a
sequence is preferred to itself” (See Example 5).
Example 5. Suppose Φ′ = {ϕ′1, ϕ′2, ϕ′3}, where:

701

da di mf oi oa

1

11

(a)
da di mf oi oa

1 1 1

1 1

2 2 2

2

2

3

3 3

3

3

(b)

([mf,mf], [0, 0], [la, la])

([oi, oi], [0, 0], [la, la])

([oi, oi], [0, 0], [fw, fw])

ϕ0
2

ϕ0
3

(c)

Figure 1: Players moves and search tree: (a) Moves of s1; (b) Moves three players; (c) Search tree of SearchDom algorithm.

ϕ′1 : Prev(Pl = di) → (Pl = mf) � (Pl = di);
ϕ′2 : (Tb = 1) → (Pl = oi) � (Pl = mf);
ϕ′3 : Prev(Tb = 0) → (Pl = di) � (Pl = oi).
Also consider the sequences: sa = 〈(di, 0, fw),
(mf, 1, la)〉; sb = 〈(di, 0, fw), (di, 1, la)〉; sc =
〈(di, 0, fw), (oi, 1, la)〉. According to tcp-rules of Φ′, we
have sa �ϕ′1 sb, sb �ϕ′3 sc and sc �ϕ′2 sa, then sa �Φ′ sa.
Thus, the induced order �Φ′ is reflexive and Φ′ is inconsis-
tent.

Table 1: Temporal Compatibility between Atomic Formulas

Q
(A

)

F
ir

st

P
re

v
Q
(A

)

S
om

eP
re

v
Q
(A

)

A
ll
P

re
v
Q
(A

)

Q′(A′) � � � � �
First � � × × ×
Prev Q′(A′) � × * � *
SomePrev Q′(A′) � × � � *
AllPrev Q′(A′) � × * * *

Our consistency test takes into consideration the temporal
compatibility. The temporal compatibility between atomic
formulas is given by Table 1, where Q(A) and Q′(A′) are
propositions. The symbol * means that the atomic formulas
are temporally compatible if one of the following conditions
are satisfied: (1) A �= A′; (2) A = A′ and SQ(A)∩SQ′(A′) �=
∅. The temporal compatibility between tcp-rules is estab-
lished by Definition 5.

Definition 5 (Temporal Compatibility). Let ϕ and ϕ′ be two
tcp-rules such that Cϕ = (F1∧...∧Fp) and Cϕ′ = (F ′1∧...∧
F ′q). These tcp-rules are temporally compatible if Fi and F ′j
are temporally compatible for all i ∈ {1, ..., p} and for all
j ∈ {1, ..., q}. A tcp-rule with empty condition is temporally
compatible with any tcp-rule.

Let Φ be a tcp-theory and ϕ ∈ Φ be a tcp-rule. The no-
tation Φϕ denotes the set of tcp-rules in Φ temporally com-
patible with ϕ. The consistency test of the subset Φϕ can be
done using just the non temporal components of rules. Given
a tcp-rule ϕ, the notation ϕ0 denotes a rule obtained from ϕ
replacing Cϕ by C0

ϕ. When we perform such replacement
over the rules of Φϕ, the resulting set has the same format

of the cp-theories used by CPrefSQL (Ribeiro, Pereira, and
Dias 2016). For instance, for tcp-rule ϕ1 of Example 3, we
have ϕ0

1 : (Tb = 1) → (Pl = mf) � (Pl = di)[Mp].
The cp-theory extracted from a set of tcp-rules Φϕ is de-

fined as Γ(Φϕ) = {ϕ′0 | ϕ′ ∈ Φϕ}. As there is a well de-
fined consistency test of cp-theories, we can check the con-
sistency of a tcp-theory Φ running the consistency test of
cp-theories over Γ(Φϕ) for every ϕ ∈ Φ. The Lemma 1 and
the Theorem 2 give us the sufficient conditions to verify if a
tcp-theory is consistent. More details about the consistency
test of cp-theories are found in (Wilson 2004).

Lemma 1. Let ϕ and ϕ′ be two tcp-rules. If there exists a
sequence s containing a position i such that (s, i) |= C−ϕ
and (s, i) |= C−ϕ′ , then ϕ and ϕ′ are temporally compatible.

Proof. Le us suppose by absurd that there exists a position
i in s such that (s, i) |= C−ϕ and (s, i) |= C−ϕ′ , but ϕ and ϕ′

are not temporally compatible. If ϕ and ϕ′ are not tempo-
rally compatible than there exist at least one atomic formula
F in C−ϕ and at least one atomic formula G in C−ϕ′ such
that F and G are not temporally compatible. For this to hap-
pen, there are three cases: (1) The formulas are F = First
and G = Prev Q(A), G = SomePrev Q(A) or G =
AllPrev Q(A); (2) The formulas are F = Prev Q(A) and
G = Prev Q′(A) or G = AllPrev Q′(A) such that SQ(A) ∩
SQ′(A) = ∅; (3) The formulas are F = AllPrev Q(A)
and G = Prev Q′(A), G = SomePrev Q′(A) or G =
AllPrev Q′(A) such that SQ(A) ∩ SQ′(A) = ∅.
(Case 1) Let us suppose that F = First and G =
Prev Q(A), G = SomePrev Q(A) or G = AllPrev Q(A).
If i = 1 then (s, i) |= F , but (s, i) �|= G. On the other
hand, if i > 1 then (s, i) |= G, but (s, i) �|= F . In both
situations there is an absurd. (Case 2) Let us suppose that
SQ(A)∩SQ′(A) = ∅, F = Prev Q(A) and G = Prev Q′(A)
or G = AllPrev Q′(A). Thus, there is no position i in s such
that (s, i) |= F and (s, i) |= G, this is an absurd. (Case 3)
Let us suppose that SQ(A)∩SQ′(A) = ∅, F = AllPrev Q(A)
and G = Prev Q′(A), G = SomePrev Q′(A) or G =
AllPrev Q′(A). There is no position i such that (s, i) |= F
and (s, i) |= G, this is an absurd.

Theorem 2. Let Φ be a tcp-theory. If Γ(Φϕ) is consistent
for all ϕ ∈ Φ, then Φ is consistent.

702

Proof. Let us suppose by absurd that Γ(Φϕ) is consistent for
all ϕ ∈ Φ, but Φ is not consistent. If Φ is not consistent then
there exists rules ϕ1, ..., ϕm ∈ Φ and sequences s1, ..., sm ∈
Seq(X) such that Cs1 �ϕ1

... �ϕm−1
Csm �ϕm

s1.
By definition, there exists a common position i in the se-
quences s1, ..., sm where the comparisons were made. In
this way, s1[1, i − 1] = ... = sm[1, i − 1] and (s1, i) |=
ϕ1, ..., (s1, i) |= ϕm. By Lemma 1, the rules ϕ1, ..., ϕm are
temporally compatible. Therefore these rules are in the same
set of compatible rules. Thus, the order induced by this set
is reflexive. However, the cp-theories Γϕ(Φ) resulting from
compatible sets Φϕ are consistent and that is an absurd.

3 Algorithms

Sequence Extraction. The sequence extraction retrieves
identified sequences (Definition 6) over a data stream S ac-
cording to a set of identifier attributes Z. At every instant,
each object must have unique values over identifier attributes
Z in order to keep a relation one-to-one between objects
and resulting sequences. Note that identifier attributes are
not part of sequence objects.
Definition 6 (Identified Sequences). Let X be a set of at-
tributes. Let Y and Z be two disjoint sets such that Y ∪Z =
X . An identified sequence sz = 〈o1, ..., ok〉 is a sequence
where oi ∈ O(Y) for all i ∈ {1, ..., k} and z ∈ O(Z).

The Algorithm 1 (ExtractSeq) uses a hash-table H# to
perform the sequences extraction incrementally. Moreover,
this algorithm receives a temporal range parameter k in sec-
onds. Thus, the sequence extraction is performed over a
time-base sliding window (Petit et al. 2012) with a range of
k seconds and a slide of one second. Our algorithm can be
adapted to work with different models of sliding windows.

Algorithm 1: ExtractSeq(S,Z, k)
1 foreach o ∈ S[τ] do
2 z ← GetId(o, Z);
3 if z /∈ H#.Keys() then sz ← 〈o/Z〉z ;
4 else sz ← H#.Get(z) + 〈o/Z〉 ;
5 H#.Put(z, sz);

6 foreach sz ∈ H# do RemoveExpired(sz, τ − k);
7 return sequences in H#;

The hash-table H# : (z �→ sz) associates each identifier
z to the identified sequence sz . The operation o/Z removes
the identifier attributes in Z from object o. The set of objects
in stream S at the current instant is denoted by S[τ]. Be-
fore the first iteration, H# is an empty hash-table. Thence-
forward, at every instant, the ExtractSeq algorithm updates
H# and returns the built sequences until the current instant
τ . The instruction RemoveExpired(sz, τ−k) remove the ex-
pired objects from sz . An object expires if its timestamp is
less or equal to τ − k.
Example 6. Let us consider the moves of the players 1, 2
and 3 displayed on Figure 1(b). The objects have the same
attributes of Example 2 and the attribute Id (player identi-
fication). Let us consider that a coach wants to analyze the

sequences of the last three plays. These sequences can be
extracted by ExtractSeq algorithm considering a range of
3 seconds and the attribute Id the identifier. The extracted
sequences, instant by instant, are presented as follows:
Instant 1: The sequences s1 = 〈(di, 0, fw)〉, s2 =

〈(di, 0, fw)〉 and s3 = 〈(di, 0, fw)〉 are created;
Instant 2: The incoming objects are attached into the end

of existing sequences. The result is: s1 = 〈(di, 0, fw),
(mf, 1, fw)〉, s2 = 〈(di, 0, fw), (mf, 1, fw)〉 and s3 =
〈(di, 0, fw), (di, 1, la)〉;

Instant 3: Again, the incoming objects are attached and
we have: s1 = 〈(di, 0, fw), (mf, 1, fw), (mf, 1, fw)〉,
s2 = 〈(di, 0, fw), (mf, 1, fw), (mf, 1, fw)〉 and s3 =
〈(di, 0, fw), (di, 1, la), (mf, 1, fw)〉;

Instant 4: After processing the incoming objects, the
sequences has length greater than 3, then the al-
gorithm drop their first positions. The result is:
s1 = 〈(mf, 1, fw), (mf, 1, fw), (oi, 1, la)〉, s2 =
〈(mf, 1, fw), (mf, 1, fw), (oi, 1, la)〉, s3 = 〈(di, 1, la),
(mf, 1, fw), (oi, 1, la)〉;

Instant 5: The process is analogous to instant 4. So,
we have: s1 = 〈(mf, 1, fw), (oi, 1, la), (oi, 0, fw)〉,
s2 = 〈(mf, 1, fw), (oi, 1, la), (mf, 0, la)〉 and s3 =
〈(mf, 1, fw), (oi, 1, la), (mf, 0, la)〉.
The first loop (lines 1-5) of ExtractSeq algorithm per-

forms the insertion of the objects from S into their respec-
tive sequences. This task has cost of O(nl × |H#.Get(z)|)
where n is the objects number in S[τ] and l is the attributes
number of S. As we have a unique object per identifier z
at every instant, then |H#.Get(z)| = 1. Thus, the cost of
the objects insertion is O(nl). The cost of the second loop
(line 6) is O(nk) where k is the temporal range. Thus, in
the worst case, the complexity of the ExtractSeq algorithm
is O(nl + nk). If we assume a constant factor to attributes
number and temporal range, the complexity of ExtractSeq is
O(n).

Dominant Sequences. The Algorithm 2 (DomSeq) re-
ceives a set of sequences T , a tcp-theory Φ and returns the
dominant sequences in T according to Φ. A sequence s ∈ T
is dominant if there is no s′ ∈ T such that s′ �Φ s. First,
the algorithm copies T to T ′. Next, for every pair of se-
quences s, s′ ∈ T ′, the algorithm performs the dominance
tests s �Φ s′ and s′ �Φ s. At the end, just the dominant
sequences remain in T ′.

Algorithm 2: DomSeq(T,Φ)
1 T ′ ← T ;
2 foreach s, s′ ∈ T ′ do

3 if Dominates(Φ, s, s′) then T ′ ← T ′ − {s′} ;
4 else if Dominates(Φ, s′, s) then T ′ ← T ′ − {s} ;

5 return T ′;

Example 7. Let us consider the extracted sequences of the
Example 6 and the tcp-theory of the Example 3. The execu-
tion of the DomSeq algorithm is shown as follows:

703

Instant 1: All sequences are incomparable, so the algo-
rithm returns T ′ = {s1, s2, s3};

Instants 2 and 3: We have s1 �Φ s3 and s2 �Φ s3, then
T ′ = {s1, s2};

Instant 4: Again, all sequences are incomparable, and
T ′ = {s1, s2, s3};

Instant 5: We have s2 �Φ s1 and s3 �Φ s1, then T ′ =
{s2, s3}.
The Algorithm 3 (Dominates) performs the dominance

test s �Φ s′. First, the algorithm finds the first position i
where the sequences are different. Next, the algorithm cre-
ates a cp-theory Γ containing the cp-rules correspondent to
tcp-rules valid at position i. Thus, the SearchDom routine
(Algorithm 4) is called to verify if the object s[i] is better
than the object s′[i].

Algorithm 3: Dominates(Φ, s, s′)
1 j ← min{|s|, |s′|};
2 foreach i ∈ {1, ..., j} do

3 if s[i] �= s′[i] then
4 Γ ← {};
5 foreach ϕ ∈ Φ do

6 if ((s, i) |= Cϕ) and ((s′, i) |= Cϕ) then

7 Γ ← Γ ∪ {ϕ0}
8 return SearchDom(Γ, s[i], s′[i]);

9 return False;

The SearchDom routine uses a depth-first-search strategy
and looks for a chain of rules from object o+ to object o−.
At every iteration, if the goal was not reached, we get the
next objects using Change routine (Algorithm 5) and push
them into stack next. The IntervalObject(o) instruction con-
verts the values of o into intervals. For example, if o.Ai = 3
then, after transformation, o.Ai = [3, 3]. Thus, the goal test
IsGoal(o−, o) checks if o−.Ai intersects o.Ai, for every at-
tribute Ai.

Algorithm 4: SearchDom(Γ, o+, o−)
1 visited ← {};
2 next ← Stack(IntervalObject(o+));
3 while |next| > 0 do
4 o ← next.pop();
5 visited ← visited ∪ {o};
6 if IsGoal(o−, o) then return True;
7 else
8 foreach ϕ ∈ Γ do

9 o′′ ← Change(o, ϕ);
10 if (o′′ �= Null) and (o′′ /∈ visited) then

11 next.push(o′′);

12 return False

The Change routine gets a new object from o by applying
a transformation according to the rule ϕ. This transforma-
tion is possible when o satisfies the rule condition (o |= Cϕ)

and o has a preferred value. If an attribute o.A is an inter-
val, then o.A |= Q(A) when o.A ∩ SQ(A) �= ∅. The trans-
formation swaps the value of the preference attribute (Aϕ)
by the non preferred values of rule ϕ. In addition, all indif-
ferent attributes receives the interval [−∞,+∞] since these
attributes can have any value during the comparison.

Algorithm 5: Change(o, ϕ)

1 if o �|= Cϕ or o �|= Q+
ϕ (Aϕ) then return Null ;

2 o.Aϕ ← Interval(Q−
ϕ (Aϕ));

3 foreach Ai ∈ Wϕ do o.Ai ← [−∞,+∞];
4 return o;

Example 8. Let us consider the sequences s1 and s2 at in-
stant 5 of Example 6. The dominance test s2 �Φ s1 is per-
formed by the Dominates algorithm as follows:
• In the third iteration of the outer loop, the algorithm finds

the position to be compared (i = 3);
• The inner loop scans Φ looking for tcp-rules whose con-

ditions satisfies s1 and s2 at position 3;
• The tcp-rules with satisfied conditions are ϕ2 and ϕ3. The

resulting cp-theory Γ is composed by the rules:
ϕ0
2 : (Tb = 0) → (Pl = mf) � (Pl = oi) and

ϕ0
3 : → (Mp = la) � (Mp = fw);

• Thus, the algorithm calls the SearchDom(Γ, o+, o−) rou-
tine, where o+ = (mf, 0, la) and o− = (oi, 0, fw);

• Figure 1(c) shows the search tree of SearchDom routine.
As the search tree reaches the goal (in bold), the algo-
rithm returns True for the dominance test.
The complexity analysis of DomSeq algorithm consid-

ers that preference rules are specified over a set of at-
tributes X = {A1, ..., Al}. The Change routine has the
cost O(|Att(Cϕ)| + |Wϕ|). In the worst case, |Att(Cϕ)| =
|Wϕ| = l, where l = |X| is the attributes number. The
search tree of the SearchDom routine has height and node
degree equal to m in the worst case, where m is the rules
number. Thus, the complexity of the SearchDom routine is
O(lmm) because we must check every combination of rules.

The cost of the Dominates routine is O(km + klmm) =
O(klmm), where k is the maximum sequence length. The
complexity of the DomSeq algorithm is O(n2klmm), where
n = |T | is the sequences number. If we assume a constant
factor to attributes number and sequences length, the com-
plexity of DomSeq is O(n2mm).

4 Related Work
This paper focuses on reasoning with qualitative conditional
preferences. The CP-Nets proposed by (Boutilier et al. 2004)
were a notable work on this topic. The CP-Nets are a graph-
ical preference model for representing conditional prefer-
ences under ceteris paribus semantics. The formalism in-
troduced by (Wilson 2004) uses sets of rules that allow
the specification of preferences more generic than CP-Nets.
This approach was also employed by the language CPref-
SQL for the evaluation of database queries containing con-
ditional preferences (Ribeiro, Pereira, and Dias 2016).

704

The works described in (de Amo and Bueno 2011; Petit
et al. 2012) use the preference model of CPrefSQL to de-
sign incremental algorithms for the evaluation of preference
queries over data streams. Such algorithms construct a pref-
erence hierarchy over data elements and update this hierar-
chy when new elements arrive or old elements expire.

As mentioned early herein, our approach is based on the
TPref framework (de Amo and Giacometti 2007). The TPref
and StreamPref formalism uses the PTL, but they have sig-
nificant differences. First, the propositions of TPref formal-
ism are simple equalities. In contrast, our propositions are
more expressive and support predicates like (A ≤ 10). The
basic formulas of TPref include the temporal predicate Un-
til. This predicate allows the composition of future formulas.
We restricted the StreamPref formalism to the present and
the past formulas because they are more suitable for data
stream scenarios. Another improvement in StreamPref is the
support to indifferent attributes that allows to break the ce-
teris paribus semantic for some attributes. Our work also
proposes algorithms for dominance test, while the work pre-
sented in (de Amo and Giacometti 2007) just established the
theoretical foundations of this task.

The most important difference between TPref and
StreamPref is the conditions format. The temporal condi-
tions of TPref are arbitrary PTL formulas, but this imposes
great difficult for consistency test. The work described in (de
Amo and Giacometti 2007) shows there is no feasible con-
sistency test for tcp-theories containing arbitrary formulas
in the temporal conditions. On the other hand, the temporal
condition format proposed herein makes it feasible to per-
form the consistency test for any tcp-theory in our language.

5 Experimental Results

In order to demonstrate the effectiveness of our approach,
we implemented the algorithms ExtractSeq and DomSeq to
conduct experiments under diverse temporal ranges. Our ex-
periments employed a real dataset of the 2014 soccer world
cup containing 167,801 objects of 64 matches1.

The cost to compute the dominant sequences is highly
correlated to temporal range since greater temporal ranges
produces longer sequences that require more time to be com-
pared. Therefore, to analyze the behavior of the ExtractSeq
and the DomSeq algorithms we considered the following
values for the temporal range: 5, 10, 20, 40, 80 and 160.
Considering the objects number, the temporal ranges used is
equivalent to the experiments with sliding windows in (Petit
et al. 2012). Our experiments used the same tcp-theory of
Example 3.

For each temporal range, the algorithms were executed
five times to obtain the average runtime per match. The run-
time per match is the total runtime of all matches divided by
the number of matches. All experiments were carried out on
a machine with a 3.2 GHz twelve-core processor and 32 GB
of main memory, running Linux. Figure 2 shows the runtime
of the algorithms.

As expected, the ExtractSeq algorithm has the smallest
runtime since this algorithm just appends the stream objects

1http://data.huffingtonpost.com/2014/world-cup

510 20 40 80 160
0

20

40

Temporal Range

R
un

tim
e

(s
ec

)

ExtractSeq
DomSeq

Figure 2: Runtime for ExtractSeq and DomSeq algorithms

to the correspondent sequences. On the other hand, the Dom-
Seq algorithm has the greatest runtime due to the expensive
cost of the dominance test.

It is worth mentioning that a soccer match has a dura-
tion of at least 5,400 seconds. Moreover, our algorithms had
a runtime under 50 seconds considering the 160 seconds
range. Thus, according to the experiments results, our algo-
rithms had acceptable efficiency for the analyzed scenario.

6 Conclusion

In this paper we presented the StreamPref language for
reasoning with temporal conditional preferences over data
streams. We proposed a feasible consistency test in order to
check if a given set of rules does not impose a reflexive order
over the sequences.

We also designed the algorithm ExtractSeq to extract se-
quences from a data stream and the algorithm DomSeq to
perform dominance test between sequences. The algorithm
ExtractSeq is incremental, but the algorithm DomSeq is not.
Currently, we are working on an incremental version for the
DomSeq algorithm in order to optimize the sequence com-
parisons in data streams scenarios.

Acknowledgments. The authors thanks to the Research
Agencies CNPq, CAPES and FAPEMIG for supporting this
work.

References
Boutilier, C.; Brafman, R. I.; Domshlak, C.; Hoos, H. H.; and
Poole, D. 2004. CP-nets: A tool for representing and reason-
ing with conditional ceteris paribus preference statements. JAIR
21:135–191.
Cornelio, C. 2015. Models for conditional preferences as exten-
sions of cp-nets. In IJCAI, 4355–4356.
de Amo, S., and Bueno, M. L. P. 2011. Continuous processing of
conditional preference queries. In SBBD.
de Amo, S., and Giacometti, A. 2007. Temporal conditional pref-
erences over sequences of objects. In ICTAI, 246–253.
Petit, L.; de Amo, S.; Roncancio, C.; and Labbé, C. 2012. Top-k
context-aware queries on streams. In DEXA, 397–411.
Prior, A. N. 1967. Past, Present and Future. Oxford, New York,
USA: Oxford University Press.
Ribeiro, M. R.; Pereira, F. S. F.; and Dias, V. V. S. 2016. Efficient
algorithms for processing preference queries. In ACM SAC, 972–
979.
Wilson, N. 2004. Extending cp-nets with stronger conditional pref-
erence statements. In AAAI, 735–741.

705

