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ABSTRACT: The problematic of size effect for quasi-brittle materials and more particularly for concrete has
been widely studied during the last decades. Several approaches have been proposed to describe and explain
why the strength decreases as the size increases. Indeed, the capacity of a model to describe the size effect
matters greatly when dealing with the modelling of structures.
A study of size effect is proposed in this article by considering several notched concrete beams submitted to a
three points bending test. To describe the nonlinear behavior of concrete, two different nonlocal regularization
methods (the original method and a method proposed recently by one of the authors) are compared to analytical
model and to experimental results available in the literature in order to assess their capacity to describe size
effect at the global scale as well as at the local scale. More particularly, a quantification of the crack field
is obtained by using a discrete elements reanalysis method proposed recently by two of the authors. This last
analysis brings an additional element to discriminate or not model capacity to describe size effect of quasi-brittle
materials.

1 INTRODUCTION

Fracture behavior of quasi-brittle materials as con-
crete are commonly specimen-size and crack-size de-
pendent. This is due to the fact that a fracture pro-
cess zone with a non-negligible size in comparison
with the structure dimensions develop in the media.
Several theoretical approaches have been developed
to describe the size effect observed in the transitional
fracture behavior from small size specimen (i.e. in the
order of the FPZ size) up to linear very large specimen
(i.e. size of the FPZ negligible): asymptotic size ef-
fect law (from yield strength theory (YST) to linear
elastic fracture mechanics (LEFM)) (Bažant 1984),
multi-fractal scaling law (MFSL) (Carpinteri and Chi-
aia 1995) or local fracture energy concept considering
the influence of boundary on the development of the
FPZ (Hu and Wittmann 1992).

The quasi-brittle materials studied here show the
presence of microcracks in their media. Under load-
ing, these microcracks interact with each other, lead-
ing to nonlocal interactions. During the cracking,
strain localization appears with a size and an orienta-
tion of the localized band as well as its evolution that

can be directly linked to the nonlocal interactions due
to microcracks. In continuous media, the microcracks
are not explicitly represented. As a consequence, ad-
ditional generalized constitutive equations need to be
introduced in the models to take into account the non-
local character of the propagation and coalescence of
microdefects. These models replace the local internal
variable by its nonlocal counterpart. For the gradient
regularization method (Peerlings et al. 1996), the non-
local internal variable fulfills a differential equation
whereas for the nonlocal integral model (Pijaudier-
Cabot and Bažant 1987), the nonlocal internal vari-
able is a weighted spatial average. In addition to
restoring the objectivity of the numerical modeling
for strain softening behavior, these models aim at de-
scribing the behavior of quasi-brittle materials and in-
troduce also an internal length allowing to describe
size effect. Indeed, by introducing an internal length
in the modeling, the size of the FPZ is explicitly de-
fined.

(Simone et al. 2004) and (Jirásek et al. 2004) for the
description of size effect, have pointed out the prob-
lematic of the description of the nonlocal interactions
in the vicinity of a notch tip. To address the descrip-



tion of size effect for notched beams under three-point
bending loading, this problem is of main concern as
the FPZ develop in this area at peak load. Several
attempts have been made recently to modify the de-
scription of the nonlocal interactions close to bound-
ary (Krayani et al. 2009) and by integrating the influ-
ence of the stress state (Giry et al. 2011). This last one
allows for an improved description of both the degra-
dation in the vicinity of boundaries and the evolution
of cracking at failure. This modified nonlocal integral
model is used in this study and compared to the orig-
inal version.

In order to get local information such as cracking,
a global-local approach has been proposed (Oliver-
Leblond et al. 2013). At the global scale, a non-local
damage model describes the complete behaviour of
the concrete structure and a reanalysis of the damaged
areas observed during the loading is performed at the
local scale thanks to a discrete element model. The
microcrack area as well as the macrocrack propaga-
tion – with the crack opening level along it can be
obtained. This information is an important aspect as
it is a necessary data to perform durability analysis of
concrete structures.

In the first section, the model considered to de-
scribe the nonlinear behavior of concrete is presented.
In particular, the main equations of two nonlocal reg-
ularization methods are exposed. Then, in order to
get local information to analyse the FPZ, an original
method of reanalysis of the continuous calculation is
exposed. The damage area obtained from the calcu-
lation is reanalyzed with a discrete elements model
giving an explicit description of the micro-cracks and
macro-crack. In the third part, the main aspects of the
Bažant size effect law are recalled and the procedure
to get an estimation of the FPZ size. In the last part,
the models presented with both regularization meth-
ods are analyzed in the framework of size effect anal-
ysis. Notched concrete beams of different sizes sub-
mitted to a three points bending test are considered.
Classical results as the global behavior (i.e. size ef-
fect on the nominal strength) are given and a more
original study is performed by analyzing the descrip-
tion of the FPZ in comparison with experimental re-
sults from (Alam et al. 2013). A comparison between
both non-local models is performed in order to assess
the capacity of the model to describe size effect at the
global and local scale.

2 DESCRIPTION OF DEGRADATION IN
CONCRETE

2.1 Constitutive equations

A continuum framework is considered to describe the
nonlinear behavior of concrete. The main constitutive
equations are formulated within the framework of the
thermodynamics for irreversible process in order to
fulfill conservation and evolution principles. A model

based on isotropic damage mechanics, accounting for
elasticity, damage, sliding between cracked surfaces
and hardenings, is used for this study ((Richard et al.
2010)). Eq.1 gives the expression of the state poten-
tial:

ρψ =
1

2
{κ
3
((1− d)〈εkk〉2+ − 〈−εkk〉2+) +

2(1− d)µεDijεDij + 2dµ(εDij − επij)(εDij − επij) +

γαijαij}+H(z), (1)

where ρ is the material density, κ and µ are the bulk
and shear coefficients, respectively. εij is the second
order total strain tensor, εDij is the second order devi-
atoric total strain tensor and d is the scalar damage
variable evolving from 0 (virgin material) to 1 (failed
material). 〈Aij〉+ accounts for the positive part of the
tensorAij . επij is the second order sliding tensor, γ is a
material parameter, αij is the second order tensor as-
sociated to the kinematic hardening, z is the internal
variable related to the isotropic hardening and H the
consolidation function.

This potential state leads to the relation between the
Cauchy stress tensor σij and the total strain tensor εij
(Eq.2).

σij =
∂ρψ

∂ε
=
κ

3
((1− d)〈εkk〉+ − 〈−εkk〉+)δij +

2(1− d)µεDij + 2dµ(εDij − επij), (2)

2.2 Nonlocal regularization method

A regularization method needs to be associated to
the model presented in the previous section in order
to keep the objectivity of the results in a numerical
framework. In this work, two nonlocal regularization
methods are considered and compared. The first one is
the original nonlocal method (ONL) on internal vari-
ables proposed by (Pijaudier-Cabot and Bažant 1987)
and the second one is a stress based nonlocal method
(SBNL) proposed recently by one of the authors (Giry
et al. 2011).

For the damage model considered, the regulariza-
tion method replace the local damage energy released
rate Y (the variable driving the damage d) by its non-
local counterpart Y NL according to Eq.3.

Y
NL

(x) =
∫

Ω(x) φ(x− s)Y ds∫
Ω(x) φ(x− s)ds

, (3)

φ(x− s) is a weight function chosen as the Gaussian
function (Eq.4).

φ(x− s) = exp

(
−4‖x− s‖2

l2c

)
, (4)

where lc is the internal length of the model.



In order to take into account a modification of the
nonlocal interactions close to free boundaries and an
evolution of these interactions during the progressive
degradation of the material, the stress based nonlo-
cal method introduced a coefficient of influence ρ ex-
pressed as a function of the stress state at the location
of the redistributing point. The internal length is writ-
ten (Eq.5):

lc(x, σ(s)) = ρ(x, σ(s)).lc0 , (5)

3 CRACKING ANALYSIS OF A CONTINUOUS
MEDIA

In this section the global/local method used in a re-
analysis of the continuous calculation is described.
This approach allows to give local information rela-
tive to cracking (e.g. location, opening...) by reana-
lyzing the damaged areas of the structure studied in
a continuous framework (Oliver-Leblond et al. 2013).
Fig.1 gives the process of analysis of the method. At
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Figure 1: Global/Local sequential analysis.

the global scale, the nonlinear behavior of the struc-
ture is described thanks to the model presented in Sec-
tion 2. The obtained damage pattern is studied and
several Regions of Interest (ROIs) are defined corre-
sponding to distinct areas of damage. Then, the load-
ing steps for the extraction of crack features are de-
termined and will correspond to the steps of reanaly-
sis. For those loading steps, boundary conditions are
extracted from the continuous displacement field and
applied on the non-free surfaces of the ROIs namely
the ones which cut the whole domain. The natural way
to transfer the displacement field from the global scale
to the local scale is to use the shape functions of the
finite elements used for the global computation. Then,
the displacement uL(xL) applied at a local node xL of
a non-free surface of a ROI is directly obtained with
Eq.6.

uL(xL) =
NFE∑
j=1

NjuL(xL)uj, (6)

where Nj are the shape functions of the finite element
model, uj is the displacement vector computed at the
global scale and NFE is the number of finite element
nodes. The cracking pattern obtained at the previous
step will be retrieved at the current step of the local
reanalysis in order to follow the crack propagation ac-
curately. The discrete computation of the chosen ROIs
can be parallelised.

3.1 Local model

The discrete model used at the local scale has been
proposed by (Delaplace 2005) and offers a reliable
description of concrete behaviour for tensile load-
ings. The material is described as an assembly of
polyhedral particles linked by Euler-Bernoulli beams.
The quasi-brittle behaviour of the material is obtained
through a brittle behaviour for the beams. The break-
ing threshold Pab of a− b, the beam linking the parti-
cles a and b, not only depends on the beam extension
εab but also on the rotations of the two particles θa and
θb (Eq.7).

Pab =

(
εab
εcr
,
|θb − θa|
θcr

)
> 1, (7)

The six parameters of the beam a− b need to be cal-
ibrated. First, the length and the area are imposed by
the geometry. Then, the inertia and the elastic mod-
ulus are identified in order to retrieve the elastic be-
haviour of the global computation. Finally, the cal-
ibration of the breaking thresholds of the beam εcr

and θcr allows us to fit the peak and post-peak be-
haviour of the global model. The calibration is per-
formed on an independent case study (Oliver-Leblond
et al. 2013). Our study focuses on a fine description
of crack pattern and on the measurement of the crack
opening. The crack pattern is defined as the common
side of the particles initially linked by the breaking
beams. The opening of the crack is computed by con-
sidering the relative displacement ub − ua of the un-
linked particles a and b. The measure of the opening
between those particles eab is projected on the normal
nab of the local discontinuity (Eq.8).

eab = 〈(ub − ua).nab〉+, (8)

3.2 Quantification of cracks properties

In order to get information on cracking from the dis-
crete element reanalysis, additional tools have been
considered. The micro cracked domain obtained from
the discrete element reanalysis is described in graph
theory (Fig.2).

a) b)

Figure 2: Discrete elements description of the media with micro
cracks a) Representation of microcracks in graph theory b).

Using the Bellman-Ford algorithm in this frame-
work, an identification of the macro-crack in the do-
main reanalyzed is obtained. In order to choose the



right crack path at a crossroad, the crack opening as-
sociated to each discrete element is used as a weight.

4 SIZE EFFECT ANALYSIS

4.1 Size effect law

Quasi-brittle materials such as concrete shows a de-
pendency of their nominal strength on structure size.
A typical test to analyse size effect is a 3-points
bending test on notched beams of different sizes. In
this configuration, a large notch is developed before
reaching the maximum load and the size effect on the
nominal strength is mainly energetic with a small in-
fluence of the material heterogeneity (Bažant and Xi
1991). The evolution of the nominal strength σN in
function of a characteristically size of the beamD can
be approximately be described by the size effect law
in Eq.9 (Bažant 1984).

σN = Bf ′
t

1√
1 + D

D0

, (9)

with D0 and Bf ′
t expressed as (Eq.10):

D0 = cf
g′(α0)

g(α0)
Bf ′

t =

√
EGf

cfg′(α0)
, (10)

with α0(= a0/D) the ratio between the notch size and
the height of the beam, cf the effective length of frac-
ture process zone for an infinite media, Gf the frac-
ture energy and g is a dimensionless energy release
function of equivalent LEFM characterizing the spec-
imen geometry (12).

4.2 Fracture process zone length

(Bažant and Kazemi 1990) propose from the size
effect law presented in the previous subsection a
method to estimate the fracture process zone length
c. This value corresponds to the length of the area at
the crack tip in which microcracking or void forma-
tion takes place. It can be estimated by solving Eq.11.

c = cf
D

D+D0

g′(α0)

g(α0)

g(α)

g′(α)
, (11)

where cf is the value identified in Eq.10 correspond-
ing to lim

D→∞
c = cf . α is the ratio between a (=a0 + c)

and D the characteristical size of the structure. The
function g considered in this study is an approxima-
tion derived by (Pastor et al. 1995) (Eq.12).

g(α) = k S
D
(α)2

k S
D
(α) =

√
α

p S
D
(α)

(1 + 2α)(1− α)

p S
D
(α) = p∞(α) +

4D

S
[p4(α)− p∞(α)], (12)

Figure 3: Geometry of the notched beams (from Alam et
al.,2013).

with
p4(α) = 1.9 − α[−0.089 + 0.603(1 − α) −

0.441(1− α)2 + 1.223(1− α)3]
and
p∞(α) = 1.989−α(1−α)[0.448− 0.458(1−α)+

1.226(1− α)2]

5 THREE-POINT BENDING TEST

5.1 Presentation of the experiments and model
parameters identification

The experimental campaign on three-point bending
test performed by (Alam et al. 2013) are used in the
present work in order to assess the capacity of the
models presented to capture cracking process in the
framework of size effect. Three sizes for the notched
beams have been considered with a constant depth b
(=10cm) and the following characteristical dimension
d per size (Fig.3): D1 = 10 cm, D2 = 20 cm and D3 =
40 cm.

A Levenberg-Marquardt optimization algorithm
has been applied to get a set of parameters for both
nonlocal method (Le Bellégo et al. 2003) by minimiz-
ing the functional =(p) defined in Eq.13.

=(p) =

√√√√ n∑
i=1

(
Ci
num(p)−Ci

exp(p)
Ci
exp(p)

)2

, (13)

with n the number of measurements during the load-
ing, p the vector of the parameters to optimize,
Ci
num(p) the ith point of the global behavior from the

numerical calculation and Ci
exp(p) the ith point of the

global behavior from the experiment.
The model parameters identified are summarized in

Tab.1.
In order to identify the model parameters associ-

ated to the discrete element reanalysis, another me-
chanical test has been performed with a continuous
modeling using both nonlocal methods and with the
discrete elements. By minimizing the error between
the discrete elements analysis and the finite element
analysis, the parameters given in Tab.2 have been ob-
tained. A Weibull distribution is considered for the el-
ements. k corresponds to the shape parameter, λ to the
scale factor and ε to the cutoff frequency (Tab. 2).



Table 1: Model parameters obtained from the identification
method performed on the medium beam.

Original nonlocal Stress based nonlocal

Parameters
E 32 GPa 32 GPa
ν 0.21 - 0.21 -
ft 3.5 MPa 3.5 MPa
ADir 3.7× 10−3 J−1m3 3.0× 10−3 J−1m3

AInd 3.5 × 10−4 J−1m3 3.5× 10−4 J−1m3

γ 5.0 × 106 Pa 5.3× 106 Pa
a 7.0× 107 Pa−1 7.0× 107 Pa−1

lc γ 12 mm 12.5 mm

Table 2: Model parameters for the discrete element reanalysis.
Original nonlocal Stress based nonlocal

Parameters
lp 2 mm 2 mm
E 40.5 GPa 40.5 GPa
α 0.83 - 0.83 -
λεcr 2.9× 10−4 - 3.2× 10−4 -
λθcr 4 × 10−3 - 4× 10−3 -
k 0.75 - 0.88 -
εcrmin 1.5× 10−5 - 1.2 × 10−5 -

5.2 Global analysis of size effect

The results obtained for the experimental average
evolution of the force applied versus the crack mouth
opening displacement (CMOD) at the notch (average
over 3 tests per size) (Alam et al. 2013) and for the
numerical test with both nonlocal methods are given
in Fig.4 .

From the average nominal strength of each size one
can identify the parameter of the size effect law (Eq.9)
: B.f ′

t = 3.03 MPa and D0 = 420.5 mm. Fig.5 gives
the results obtained for the nominal strength for the
experimental, the numerical results and the size effect
law.

One can see from Fig.5 that both numerical mod-
els give a good description of the global behavior.
By identifying the parameters on one size (beam D2),
both models are capable of reproducing size effect on
nominal strength for the two other beam sizes.

CMOD (μm)

Exp.

ONL

SBNL

F
o

rc
e 

(k
N

)

Figure 4: Evolution of the force versus the CMOD for the three
size (D1, D2 and D3).

Bažant law [1984]

Exp. Alam et al. [2013]
Original NL

Stress-based NL

Figure 5: Logarithmic diagram of the size effect law for the three
beam sizes.

a) b)

Figure 6: Damage field at the peak load for the original nonlocal
method a) and the stress based nonlocal method b).

5.3 Crack analysis at peak load

Fig.6 gives the damage field observed at peak load for
both nonlocal methods.

The difference observed for the damaged area at
peak load between both nonlocal models can be ana-
lyzed with Fig. 7 and 8. One can see on these figures
the nonlocal quantities redistributed in a notched plate
under tension. The redistributed quantities for a point
at notch tip, a point back to the tip and a point in front
of the tip are given.

Figure 7: Nonlocal quantities redistributed in the tip area (Orig-
inal nonlocal model).



Figure 8: Nonlocal quantities redistributed in the tip area (Stress
based nonlocal model).

One can see on Fig. 7 and 8 that by considering
an isotropic influence for the original nonlocal model
(i.e. the internal length of the model is a scalar) an
overestimation of the redistributed quantities is ob-
tained. As a consequence, points located back to the
notch tip have nonlocal quantities that overpass the
threshold for damage initiation. In contrary, by intro-
ducing a influence factor for the nonlocal redistribu-
tion, points back to the notch tip are no more influ-
enced by the points at notch tip.

Tab.3 gives a comparison for the fracture process
zone length at the peak obtained from LEFM (size
effect law) and for numerical simulations with both
nonlocal models for the three beam sizes.

Table 3: Fracture process zone length c.
Beam Size effect law ONL SBNL
D1 (mm) 15.1 23 22
D2 (mm) 26.1 47 32
D3 (mm) 33.9 78 42

One can get an estimation of the fracture process
zone length c from the displacement jump along the
height of the beam obtained at the peak load and
measured with Digital Image Correlation (Alam et al.
2013). An approximate value of 30 mm is obtained
for c for the beam D2.

≈
 3

0
 m

m

Figure 9: Displacement jump along the height of the beam at
different loading stages.

For the beam D2, by solving Eq. 11, a value of 26
mm is obtained for c. Considering the errors inherent
to the procedure used to estimate c from the experi-
mental results (precision of the measure, contribution
of the elastic field...), a good correlation is observed
between the experiment and the analytical estimation
of c.

A comparison between the crack field obtained
from the discrete reanalysis of the continuous calcu-
lation is performed. One can see on Fig. 10 the crack
field obtained from the discrete element reanalysis
and for both nonlocal regularization method. By ap-

a) b)

Figure 10: Crack field at the peak load for the original nonlocal
method a) and the stress based nonlocal method b).

plying the method to quantify the crack properties ex-
posed in 3.2, one can get an estimation of c from the
discrete reanalysis. A value of 47 mm is obtained for
the original nonlocal method and a value of 32 mm
is obtained for the stress based nonlocal method. The
overestimation of the damaged area observed for the
original nonlocal method leads to an overestimation
of c compared to the value obtained analytically and
experimentally.

5.4 Crack analysis at failure

During the softening behavior of the beam, one can
observe the propagation of the fracture process zone.
Fig.11 gives the damage field at 50% of the peak
load for both nonlocal methods. The damage field ob-
served for the original nonlocal model tends to be
more spread than the one with stress based nonlocal
model. Furthermore, the damage field with the orig-
inal model tends to go back to the notch tip. This
difference is due to the introduction of a stress state
factor to describe the nonlocal interactions between
points in the media. When a macrocrack goes through
the media, the principal stress values tend to 0 leading
to decreasing of the nonlocal quantities redistributed
in its close neighborhood for the stress based nonlocal
method. As a consequence, there is no damage diffu-
sion at failure for this last method compared to the
original one.

Fig.11 gives the crack field at 50% of the peak load
for both nonlocal methods.

One can see on Fig.12 that the crack field tends to
be similar for both nonlocal models. These observa-
tions can see some similarities with the ones made by



a) b)

Figure 11: Damage field at 50% of the peak load for the original
nonlocal method a) and the stress based nonlocal method b).

a) b)

Figure 12: Crack field at 50% of the peak load for the original
nonlocal method a) and the stress based nonlocal method b).

(Jirásek et al. 2004). Indeed, they observed that the
better way to describe size effect on fracture energy
for notched beams in an original nonlocal continuous
framework was to replace the explicit description of
the notch by a fully damage area. It confirms the fact
that the original nonlocal model failed to catch lo-
cal phenomena as the description of the fracture pro-
cess zone close to a notch tip for size effect analy-
sis whereas they are only small differences during the
propagation of a fracture process zone in a continu-
ous media (e.g. evolution of the damage area in front
of a fully damage band representing a notch). For the
presentation associated to this article, some local re-
sults as the crack opening along the crack will be also
provide and compared to the experimental ones.

6 CONCLUSIONS

An analysis of size effect for quasi-brittle materials
has been presented in this paper. Numerical simu-

lations of three-point bending tests have been per-
formed using a damage model with two different
nonlocal regularization methods. It has been shown
that both methods achieved to catch size effect at
the global scale (i.e. size effect on nominal strength)
in comparison with experimental results and values
given by a theoretical approach of size effect (Bažant
size effect law). In this framework, a cracking analysis
has also been performed by considering a reanalysis
of the continuous calculation with a discrete elements
modeling. It has been observed that when local quan-
tities as cracking are considered, the original nonlo-
cal method tends to overestimate the size of the frac-
ture process zone at the peak load. Indeed, the original
nonlocal model considers isotropic nonlocal interac-
tions close to the notch tip leading to a bad descrip-
tion of the development of damage in this area. By
introducing a stress state factor, a better estimation of
the fracture process zone length is obtained in com-
parison with experimental results with DIC and with
the results from the theoretical approach. This error
tends to decrease during the softening behavior of the
structure with the propagation regime of the fracture
process zone. The kinematic conditions at the bound-
aries of the area reanalyzed by discrete elements ap-
proach seems to be less sensitive to the fracture pro-
cess zone evolution during the progressive failure of
the beam than to the fracture process zone initiation in
the neighborhood of the notch tip even if some dam-
age diffusion can be observed with the original non-
local model.
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