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Pattern based diving heuristics for a two-dimensional
guillotine cutting-stock problem with leftovers
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*IMB, Université de Bordeauzx, 351 cours de la Libération, 33405 Talence, France
YINRIA Bordeauz - Sud-Ouest, 200 avenue de la Vieille Tour, 33405 Talence, France

Abstract

We consider a variant of two-dimensional guillotine cutting-stock problem that
arises when different bills of order (or batches) are considered consecutively.
The raw material leftover of the last cutting pattern is not counted as waste as
it can be reused for cutting the next batch. The objective is thus to maximize
the length of the leftover. We propose a diving heuristic based on a Dantzig-
Wolfe reformulation solved by column generation in which the pricing problem
is solved using dynamic programming (DP). This DP generates so-called non-
proper columns, i.e. cutting patterns that cannot participate in a feasible integer
solution of the problem. We show how to adapt the standard diving heuristic
to this “non-proper” case while keeping its effectiveness. We also introduce the
partial enumeration technique, which is designed to reduce the number of non-
proper patterns in the solution space of the dynamic program. This technique
helps to strengthen the lower bounds obtained by column generation and im-
prove the quality of solutions found by the diving heuristic. Computational
results are reported and compared on classical benchmarks from the literature
as well as on new instances inspired from industrial data. According to these
results, proposed diving algorithms outperform constructive and evolutionary
heuristics.

Keywords: Cutting and Packing, Dynamic Programming, Diving Heuristic

1. Introduction

The two-dimensional guillotine cutting-stock problem is a classical problem
that occurs in industry when one has to cut rectangular pieces from identical
large objects (plates) in such a way that the number of plates used is minimum.
In wood, glass, steel, or paper industries, most cutting devices impose so-called
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guillotine cuts. These cuts are made in a straight line from one border of the
plate to the other. Motivated by an industrial application, we restrict our
attention to cutting patterns that emanate from a 4-stage guillotine-cut process:
i.e. each cut piece can be obtained trough the process of applying at most 4
guillotine cuts.

In our problem, we are given an item set Z. Each item ¢ € 7 is a rectangle
with dimensions w; x h;, called width and height, and has a demand (or number
of copies) equal to d;. Each item i can be rotated, in which case, its dimensions
become h; x w;. To cut these items, an unlimited number of identical plates
(bins) of dimension W x H are available. In the remainder of the paper, we
assume that all input data are integer.

In practice, set Z is partitioned into distinct batches {Z;,...,Zg}, which
have to be processed independently. This saves operational costs, but leads to a
larger amount of leftovers (also called waste). To reduce the loss of material, it is
allowed to use the leftover from the last plate of the previous batch to initialize
the current batch. A leftover is the result of a first stage cut, i.e. it is a
rectangular piece of height H and width W’ < W. Therefore, for a given batch,
a solution consists of a number of cutting patterns for standard plates, plus
a first-plate cutting pattern that has a smaller width, and a last-plate cutting
pattern for which the objective is to minimize the width. We call this problem
two-dimensional guillotine cutting-stock problems with leftover (2DGCSPL). A
solution is depicted in Figure 1.

The problem is NP-hard, since it generalizes cutting-stock. It is also combi-
natorially complex and the practical instances that we need to solve are large:
10 to 15 batches each having about 150 different items, for which the total de-
mand can be as large as 400 copies, and the plates have a large size (6000 x 3000)
relative to the item size. Hence, we consider only so-called restricted cuts, i.e.
cuts of length equal to an item width w; or an item height h;. Special require-
ment related to restricted cuts is that one of the two sub-plates is immediately
initialized with an item of width or height equal to the length of the performed
cut. Our initial experimental observations as well as those reported by Furini
et al. [12] for a related problem confirm that using only restricted cuts does not
deteriorate the solutions in most cases.

Zy 7y 7y Zy

Figure 1: Representation of a solution for a batch Z;,. The first plate has a smaller width,
since it is the leftover from the previous batch. The right-hand part of the last plate will be
re-used in the next batch.

The paper is organised as follows. We first give an overview of the literature
on related problems in Section 2. Then in Section 3, we recall how it can be
modelled by an exponentially large ILP model in which each variable represents
a cutting pattern, and how the pricing subproblem can be solved by dynamic
programming. Constructive and evolutionary heuristics inspired from the liter-
ature for the 2DGCSPL are discussed in Section 4. In Section 5 we present our



pattern based diving heuristics for the 2DGCSPL. To obtain better solutions
by these diving heuristics, we also propose a partial enumeration technique that
is embedded in the dynamic program for solving the pricing subproblem. In
Section 6, we report results of computational experiments in which we com-
pare different heuristic algorithms on classical data sets and real-life instances.
Conclusions are drawn in Section 7.

2. Literature review

Cutting-stock problems have drawn a large attention because of their sig-
nificance for the industry, and their theoretical and practical difficulty. When
all demands are unitary (d; = 1,Vi € Z), the problem is also referred in the
literature as the bin-packing problem. From a theoretical point of view, one
can reformulate a bin-packing problem as a cutting-stock problem, therefore
through the rest of this paper, we will use both names.

The first study on two-dimensional packing problems appeared in Gilmore
and Gomory [13]. Therein, the approach is to formulate the two-dimensional
bin-packing problem (2BP) using Linear Programming (LP) and solve it using
column generation. Indeed, the Dantzig-Wolfe decomposition of the 2BP gives a
nice reformulation with a covering problem as the master and a two-dimensional
knapsack as pricing problem. In Gilmore and Gomory [13] the two-dimensional
knapsack pricing problem is tackled by dynamic programming. For the three-
stage version of the problem, Vanderbeck [28] used a nested decomposition,
solving the pricing problem using Dantzig-Wolfe reformulation. When the pric-
ing problem is too hard to solve, a level approach can be used instead as outlined
by Puchinger and Raidl [22]. It combines different methods such as heuristics,
meta-heuristics or ILP models. Methods are called one after another and when
an acceptable solution is found, it is returned. Another way to solve 2BP was
proposed by Silva et al. [26]. Tt uses an enumeration of the possible patterns
occuring during the cutting process. These patterns are fed into a direct Integer
Linear Programming (ILP) formulation, which is solved with a general purpose
ILP solver. Another approach based on a large ILP model has been developed
by Macedo et al. [17]. Authors used the original arc-flow model of Valério de
Carvalho [27] for the one-dimensional bin-packing problem (1BP) and extended
it to the 2BP.

Most exact methods for the 2BP are not able to scale up to larger instances.
This comes from the pseudo-polynomial nature of the models used (either in an
ILP formulation, or in the subproblem). To overcome this difficulty, heuristics
are often preferred to exact methods. New advanced heuristics such as the agent-
based heuristic of Polyakovsky and M’Hallah [21] or the repairing heuristic of
Fleszar [10] have been shown to be effective.

Column generation or pattern based heuristics have also been proposed.
Alvarez-Valdes et al. [1] used a simple and a more elaborated ad-hoc rounding
heuristics. The same authors also used a truncated restricted master heuristic.
Furini et al. [11] employed pure diving, restricted master, and diving with sub-
MIPing heuristics, if one uses the terminology defined by Sadykov et al. [25].



Since the subproblem is time consuming, the previous authors used heuristics to
solve it most of the time. Finally, Cintra et al. [5] worked with column generation
approach with non-proper columns. They solved the residual problem obtained
after initial rounding using an ad-hoc heuristic.

The main bottleneck of the Dantzig-Wolfe reformulation of the 2BP is the
two-dimensional knapsack problem (2KP) pricing subproblem. When the pric-
ing problem is unbounded (i.e. when there are no upper bounds on item pro-
ductions), dynamic programming (DP) is a natural choice to handle pricing.
Recurrence relations were initially introduced by Beasley [3]. Russo et al. [24]
extended them to tackle huge pricing problems. However it is not straightfor-
ward to extend DP to the bounded case, or to a larger number of stages. In
Dolatabadi et al. [7], the authors proposed a DP method for the case where the
number of cutting stages is unlimited. They combine dynamic programming
and implicit enumeration of patterns: assuming a threshold value as a valid
lower bound, they enumerate all feasible cutting patterns providing a value bet-
ter than the threshold. If there are no such patterns, they correct the threshold
value and run the method again. For the bounded version of the four-stage
version of the problem, Clautiaux et al. [6] proposed a hypergraph based label
setting algorithm. An initial dynamic program, represented by a hypergraph,
is created to solve the unbounded problem. Then a filtering procedure based
on Lagrangian relaxation is used to remove non-promising hyperarcs from the
hypergraph. Finally, a label setting algorithm is applied to solve the 2KP by
handling incrementally item upper bound constraints one by one. Note that
when the number of cutting stages is limited to two or three, ILP models per-
form well as shown by Lodi and Monaci [16] and Puchinger and Raidl [22].

Leftovers complicate significantly the problem, mainly because the objective
function has to account for the total length of the last cutting pattern. The
rounded up lower bound obtained by column generation is seldom equal to the
optimal solution value. An application of the cutting-stock problem with left-
overs to glass cutting was treated by Puchinger et al. [23]. The problem they
considered is to minimize the number of plates and the length of the used part
of the last plate. Extra constraints are imposed on the order in which items
are cut due to storage considerations. The authors have designed heuristics,
meta-heuristics and heuristic branch-and-bound methods to solve the problem.
Recently, similar approaches have been proposed by Dusberger and Raidl [8].
They developed a Variable Neighbourhood Search based on a Ruin-and-Recreate
principle. A cutting pattern for a plate is represented by a cutting tree. Heuris-
tics aim to remove some parts of the cutting tree for some plates (ruin step),
then a new solution is obtained from items removed by the ruin step (recreate
step). Recreate step is based on a constructive heuristic; the authors provide
an ILP model to handle this part. Dusberger and Raidl [9] then extended their
own work by adding dynamic programming in their recreate step. Instead of
using heuristics, Andrade et al. [2] proposed direct MILP models for the 2BP
with leftover inspired from the works of Lodi and Monaci [16] and with variables
and constraints to handle leftover.

We are not aware of existing works in the literature studying our variant



of the cutting-stock problem with four stage cutting, possible rotation, and
demands. Moreover, we want to handle leftovers and solve real-life size instances
with large plates (typically 6000 x 3000) and many items (typically more than
100).

3. Extended formulations for 2DGCSPL

A classical approach solving for hard packing problems is to use extended
formulations resulting from a Dantzig-Wolfe decomposition. In this section, we
first describe how this decomposition can be applied to the 2DGCSPL, yielding
an exponential size reformulation. The latter is to be solved using column
generation and we explain how the pricing subproblem can be solved. Finally,
we describe a pseudo-polynomial size extended formulation.

Recall that for 2DGCSPL, one needs to pack set Z, of items to three type
of plates: a leftover plate from batch b— 1 of given dimension W’ x H (type 1),
an unlimited number of standard plates of dimension W x H (type 2), and a
single potential leftover plate of dimension W x H (type 3); and only a part of
the width of the plate of type 3 is used (it is equals to the width of the cutting
pattern assigned to it). Using these three types, the objective is to minimize
the total used plate width and assuring that exactly one plate of type 1 and at
most one plate of type 3 are used respectively. For the first batch, the plate of
type 1 does not exist; the model can easily be adapted to this special case.

3.1. An extended formulation obtained by Dantzig- Wolfe decomposition

To formulate 2DGCSPL, let P; be the set of all valid cutting patterns for
a plate of type t € {1,2,3}. Let af and w? be the number of items i € Z in
cutting pattern p € P; and its width. Let also A, be an integer variable which

is equal to the number of times pattern p € P; is used in the solution. Then the
2DGCSPL can be formulated as

min Z WA, + Z WX, + Z wP A, (1)
peP1 peP2 peP3
> ab, =d;, VielZ, (2)
PEP1UP2UP3
D=1, vt e {1,3}, (3)
PEP:
Ap € Z+, Vp € 7)23 (4)

Ape{071}a vpeptate {173} (5)

Objective function (1) minimizes the total used plate width. Note that
the first term is a constant, since the first plate has to be used. Constraints
(2) guarantee that the item demands are satisfied. Constraint (3) forces one
to use exactly one plate of the first and the third type (the latter can have
the width equal to zero, so implicitly we enforce an upper bound of one on



type 3 plates). The remaining constraints are added to ensure integrality of the
variables. Note that the number of variables ) is exponential. A standard way to
tackle formulation (1)—(5) is to solve its linear relaxation, called Master Problem
(MP) using a column generation procedure: one alternates between solving the
Restricted Master Problem (RMP), which is the MP with a restricted number
of variables A, and the pricing problem. The latter searches for negative reduced
cost variables A to be added to the RMP. Consider a dual solution (7, 41) of the
RMP, where vector 7 is associated to constraints (2) and vector p = (u1, u3) is
associated to constraints (3). The pricing problem is to find a cutting pattern
p € P1 U Py U P3 that minimizes the following reduced cost

W'—p, pePry,
Epszafer w, pE Pa, (6)
i€ wP — pus, pePs.
Obviously, the pricing problem decomposes into three subproblems, one for each
plate type.

3.2. Solving the column-generation pricing problem

Each pricing subproblem is a bounded four-stage restricted guillotine-cut
two-dimensional knapsack problem. A dynamic programming algorithm (DP)
for the unbounded case of this problem (based on the one of Beasley [3]) was
presented by us in Clautiaux et al. [6]. To be self-contained, we recall the dy-
namic programming recursion here. Then, we restate the complete formulation
of the bounded case as an ILP model.

When item rotations are allowed, set Z of items is duplicated in the sub-
problem to include rotated item copies. The two copies of an item 7 share the
same dual value 7; from the RMP, and the same upper bound d;.

Since we use restricted cuts, we consider two types of dynamic programming
states: those related to a restricted cut (used to initiate a strip), and those that
are used to complete a strip.

Let (w,h,s), w e {1,...,W}, h e {l,...,H}, s € {1,...,3}, be the state
corresponding to the situation in which a rectangular part of dimension w x h
of the plate is to be separated from the current plate using a guillotine cut of
stage s. Let (w,h,s),we{l,..., W}, he{l,...,H}, s€{2,...,4}, be the state
corresponding to the same situation with the additional restriction that the next
cut should obtain a single item copy. For a given state (w, h, s), let U(w, h, s)
be the maximum value of a configuration obtained from this state. Note that
this value only depends on the dual values 7 associated to item copies, and an
additional term for type 3 plate only, which is equal to the total width used.
It is sufficient to account for this restricted width in stage 1 cuts only. Then
U(W, H,1) equals to the pricing subproblem optimum value (ignoring constant
values in (6)).

Let W(w, h) and H(w,h) be the set of all possible widths and heights of
items which fit into rectangle w x h.

W(wvh) = U {w1}7 H(w7h) = U {hz}

i€l wi<w,h; <h i€l wi<w,h; <h




We now give the recursion for computing values U(w, h,s) and U(w, h, s) for
type 2 plates.

U(w,h,1) = 0 U(w,h,2)+U(w—w,h,1
(. 1) = {0, (UG RD) + U~ ', 1)}

U h,2) = 0 U h,3 U h—"h,2
(w.h2) = max {0, e {UG@H3) + U, h - .2}

U(w, h,3) = 0, U@', h,4) +U(w—w', h,3
(w.3) = max {0, xR + U~ '3}

U(w,h,2) = max {mi + U(w,h — h;,2)}

€L wi=w,h;<h

U(w,h,3) = max {mi + U(w —wy, h,3)}

€L h;=h,w; <w

U(w, h,4) = max {O, ez, Jnax, {mi + U(w,h— hy, 4)}}
In the recursive formulae for U(w, b, s) and U(w, h,4), the alternative with zero
value corresponds to turning the remaining rectangular part of the plate into
waste.
For the type 1 plate generation, the recursions are identical, only initializa-
tion needs to be adapted to the available width. For type 3 plates, the recursive
formula for U(w, h,1), becomes

U(w,h,1) = 0 U’ h,2)—w +U(w—w, h,1
(U}, ) ) max{ 7w/€%a(‘ﬁ’h){ (w7 ) ) w + (U} w, N, )}}

where term —w’ represents the penalty for the width consumed.

Using the formalism of Martin et al. [19], our dynamic program may be refor-
mulated as a max cost flow problem in a directed acyclic hypergraph. In Clau-
tiaux et al. [6], this transformation as well as pre-processing procedures for this
hypergraph are presented. Let G = (V,.A) denote this directed acyclic hyper-
graph. Vertex set V is composed of all states from the dynamic program and
also of special states related to single items or waste. Set S of these special
states are sources of the hypergraph. Its sink u is the vertex associated to state
(W, H,1). Each hyperarc a has a head h(a), which contains a unique vertex,
and a tail multiset T (a), which contains one or more vertices representing sub-
plate cutting patterns, each of which can occur more than once. A hyperarc
a represents the cutting decision that turns state h(a) into states in T (a). A
vertex v has a hyperarc predecessor (resp. successor) set I'"(v) (resp. I'" (v)).

Let A(i) be the set of hyperarcs whose tail sets include the source node
representing item i € Z. Let x,, for a € A, be the integer variable representing
the flow value going through hyperarc a. The resulting flow model associated



to the pricing problem can therefore be written as an Integer Linear Program:

max fp = Zm Z ZTq (7)

i€ acA(i)
s.t. Z To — Z T =0, YveW{uuZIu g} (8)
ael’~(v) a’el’'+ (v)
2 T, =1 9)
ael' = (u)
> ma<d;, Viel (10)
acA(t)
z,€N, Vae A (11)

Objective function (7) aims to maximise the reduced cost of items. This ob-
jective yields the non-constant term of the reduced cost f, = >, alm; in (6).
Constraints (8)-(9) are classical flow conservation constraints. They ensure that
a valid pattern is built according to cutting properties. Constraint set (10)
avoids overproduction of an item. When p € Ps, value w, in (6) is computed
as: Wy = Y,,c 1 Wala, with A the set of hyperarcs related to a cut of first stage.
Objective function (7) therefore becomes max,ep,{fp — wp}.

Tackling the pricing problem by applying an ILP solver to formulation (7)—
(11) leads to large computing times. We have shown in Clautiaux et al. [6]
that an iterative method based on state-space relaxations allows one to solve
the pricing problem significantly faster. However, even with the latter approach
remains too slow to be used inside column generation. As explained in Section 5,
our method will rather rely on solving the unbounded version of the pricing
problem.

8.8. Derwing a pseudo-polynomial flow formulation for 2DGCSPL

Building on our pricing problem network flow reformulation, one can formu-
late our cutting-stock problem as an arc-flow model yielding an ILP formulation
of pseudo-polynomial size (as done by Valério de Carvalho [27] for the 1BP).

Let Gy = (M4, A¢) be the hypergraph related to a plate of type t € {1,2,3}.
Let z,t € {1,2,3} be the total number of patterns of type ¢ that are used (z;
and z3 are set to be equal to one, whereas z; is a variable). Then, the 2DGCSPL



model can take the form:

min W'z + Wz + 23 2 WeTq (12)
GEAS
st Y xa— Y, Tw =0, YWweV\u uTu @} Ve (1,23}, (13)
ael' = (v) a’el’+ (v)
D e =z, Vte{1,2,3} (14)
ael~ (u¢)

DD wa=di, VieZ (15)
te{1,2,3} ac A+ (1)

21 =23 = 1, 29 € N (].6)
z, €N, Vae A, Vte{l,2,3} (17)

Objective (12) is equivalent to (1). Constraints (13)-(14) are flow conserva-
tion constraints among the different plate types. Constraints (15) ensure that
the demand is fulfilled. Variable definitions (16) ensure to select only one pat-
tern from types 1 and 3. Finally, each hyperarc variable is integer (17).

4. Constructive and evolutionary heuristics

Due to the large size of instances we aim to solve, a natural approach is
to use heuristics, which are usualy used in the literature. In this section, we
first propose heuristics to solve the bounded case of the pricing problem. Such
a choice is motivated by the fact that solving this problem to optimality is
computationally expensive in the column generation context. Second, we also
derive constructive heuristics for 2DGCSPL. They will be used in computational
comparisons with diving heuristics presented below.

We designed two heuristics for the pricing problem. The first is based on a
hypergraph exploration. The second is an evolutionary algorithm.

4.1. Hypergraph based heuristics for the pricing problem with bounded produc-
tion

As described in Section 3.2, the dynamic program seeks a max-cost flow
to the sink in the acyclic hypergraph, where vertices correspond to sub-plate
cutting patterns and hyperarcs correspond to combinations of these patterns.
Thus a cutting pattern can be represented by a set of hyperarcs (how sub-plates
were combined) and a set of vertices (intermediate states). As a first step of the
heuristic, we run the dynamic program for the unbounded problem. It allows
us to compute the best reduced cost ¢, associated with each vertex v € V), i.e.
the dynamic programming value associated to the corresponding state. The
reduced cost associated with an hyperarc ¢, is the sum of the reduced costs of
its tails © Cq = X 7y Co- We also define as y(A') € ZE‘ the partial solution
corresponding to the source vertices in the tail sets of hyperarcs in multiset A’

yi(A) =| A’ A(3) |, Vie T.



The constructive stage of the first heuristic is run for a given hyperarc a’ € A
and a given partial solution 3’ € Z‘f‘, y' < d. We start by adding y({a’}) to
y'. At any time, we keep the current set £ of open wvertices, initialized with
all non-source vertices in the tail set of hyperarc a’. In every iteration of the
algorithm, a vertex v’ is selected in £ and removed from it. Then, a hyperarc
a incoming to v’ with the smallest reduced cost such that y' + y({a}) < d is
chosen, all non-source vertices in the tail set of a are added to £, and we pass to
the next iteration. The algorithm stops when set £ becomes empty. It returns
the obtained solution 3’ and the corresponding multiset of hyperarcs A’. The
pseudocode of this heuristic is presented as Function HG-Constr-Heur.

Function HG-Constr-Heur(a/, y')
L—@ A
if ¥ + y({a’}) < d then
Ly <y +y({a}); A {d'}; L T(a')\S;
while £ # ¢ do
Pick v e L; L «— L\{v} ;
A" —{aeT(v): ¥ +y({a}) < d};
if A” # ¢ then
a” — argmax,c 4n{Co };
\‘ y/(;y/+y({a//})’ A/HA/U{QII},L(*;CUT(GU)\S,

return (y', A")

The constructive heuristic can then be embedded in a local search method.
First the constructive heuristic finds the best feasible solution among all hy-
perarc a’ € I'"(u) incoming to the sink node u, and best solution (y*, A*) is
obtained. Then the following local search algorithm is applied to this solu-
tion. At every iteration, each hyperarc @ € A’ is replaced by another hyperarc
aeIl'(H(a)),a # a incoming to the same vertex as @, and solution y’ is mod-
ified accordingly. If an improved solution is found, next iteration starts. The
process stops when no improvement occurred or the iteration number limit is
reached (minimum between |Z| and 50). The formal presentation of this heuris-
tic is given as Algorithm 1.

4.2. FEvolutionary heuristic for the pricing problem with bounded production

The second heuristic is an evolutionary algorithm inspired from Hadjicon-
stantinou and Iori [14]. Let Z be an unary representation of item set i € Z, i.e.
d; copies of each item ¢ are created. We use an indirect encoding: each individ-
ual (or genome) g is represented by a sequence of integers gi, ..., gn(g), €ach of
them refers to the g;-th item to cut in Z. Size n(g) of a genome g is usually
smaller than |Z|, as, generally, not all item copies fit into a single plate. To
obtain the solution and its value from a genome, we run the following so-called
First-Fit heuristic.

10



Algorithm 1: Hypergraph based heuristic
(y*wA*) = (07 @)7
for o' e~ (u) do
(y, A) < HG-Constr-Heur(a’, 0);
if Ty > my* then (y*, A*) = (y, A) ;
k < 0;
repeat
improve «— false; k — k + 1;
(v, A) = (y*, A*);
for a € A’ do
Let A be the part of solution (fow) A’ coming to H(a);
for ae '~ (H(a)),a # a do
(9, A) < HG-Constr-Heur (a, y’ — y(/i)),
if 7 (y — y(A) +§) > my* then
L vty —y(A) + G A — ANAU A

improve «— true;

until —improve or k = min{|Z|, 50};
Store solution (y*, A*);

First-Fit heuristic cuts items in the order given by genome g. Let R be the
stack of available sub-plates initialized with initial plate (W, H, 1) at stage 1.
First-Fit heuristic takes the first available plate in R, removes it from R, and
then tries to cut the first available item [; in the order given by the genome.
Since guillotine cuts are considered here, this implies that this cut always divides
the current sub-plate r into two smaller sub-plates ' and 7" which are added
to stack R. Note that if no remaining item in the genome fits in a given plate
r, we use other items which fit into it if possible, thus increasing the solution
quality. If no items fit into a sub-plate, it is discarded. The process stops when
R=¢.

The purpose of the evolutionary algorithm is to create a new population
containing improving solutions from the previous one. We initialize our evolu-
tionary algorithm with a population of |Z| individuals corresponding to different
random permutations of multiset Z. To ensure good quality solutions, the initial
population is then reduced using an elitist strategy. This one aims to keep the
pool F of pg;.e best individuals from the initial population. Starting from this
pool, a new population is created in two phases: new individual generation and
crossover operation. The first phase is the same as the initial population gen-
eration. This enriches the pool by ps;.. new individuals. In the second phase,
the offspring set O of individuals is produced using a two-point crossover where
only 25% of offspring individuals are randomly kept.

Two-point crossover uses as input two parent individuals represented by their
genomes g1 and g and create a new one g3 by selecting parts of parent genomes.

11



Two positions in the genome of the first parent p; and po are randomly picked.
The offspring is then created by merging genome of parent g; between positions
0 and p;, genome of parent gs between positions p; and ps and then genome of
parent g; between positions py and n(g;).

After a crossover phase, all remaining individuals solutions are moved in
pool F. Then only pg.. best individuals in F' are kept for the next popula-
tion generation. To have enough solutions from one population generation to
another, the population size pg;.e is set to 20. The total number of population
generations is set to |Z|/2.

4.3. Heuristics for the 2DGCSPL

A direct way to obtain a heuristic solution for the 2DGCSPL is to use the
evolutionary algorithm described in Section 4.2 iteratively for each plate. We
call this heuristic (ea).

Alternatively one can use standard bin-packing list heuristics such as Next-
Fit (NF), Best-Fit (BF), First-Fit (FF) or Bottom-Left (BL). These heuristics
run in polynomial time and produce a feasible packing for our problem. The
main difference between them is the packing strategy for a given item. Assume
a set of items to cut Z and a list of empty sub-plates R. In Next-Fit heuristic,
a given item ¢ € 7 is packed in the next sub-plate r € R in which it fits. If there
are previous sub-plates in which the item does not fit, they are simply removed
from R. In First-Fit heuristic, a given item ¢ € 7 is packed in the first sub-plate
r € R in which it fits. In Best-Fit heuristic, a given item ¢ € Z is packed in
the best sub-plate » € R in which it fits. The best sub-plate is the one such
that after packing an item its remaining horizontal or vertical unused space is
minimised. In Bottom-Left heuristic, a given item 7 € Z is packed in the sub-
plate 7 € R in which it fits such that position of the item is the closest to the
bottom left corner of the bin. At any step of these heuristics, if no sub-plates
can accommodate the item, a new one is created, which triggers the addition of
a new bin. More details about these heuristics can be found in Lodi et al. [15].

We now present heuristic algorithm (¢ub) which is more time consuming than
(ea). It combines several list heuristics as well the evolutionary algorithm. We
consider 10 # |Z| random permutations of set Z. Four list heuristics mentioned
above are applied for each of these permutations. These heuristics can be used
in several ways. The first option is to fill one plate at a time, i.e. we switch to
the next plate only when there are no items in the current list that fit into the
current plate. The second option is to open all bins at the same time.

The third option is to implement the following two-phase process. A plate
of infinite width is created and items are packed in it using the list heuristics
above. According to the guillotine cut property, the obtained solution can be
represented by a certain amount of vertical strips. We collect the obtained strips
and assign them to original plates using BF, FF and NF list heuristics as in 1BP.

At the same time, we also generate an extra bin-packing solution by solving
iteratively 2KPs with our evolutionary algorithm. For the latter we generate 10
times an initial random population and improve it during |Z|/10 iterations.
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Using the three described options as well as the evolutionary algorithm, we
obtain a set of feasible solutions for each random permutation of set Z. We
first record the best solution providing us a valid upper bound for our cutting
problem. Then, among all cutting-stock solutions we select a plate of smallest
waste, and we add it to the partial solution. We then reiterate the whole process
on the residual problem. The algorithm terminates when there are no more
items to cut.

5. A diving heuristic for the 2DGCSPL

In this section we present our diving heuristic to solve 2DGCSPL. We first in-
troduce standard column generation based diving algorithms, following Sadykov
et al. [25]. Then we show how these algorithms can be adapted when production
bound constraints are not enforced in the pricing subproblem. Several additional
ingredients are presented to improve the quality of the solutions obtained.

5.1. Diving heuristics

A pure column generation based diving heuristic, as presented in Sadykov
et al. [25], is a depth-first search heuristic in a branch-and-price enumeration tree
obtained when branching on the master problem variables A. It can be directly
applied to our problem in the following way. At each iteration one (re)optimizes
the master linear problem; as a result, one obtains a fractional solution A. One
chooses a component ), of the solution vector such that its current value A,

is the closest to its nearest non-zero integer [A,|. Then one sets A, = [A,] in
the partial solution, and updates the demand of items: d < d — aP[),]. The
algorithm proceeds to the next iteration with the updated (or residual) master
problem. The process terminates when the partial solution becomes complete
(i.e. when all master constraints are satisfied). Note that Furini et al. [11] used
this pure diving heuristic for two-stage 2D guillotine cutting-stock problem.

As shown in Sadykov et al. [25], effectiveness of the diving heuristic sig-
nificantly increases when it is coupled with Limited Discrepancy Search. This
variant allows one to do a limited number of backtracks in the search tree. Dur-
ing a backtrack, the decision to add a column to the partial solution is reverted.
Once this happens, this column is added to the tabu list. Columns in the tabu
list cannot be added to the partial solution.

To improve the convergence of the column generation procedure on which the
diving heuristic relies, we use the automatic dual price smoothing stabilization
proposed in Pessoa et al. [20].

5.2. Diving with non proper columns

To achieve primal feasibility, the basic diving heuristic requires to use so-
called proper columns, i.e. variables that could take a non-zero value in an
integer solution of the residual master problem. In our context, a variable A,
p € P1 U Py u Ps, is proper if a¥ < d;,Vi € Z. Therefore, in each pricing
subproblem we should impose upper bounds on the number of copies of items
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in the cutting pattern. However when solving the pricing problem (6) in Sec-
tion 3.2, we consider only the unbounded version. In the presence of these upper
bounds, the pricing problem becomes significantly harder to solve to optimality.
A possible solution to this issue is to solve the pricing problem only heuris-
tically using algorithms from Sections 4.1 and 4.2. However, our preliminary
experiments showed that this approach deteriorates significantly the quality of
solutions obtained by the diving heuristic.

In this work, we propose a variant of the diving heuristic which uses non-
proper columns. A previous study of Cintra et al. [5] and our preliminary
experiments showed that the lower bound obtained by solving the MP with
non-proper columns is close to the one obtained when using exclusively proper
columns. As the quality of diving heuristics depend mainly on the strength of
the MP bound, we may then expect that a “non-proper” diving heuristic will be
efficient for our problem.

Our “non-proper” diving heuristic proceeds as follows. Remember that at
each iteration, the residual master problem is solved by column generation. Both
proper and non-proper columns may be generated. However, the partial solution
can only be augmented with proper columns. Therefore, given a fractional
solution X, we choose a proper variable Ap with a value closest to its nearest
non-zero integer. If such variable exists, we proceed the same way as in the
basic diving heuristic. If there is no such "proper" variable, we choose a column
Ap with the smallest reduced cost (with respect to the optimal dual solution of
the master problem) among

e all proper columns contained in the current RMP;

e and proper columns generated by solving the bounded pricing problem by
heuristic algorithms presented in Sections 4.1 and 4.2.

As usual, this column is then added to the partial solution with the value equal
to the nearest non-zero integer of A,. In particular, if A\, = 0 then A\, = 1 is
included in the partial solution.

Our preliminary experiments showed that fixing a type 3 columns A, for
p € Ps, early in the search has a negative impact on the quality of solutions
obtained. Therefore, we adopt the following modification. Cutting patterns
p € P3 are never added to the partial solution before patterns p € P; U Po. As
there is exactly one pattern p € Ps in any feasible solution, once it is added
to a partial solution, the latter should become complete. Therefore, each time
the partial solution is augmented with a cutting pattern of type 1 or 2, we
verify heuristically whether the remaining item copies can be cut into one plate
of dimension W x H. If it is possible, we produce a cutting pattern p € Pj
including all remaining item copies and minimizing heuristically its width w?.
Then this pattern is used to complete the solution, and the diving heuristic
terminates.

One can develop further this idea and, each time the partial solution is
augmented, to formulate the residual 2DGCSPL and solve it with heuristics
described in Sections 4.1 and 4.2. Calls to these heuristics are done iteratively
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for each plate until the residual problem instance is closed. This modification
can be seen as a combination of the diving and pricing heuristics. This combined
heuristic is presented in Algorithm 2. A boolean parameter lastPlateOnly is
used to set how to evaluate the residual 2DGCSPL instance: building only a
solution for the last plate or a complete solution to the residual 2DGCSPL
instance.

Algorithm 2: The combined pricing heuristics and diving heuristic with
non-proper columns

1 P* « solution of the 2DGCSPL with demands d by the evolutionary

algorithm
2 d —d, PPt —
3 repeat
Solve the MP with production bounds d’ by column generation and
obtain solution X
5 PProP — {pePruPa: A, >0,aP < d'} (set of proper patterns in the
solution)
6 if PProP £ f then
7 | ¢ < argmingeppron {| Ap — [Ap] [}
else
PRMP  set of patterns of type 1 and 2 in the RMP
10 Pheur  set of heuristic solutions to the pricing problem of type 1
and 2
11 p' < argmin cprup pheur {Cp
12 prart - prart U {p/}7 d — d — apl
13 if lastPlateOnly = true then
14 p? « heuristic solution to the pricing problem of type 3
15 if & —a?’ =0 then
16 d <0
17 L if cost(PPet U {p3}) < cost(P*) then P* « PPort y {p3}
18 else
19 P’ « heuristic solution to the residual 2DGCSPL with demand
dl
20 if cost(PPet U PY) < cost(P*) then P* « Prart | pev

21 until d’ =0
22 return P*

To introduce a Limited Discrepancy Search (LDS) in our “non-proper” diving
heuristic, we need to ensure that at least one non-tabu column is produced by
our pricing problem heuristic. This can be achieved by generating a sufficient
number of different cutting patterns, i.e. the size of set P"*" in Algorithm 2
is strictly larger that the current size of the tabu list.
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Note that in addition to accelerating column generation, stabilization has
an another positive effect. When it is used, the MP solution is generally more
fractional and thus contains a larger number of columns. Therefore, there is a
larger probability to have a proper column in the fractional solution.

5.8. Solving the pricing problem with partial enumeration

Although we have explained above that our diving heuristic can be adapted
to handle non-proper columns, still the quality of the solutions may be decreased
in comparison with the “proper” case. In this section, we propose a modification
to our dynamic program that partially takes into account upper bounds on
the number of item copies in order to favour the generation of proper cutting
patterns. As it will be seen from our computational results, this approach allows
one to improve the quality of the lower bound obtained by solving the MP as
well as the quality of solutions produced by the diving heuristic. This comes at
the cost of a slightly larger dynamic program. Nevertheless we show below that
this can be controlled by a suitable configuration.

On one hand, complete enumeration of the possible patterns would take into
account the bound constraints, but the computational cost would be huge. On
the other hand, the dynamic program has a reasonable computational cost, but
it does not take into account the bound constraints. Our idea is to mix both
approaches, by replacing some parts of DP by a partial enumeration.

This idea is implemented using so-called meta-items, each one representing
a partial vertical or horizontal stack of item copies satisfying production upper
bounds. When restricted states U(w, h,k),k = 2,3,4 are considered, instead
of choosing one item to initiate the stripe, we choose a meta-item (or equiva-
lently the items that it represents). There is potentially an exponential number
of possible meta-items to initiate the stripe. Therefore, we introduce an addi-
tional parameter §, which restricts the possible meta-items produced by only
considering items whose width/height is close enough to the size of the stripe.

Formally, let a]” be the number of copies of item ¢ € Z included into meta-
item m. Given three values 0 < w < W, 0 < h < H, and 0 < § < mingez w;,
we define the following set M*(w, h, §) of vertical meta-items. Each meta-item
m € M?*(w, h,0) forms in the cutting pattern a partial vertical stack of width
w containing copies of items ¢ € Z such that w — § < w; < w and h; < h. ITtems
that do not belong to m may only be cut in other vertical stacks or in the same
stack above the item copies in m. In addition, copies of items ¢ € Z such that
a;” > 0 may only be cut in other vertical stacks. Formally:

FeZl,wi=w: a> >0,
a'>0=w—-d<w;<wand h; <h, Viel,
@?’Sdi, VieZ,

=m
Dier @i hi < H.

m e M*(w, h,d) <

The first condition ensures that one item has width w (and thus a restricted
pattern is built). The second condition ensures that the size of the items in the
meta-item satisfies the requested limitations. The third condition ensures that
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the meta-item satisfies the production bound constraints. The fourth condition
ensures that the meta-item height does not exceed the plate height.

Analogously, given values 0 < w < W, 0 < h < H, and 0 < § < minger h;,
we define the following set MY (h,w,d) of horizontal meta-items:

HzeIh—h m >0,

>0=h— 5<h < hand w; <w, VielZ,
a;"<di, Viel,
Dz Gi'wi < W.

me MY (h,w,5) <

For each meta-item m € M, we define its total value 7, = >, _; m;aj*. For each
vertical meta-item m € M7, we define its total height h,, = Zzez al h , and for
each horizontal meta-item m € MY, we define its total width w,, = ZiEI ;.

Note that, by definition, M*(w, h, ) = & ifw ¢ W(W, H), and MY (h, w, d)
& it h ¢ H(W,H). Suppose now that for each w € W(W, H) a value §,,
0 < 0y < mingezw;, is fixed, and for each h € H(W,H) a value 0, 0 <
0p, < minger hy, is fixed. Then the recursive formulae for states (w, h, s) can be
rewritten in the following way without loss of any proper patterns from the set
of feasible solutions.

max {Fm + U(w,h — hp,2)}, if 8, > 0,
U(’LU A 2) _ meM?=(w,h,d.): hméh
s (s + Uw, h— hi,2)}, if 6, = 0,

ma.
i€L: uhfw h;<h
max {Fm + U(w — W, b, 3)},  if 6, > 0,
U(w, b, 3) = { meMI(w=0u,0n): wm<w
5 10y {7Ti+U(U)*’wi,h,3)}, lf§h=07

max
i€Z: hi=h,w; <W—08y

max {O, max {ﬁm}} , if 0y >0,
meM?®(w,h—0bp,1)

max{(}, ma; {7TZ+U’LU h — hl,4)}} if 0, =
€L wi= hlsh—

If all values § are fixed to zero, the modified dynamic program reduces to
the original one presented in Section 3.2. The larger the values ¢ are, the fewer
non-proper cutting patterns are generated and, at the same time, the larger
is the number of meta-items. So, there is a trade-off between the complexity
(or the size) of the dynamic program and the strength of the approximation
of the space of proper cutting patterns by the space of feasible solutions of the
dynamic program. We parametrize this trade-off by defining thresholds A%%#¢ >
0 on the size of the sets of meta-items and AYf > 0 on values 6, respectively
for dimension w and h. Given these thresholds, values § are determined the
following way. For each w € W(W, H), we set d,, to the largest value § <
min{Aﬁﬂ,miniezwi} such that | M®(w, H,§) |< A, As W*(w, H,0) = &
for any w, such value 0 always exists. Analogously, for each h € H(W, H), we
set &), to the largest value § < min {A$T min;ez h;} such that | MY(h, W,6) |<
A7*¢. Note again that WY (h, W,0) = & for any h. The sets of meta-items are
computed by enumeration.
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To illustrate such generation of meta-items, let us consider an instance with a
raw plate of size (4, 3) and three items 1 x4, = (4,1),2x1i2 = (3,1), 1xi3 = (2,1).
We compute set M*(4,3,§) with 6 = 2. Initially meta-items composed of only
items iy are created (see Figure 2-(b)). Secondly extra items are added to meta-
items derived from item ¢;. Since 6 = 2, only item iy is added (see Figure 2-(c)
and Figure 2-(d)). From each created meta-item, a valid cutting pattern can be
obtained (see Figure 3). At this point, item i3 is not cut because § = 2. If the
cutting process continues with horizontal cuts it will be possible to cut item i3.
A representation of the resulting patterns is given in Figure 4. Note that all
meta-items containing item iy are created, therefore it is impossible to add it
again to patterns of Figure 3-(a) and Figure 3-(b).

IR R L L
(@ () © @)

Figure 2: Vertical meta-items generation for three items: initial items (a), meta-items obtained
with item 1 only (6 = 1) (b), extra meta-item obtained by adding one copy of item 2 to meta-
item in composed of item 1 (6 = 2) (c), extra meta-item obtained by adding two copies of
item 2 to meta-item composed of item 1 (§ = 2) (d)

(a) (b) (c)

Figure 3: Vertical cutting patterns for a bin (4, 3) using meta-items (b),(c) and (d) from
Figure 2

Figure 4: Complete cutting patterns for a bin (4, 3) using vertical patterns from Figure 3 and
adding missing item 3. Since all meta-items containing item 2 are created, it is impossible to
add it again to patterns from Figure 3-(a) and Figure 3-(b)

18



6. Computational experiments

In this section, we report the results of experiments that we conducted on in-
stances from the literature and on real-world data. The goal of our experiments
is threefold: (i) to evaluate the impact of the pricing problem with partial enu-
meration on lower and upper bounds produced by our algorithm; (i7) to evaluate
the quality of the solutions produced by different variants of the diving heuristic
and compare them to heuristics described in Section 4.3; (ii%) to measure the
impact of re-using leftovers on real-world instances with batches.

All experiments are run using a 2.5 Ghz Haswell Intel Xeon E5-2680 with
128Go of RAM. We used CPLEX 12.6 to solve linear programs. The time limit
to solve one instance using one algorithm is set to one hour.

6.1. Instances and objective functions

Two objective functions are considered. The first one is the classical cutting-
stock objective (minimizing the number of plates). The second one is the total
used plate width (takes into account leftovers).

We use two groups of instances. The first group has been proposed in the
literature for the classical non-guillotine bin-packing problem. These instances
are divided in ten classes. We denote them as y ~ U[a, g] if value  is uniformly
generated in interval [«, 5]. Six instance classes were proposed by Berkey and
Wang [4] and are built as follows:

Class 1: W = H = 10, w;, h; ~ U[1,10]
Class 2: W = H = 30, w;, h; ~ U[1,10]
Class 3: W = H = 40, w;, h; ~ U[1,35]
Class 4: W = H = 100, w;, h; ~ U[1, 35]
Class 5: W = H = 100, w;, h; ~ U[1,100]
Class 6: W = H = 300, w;, hi ~ U[1, 100]

The four remaining classes with W = H = 100 were created by Martello and
Vigo [18]. Authors divided items in types:

Type 1: w; ~ U[2/3W, W], h; ~U[1,1/2H]

Type 2: w; ~ U[1,1/2W], h; ~ U[2/3H, H]

Type 3: w; ~ U[1/2W, W], h; ~ U[1/2H, H]

Type 4: w; ~ U[1,1/2W], h; ~ U[1,1/2H]
The four classes are:

Class 7: Type 1 with probability 70%, Type 2, 3, 4 with probability 10%
each
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Class 8: Type 2 with probability 70%, Type 1, 3, 4 with probability 10%
each

Class 9: Type 3 with probability 70%, Type 1, 2, 4 with probability 10%
each

Class 10: Type 4 with probability 70%, Type 1, 2, 3 with probability 10%
each

In these instances, the total number of item copies (}};,.; d;) in each instance
belongs to {20, 40, 60, 80,100}. 10 instances for each class are generated. Thus,
the first group contains 500 instances. They are available at http://or.dei.
unibo.it/library/two-dimensional-bin-packing-problem. We denote as
C — In the set of all instances in the first group (in classes 1 — 10) having n
items.

The second set of industrial instances is retrieved from the real-world data.
In our instances H x W € {50 x 100, 500 x 1000, 3000 x 6000}, |Z| € {25, 50, 100}.
The average demand of items is between 2 and 3. 15 instances were generated
for each pair plate size/number of items. Thus, the second group contains 135
instances. We denote as R — In the set of all instances in the second group
having n items.

The industrial instances are available on the ESICUP web-site: https://
paginas.fe.up.pt/"esicup/datasets.

6.2. Impact of the partial enumeration

Remember that the configuration of the partial enumeration in the pricing
problem is characterized by four values: A$=z¢ Agize ASEand A?Liff. We
consider here three settings. The first one corresponds to the standard dynamic
program with no enumeration: A; = (A%#¢ = 0, Ag#¢ = 0, Adff = o, Adiff = ().
The second one corresponds to the enumeration of items with the same h; for
odd cutting stages and with the same w; for even cutting stages: Ay = (A€ =
1000, Asi=¢ = 1000, ASf = 1 A% = 1), Our third setting corresponds to the
enumeration of items with the same h; for odd cutting stages and enumeration of
items with different w; at the second cutting stage: Az = (A2 = 1000, Aj#¢ =
1000, ASE = on A% = 1),

For each setting, we report in Table 1 the geometric mean of the number (in
thousands) of vertices (V), hyperarcs (A) and the total number of hyperarc tails
(X217 (a)]). Tt can be seen from this table that the partial enumeration impact
on the size of the hypergraph is very reasonable (at most 33% of increase). We
do not report the construction time since it is negligible (less than 0.2 seconds on
average and at most 6 seconds). Hypergraph building is a one time operation.
Therefore a stricter comparison to measure hypergraph configuration has to
been done when used to solve the pricing problem.
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Instances [V |Al 27 (a)]
group Al AQ Ag Al AQ Ag Al AQ Ag

C 26 35 35 | 252 295 296 | 50.0 577 579

R 8.3 109 104 | 123.9 139.7 162.0 | 2564.0 256.8 340.1

Table 1: Size of the hypergraph (geo. mean., in thousands of vertices, arcs, and tails) with
different configuration of the partial enumeration

When partial enumeration is applied, many non-proper patterns are ex-
cluded from the solution space of the pricing problem. Therefore, the lower
bound obtained by column generation may be improved. In the next set of
experiments we computationally estimate this improvement. We have imple-
mented four variants of column generation. The first one, denoted as cgm.p,
uses MILP flow formulation (7)-(11) to solve the pricing problem and generates
only proper columns. Thus, the best possible “proper” lower bound is obtained
at the expense of a large solution time. The three other variants use dynamic
programming with partial enumeration to solve the pricing problem. We denote
them as cga,, cga,, and cga, depending on the partial enumeration configura-
tion.

The results are reported in Tables 2 and 3. In both tables, the first column
reports the instance class and its total number of instances between brackets.
The column #pp shows the number of instances solved to optimality using the
fast heuristic (ea) : the obtained solution value equals to the value of the trivial
“surface” lower bound. The next three columns present results for the variant
Cgmip: number of instances not solved by (ea) for which the column generation
converged within one hour, average time (¢) in seconds, and the average primal-
dual gap (gap) in percentage from the best known solution. Next three columns
give the average gap (gap4op:) for other three variants of column generation. In
order to have a correct comparison, averages in columns gapop+ are calculated
only for instances for which the variant cgy,i, converged. Note that the column
generation variants with dynamic programming converged within the time limit
for all instances. Thus in columns gapy;; and t4;;, we give the average gap and
the average solution time among all instances not solved optimally by heuristic
(ea) for all hypergraph configurations. Reported times are in seconds. In Table 3
column (#pp) is deliberately omitted since no instances are solved by heuristic

(ea).
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CGmip gapopt, /o 9apau, % tau
Instances | #pp|#opt t  gap, %|cga, cga, Cgas | €A, CGn, CYAs | €A, CYA; CGA,
C-120 (100) | 63 | 37 85 6.94 | 8.63 838 829|863 838 829| 0.1 0.1 0.2
C-140 (100) | 37 | 54 583 248 | 297 280 2.79|6.03 582 581 |06 06 0.6
C-160 (100) | 35 | 33 921 1.26 |1.63 148 148|330 3.14 314 |12 13 1.3
C-I80 (100) | 29 | 28 1079 1.01 | 1.23 1.09 1.09 | 2.56 2.42 242 |25 26 26
C-1100 (100) | 31 18 731 0.53 | 0.66 0.61 0.61 |2.83 272 2.72| 45 46 4.6
R-125 (45) 37 2 1271 10.90 [10.96 10.91 10.91|22.22 22.18 22.17| 0.4 04 04
R-150 (45) 34 0 - - - - - |13.85 13.82 13.82| 1.9 1.9 2.0
R-1100 (45) | 33 0 - - - - - 6.53 6.53 6.53 | 10.7 10.6 10.9
Table 2: Comparison of different column generation variants for the total number of used
plates objective

Cmip gap#optz% 9aPali, % tan

Instances #Hopt t gap, % |cga, cn, CYa,|cOn, €9a, ChdpAs|CYa, CIA, CYA,
C-120 (100) 62 249.0 199 |3.82 3.14 3.04|3.79 3.0 3.00 | 0.3 0.3 0.3
C-140 (100) 55 1358.1 1.15 |1.86 1.53 1.52|2.73 2.39 2.38 14 14 14
C-160 (100) 23 1047.0 0.68 |[1.00 0.79 0.79|1.82 1.57 157 | 3.0 3.1 3.1
C-180 (100) 16 506.4 0.60 [0.88 0.65 0.65|1.48 129 1.29 | 53 55 5.5
C-1100 (100) | 14 503.3 0.59 |0.69 0.64 0.64|1.27 1.14 1.14 [ 9.0 94 9.3
R-125 (45) 20 1486.0 0.66 [0.96 0.74 0.72|1.98 1.69 165 | 1.0 1.0 1.0
R-150 (45) 4 1879.5 0.60 |0.60 0.60 0.60|1.30 1.21 1.20 | 4.8 4.7 4.9
R-1100 (45) 0 - - - - - 1063 0.59 0.58 |26.6 252 27.8

Table 3: Comparison of different column generation variants for the total used plate width
objective

One can see from the results in Tables 2 and 3 that the dynamic program is
orders of magnitude faster than MIP for solving the pricing problem. The partial
enumeration increases the running time of column generation only marginally.
Moreover, this technique allows one to obtain a lower bound which is close to
the “proper” lower bound, at least for the easiest instances that can be tackled
by cgmip- Unfortunately, we were not able to determine how close is the lower
bound obtained by cgipa, to the “proper” bound for larger and harder instances,
as the latter bound is very time consuming to obtain. Anyway, application of
the partial enumeration technique significantly increases the quality of lower
bounds obtained by column generation at virtually no cost. Therefore, it offers
a good trade-off between the quality of lower bounds and the column generation
running time.

It can also be seen that column generation is slower for real-life instances.
This is expected as the running time of the dynamic program depends on the
plate size, which is larger for the instances in the second group.

In the next experiment, we estimate the impact of the partial enumeration
on the pseudo-polynomial formulation (12)—(17) described in Section 3.3. By
the result of Martin et al. [19], in the absence of constraints (15), this formu-
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lation has the integrality property. Thus the value of its linear programming
relaxation is equal to the lower bound obtained by column generation with “non-
proper” columns. As we have just seen, the latter may be increased using partial
enumeration. Thus, the strength of the linear programming relaxation of formu-
lation (12)—(17) based on partly enumerated hypergraph may be improved too.
Moreover, variables  may have coefficients greater than one in constraints (15)
if there are hyperarcs which correspond to cutting several copies of one item,
as in the case of cutting a meta-item. Thus, partial enumeration enables the
possibility of adding knapsack cutting planes when solving the formulation by
a MIP solver.

The results for direct solution by the CPLEX MIP solver of formulation
(12)—(17) with different settings of the partial enumeration of hypergraph are
shown in Tables 4 and 5. Here we first report the number #pp of instances solved
by heuristic (ea). Then for each way to build the hypergraph, we report the
number of remaining instances solved in one hour (#opt) with MIP formulation.
In the last part of the table, the average time (t) in seconds required to solve
all instances is reported. If an instance is not solved within the time limit, we
use the time limit value in the calculation of the average time. Reported times
are in seconds.

Fopt t, sec.

Instances (#) | #pp | MIPA, MIPAy MIPAs || MIPA;, MIPAy; MIPA;
C-120 (100) 63 37 37 37 0.6 0.4 0.4
C-140 (100) 37 60 61 61 126.8 88 94.5
C-160 (100) 35 60 62 62 292.9 167.9 173.4
C-I80 (100) 29 60 62 62 516 458.3 465.4
C-1100 (100) 31 56 56 56 752.7 655 654.4
R-125 (45) 37 4 6 5 353 251.6 310.4
R-I50 (45) 34 3 3 2 691.1  661.8  802.1
R-1100 (45) 33 0 0 0 965.7 965.7 965.7

Table 4: Comparison of hypergraph-based MIP formulations for the 2DGCSPL with different
partial enumeration for the total number of used plates objective
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fopt t, sec.

Instances (#) | MIPA; MIPAy MIPAs || MIPA; MIPA; MIPAj
C-120 (100) 91 98 97 436.5 241.5 252.6
C-140 (100) 72 73 74 1243.5 1242.3 1205
C-160 (100) 53 57 56 1865.7  1850.9  1837.8
C-I80 (100) 48 47 47 2054.3  2061.5  2064.3
C-1100 (100) 40 42 41 2289 2227.3 2237.6
R-125 (45) 10 17 12 2963.6  2592.5  2867.5
R-150 (45) 0 0 1 3600 3600 3590.8
R-1100 (45) 0 0 0 3600 3600 3600

Table 5: Comparison of hypergraph-based MIP formulations for the 2DGCSPL with different
partial enumeration for the total used plate width objective

According to the results, partial enumeration indeed increases the efficiency
of the formulation, as more instances are solved within the time limit and the
average solution time is decreased. However, the improvement is not radical.
One can also notice that the instances with the total used plate width objective
as well as real-life instances are significantly harder to solve.

6.3. Comparison of heuristics

In this experiments, we compare five heuristics for the 2DGCSPL:
(i) evolutionary algorithm (ea);

(ii) algorithm (iub), which combines evolutionary algorithm with list heuris-
tics;

(ili) a diving heuristic denoted (divg) without partial enumeration in the pric-
ing problem and with simple evaluation of the residual problem in the
diving (parameter last PlateOnly = true);

(iv) a diving heuristic denoted (div) with partial enumeration As in the pricing
problem and with simple evaluation of the residual problem in the diving
(parameter last PlateOnly = true);

(v) a combination of the diving heuristic and the evolutionary algorithm with
complete evaluation of the residual problem in the diving (parameter
lastPlateOnly = false), which we denote as (ediv).

The first two heuristics are presented in Section 4.3. The other three heuristics
are described in Section 5. We also consider variants with Limited Discrepancy
Search for the last two heuristics and denote them as (divsz) and (edivsz). In
these variants, the backtrack is allowed up to the depth of 2 of the search tree
and the maximum size of the tabu list is 3. This LDS parametrisation results
in at most 10 dives in the search tree. Note that diving heuristics are always
initialized with the solution produced by heuristic (ea).
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In Tables 6 and 7, we report the average gap in percentage from the best
known solution and the average time in seconds for the five heuristics and two

more variants.

ea iub divg div divso ediv edivso
Instances gap t|gap t |gap t |gap t |gap t |gap t | gap t
C-120 (100) |1.13 1/0.20 1 (079 1 |0.76 1]0.00 1 |0.76 1 |[0.00 1
C-140 (100) 263 1|1.24 3 (223 1 (212 1 |1.53 1(212 1 |1.53 1
C-160 (100) |347 1|1.77 7 |2.72 2 |28 2 |1.88 2 /286 2|18 2
C-180 (100) |4.09 3|1.62 21|220 3 |2.38 3 |1.27 5 |238 3|127 5
C-1100 (100) | 3.87 4|1.32 38|1.76 6 (230 5 |1.02 8 |230 5 |1.02 8
average 3.04 2|1.23 14(194 3 |2.08 3 |1.14 4 |2.08 3 |1.14 4
R-125 (45) 11 14111 1 1.11 1 (111 1 111 1 (111 1111 1
R-150 (45) 0.56 2056 3 |056 2 (056 2 [056 3056 2 (056 3
R-1100 (45) |0.00 8|0.00 19|0.00 12|0.00 12|0.00 18|0.00 12|0.00 18
average 0.56 4/0.56 8 |0.56 5 [0.56 5 |[056 8 |0.56 5 |0.56 8

Table 6: Comparison of heuristics for the 2DGCSPL for the total number of used plates

objective
ea iub divg div divss ediv edivss

Instances gap t|gap t |gap t |gap t |gap t |gap T | gap t
C-120 (100) 347 1211 1 {209 1 (226 1 |1.73 1 [1.87 1 |1.64 1
C-140 (100) |3.64 1179 4 |159 2 142 2|055 4 |08 3 |0.37 8
C-160 (100) |3.68 1/1.80 13 |1.13 3 |1.09 4039 9 |055 8 |0.21 27
C-180 (100) |4.14 2|1.94 321|099 6 [0.78 6 |0.19 17 |0.36 19 |0.07 79
C-1100 (100) | 4.47 4|1.84 65 |0.75 10[0.56 10|0.15 28 [0.32 36 |0.02 170
average 388 21190 23 (131 5 |1.22 5 |0.60 12 |0.79 14 [0.46 57
R-125 (45) 266 1|256 2 |1.73 2140 21]091 5 |1.17 2 |0.76 7
R-150 (45) 193 2183 16 |[1.02 8 |0.54 10(0.17 53 [0.33 19 |0.01 112
R-1100 (45) |1.51 8|1.37 175|0.61 48|0.30 55|0.08 369 |0.18 155|0.00 1224
average 2.03 41192 65 |1.12 20|0.75 23|0.38 143]0.56 59 |0.26 448

Table 7: Comparison of heuristics for the 2DGCSPL for the total used plate width objective

As observed from Table 6, diving heuristics with LDS led to the best results
for the total number of used plates objective: they produced solutions with the
best average quality within a few seconds. For group of instances R, a good
quality solution is almost always obtained by fast heuristic (ea).

Nevertheless, instances with the total used plate width objective are more
interesting for us, as they represent batches in the real problem to solve. From
Table 7 one can see that diving algorithms clearly outperform the first two
heuristics. Heuristic (ea) is the fastest but also produces solutions of the worst
quality. Heuristic (iub) improves the solution quality at the expense of much
larger running time. However, it struggles with real-life instances, as the solu-
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tion improvement over (ea) for this instances is very small. Diving algorithms
(divg) and (div) significantly outperform heuristic (¢ub) both in terms of run-
ning time and solution quality. The partial enumeration technique increases
the effectiveness of the diving heuristic for most instances at a very small cost.
This technique is especially useful for large instances with the total used plate
width objective. The combination (ediv) of the diving heuristic and the evo-
lutionary algorithm further improves the quality of the obtained solutions at a
cost of a reasonable increase of running time. The best solutions on average
are obtained by diving heuristics with Limited Discrepancy Search. However,
the running time of these heuristics is quite long especially for large real-life
instances. Thus, to our opinion, the heuristics (div) and (ediv) offer the best
tradeoff between solution quality and running time.

In the industrial context, the 2DGCSPL is solved iteratively for different
batches of the global problem. To validate our methodology, we consider now
real-world instances with batches and plate dimension H x W = (3000 x 6000).
Each instance is composed of 10 or 15 batches, each batch b is composed of
|Z,| € {100,150} items. As previously, average demand of items is between
2 and 3. For each class, we retrieved 25 instances. The class named Lmlin
contains instances with m batches, each of which having n items. All these
instances are are available on the ESICUP web-site: https://paginas.fe.up.
pt/~esicup/datasets.

In Table 8, we report the results obtained by the same heuristics tested
before. Here we do not report results only for heuristic (divg) as it was shown
to be dominated by (div). We also do not report results obtained by divss
and edivsy since required computation time is very long and obtained solutions
are only slightly better than the solutions obtained after only one dive. For
each heuristic, we show the solution value obtained which equals to the average
number of plates needed to cut items from all batches, as well as the average
solution time in minutes. We also give the average lower bound (Ib) on the
optimal value. For each instance, this value is obtained by iteratively computing
the rounded-up column generation lower bound for each batch and determining
the length of the leftover plate for the next bin based on this bound. To measure
the impact of using leftover plates, in column “w/o lo” we give the average of
the best solution values obtained by our algorithms for the problem variant in
which the batch leftovers cannot be reused in the next batch.

Solution value t, min.

Instances||w/olo Ib ea  iub ‘ div  ediv || ea iub‘div ediv
L10I100 || 130.7 123.3|/126.5 126.4|124.4 124.4| 1 32 |24 48
L10I150 || 199.6 191.5|/195.5 195.3|192.8 192.5| 4 144| 83 194
L15I100 || 203.2 191.7|/196.4 196.2|193.5 193.2|| 2 50 | 36 72
L15I150 || 289.6 277.3|/283.3 282.9|279.2 279.0|| 6 208|126 291

Table 8: Comparison of heuristics on the real-world instances with batches
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As observed in Table 8, keeping a leftover plate for the next batch allows
one to save up to 10.6 plates or 3.7% of plates on average. Again, heuristic
(ea) is the fastest. The more expensive heuristic (ub) improves on (ea) only
marginally. Much better results are obtained by diving heuristics. The standard
diving heuristic (div) saves up to 4.1 plates or 1.4% of plates on average. The
extended diving heuristic (ediv) saves up to 4.3 plates or 1.5% of plates on
average. Moreover the gap with the lower bound is at most 1.9 plates or 0.7%
of plates on average using (div). For the (ediv) this drops to 1.7 plates or 0.6% on
average. In our opinion heuristic (div) offers the best solution quality — running
time trade-off. Even if its running time reaches 2 hours for the largest instances,
its application in practice is still realistic. These instances correspond to a one
day planning horizon. Therefore, spending two hours to obtain a solution seems
to be reasonable.

7. Conclusions

In this work we studied the two-dimensional guillotine cutting-stock problem
with leftovers (2DGCSPL) which is solved consecutively when the set of items is
partitioned in batches. Given the difficulty and large size of real-life instances,
we considered the special case with restricted cuts.

To solve the 2DGCSPL, we have proposed column generation based diving
heuristics. An originality of our work is that these heuristics work with non-
proper cutting patterns. This variant simplifies the pricing problem but makes it
more difficult to obtain feasible solutions for the 2DGCSPL. We proposed several
ways to overcome this difficulty, including combination with an evolutionary
algorithm and a partial enumeration technique. The latter reduces the number
of generated non-proper cutting patterns, tightens the column generation lower
bounds and improves the quality of solutions obtained by the diving heuristics.

The computational experiments on the literature and real-life instances re-
vealed that the proposed diving heuristics outperformed significantly the con-
structive and evolutionary heuristics. The largest improvements are achieved
on large instances, as well as on real-life instances and for the instances with the
total width objective. The experiments on real-life production plant instances
with batches showed that our heuristics run in a reasonable time and allow the
decision maker to save up to 1.5% of raw material on average.

Our diving heuristic with non-proper columns is generic and could be applied
to other two-dimensional cutting-stock problems. It would be interesting to
see how the heuristic running time evolves when considering instances with a
different number of stages or with non-restricted cuts. Generalisation to the
case with plate defects is especially useful for practical purposes.

We also hope that the publication of real-life instances will inspire more
research on this family of problems and will allow the researchers to perform a
fair computational comparison between future algorithmic approaches.
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