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Abstract—In power electronics applications, high frequency 

models for cables are necessary to understand EMI issues in 

pulsewidth modulation drives. This paper shows the approach 

developed at the French Institute of Technology (IRT) Saint-

Exupery, in order to take account of the frequency dependency of 

unshielded power cables per-unit-length parameters for EMC 

simulations. Fast, predictive models are compared to different 

shapes numerical models. The method was applied to unshielded 

two and three wires cables. Finally, common mode (CM) emissions 

modeling is proposed to predict the CM noise currents, which are 

the most disturbing in any variable-speed drive systems. The 

modeling principle is to consider the complete CM circuit as a 

chain of quadripolar matrices. 

Keywords—Cable; Unshielded cable; Drive; EMI; Conducted

emissions; Common mode; Modeling; High Frequency. 

ACRONYMS LIST

Acronym Parameter

J Current density

f Frequency

r, l, c Per unit length resistance, inductance, capacitance!" Magnetic permeability, !" # $%&'"()*+&,('!- Relative permeability." Vacuum permittivity, /0 # 12(34567& 89*:&;(<.- Relative permittivity= Resistivity of conductor material> Charge per unit [C/m]

r Conductor radius?@" Distance between the wire and the ground planeA@B Distance between conductor n°i and n°jC@B Distance between conductor n°i and image of n°j

I. INTRODUCTION

As it can be seen in literature, in the last decades, the high 
frequency behavior of power cables in Pulse Width Modulation 
(PWM) motor drives has become a high-priority topic in the 
analysis of transient overvoltages and conducted 
electromagnetic interference (EMI) propagation, both common 
and differential mode. According to the actual power electronics 
trends, the development of new Wide Bandgap (WBG) 
semiconductor technologies (transistors and diodes), can 

significantly increase efficiency, performance and power 
density of adjustable speed electrical power drive systems.
These components, made of Gallium Nitride (GaN) or Silicon 
Carbide (SiC) offer faster switching speeds, low losses, and the 
ability to function at high operating temperatures compared to 
their silicon counterparts. Nevertheless, the higher switching 
speeds (dv/dt) in modern PWM motor drives are mainly 
responsible for fast currents and voltages transients that lead to 
serious EMC issues from conducted and radiated EMI. 

Such modeling also fosters a better understanding of 
physical phenomena such the overvoltages in drive systems. 
Overvoltages are the results of propagation and reflection 
phenomena along the harness, up to twice the DC link voltage at 
the motor terminals. In this paper, the Multi Transmissions Line 
theory is reminded, first. Then, analytical and numerical models 
are presented for the case of unshielded two and three wires 
cables. Lastly, some parametric studies are carried out to 
illustrate the need of predictive and high frequency cables 
models in common mode emissions studies. 

II. ELECTRICAL POWER DRIVE SYSTEM DESCRIPTION

The studied system is a variable speed electrical power drive 
system. Fig 1 provides a schematic overview of the studied 
system. It is composed of two Line Impedance Stabilization 
Networks (LISN), a three-phase SiC MOSFET inverter, an 
aeronautical Permanent Magnet Synchronous Motor (PMSM) 
and two non-shielded aeronautical cables: one links up the LISN
and the inverter (two conductors, one meter length) and another 
connects the inverter to the motor (three conductors). The 
electromechanical drive will be situated on a 6 m² copper plane, 
excluding a loaded induction generator used as the load of the 
system placed over insulation foams to insulate them from the 
ground. The complete system is placed in a Faraday cage.
 The cable used in this study is an aeronautical cables from 
Draka manufacturer (DM Series AWG8 EN 2267-008A090P). 
Dimensions and physical parameters are defined in EN 2267-
008 standard. Key figures are provided in Table I.  

Electromagnetic disturbances have to be compliant with the 

EMI standard, here the commercial aircraft standard DO-160G

[1]. Regarding power cables integration, the normative setup 

stipulates that the cable layout has to be 5 cm above the ground 

plane.



Fig. 1. Electromechanical Drive in the normative conditions according to the DO-160 Standard & Aeronautic connectors and cables 

III. MULTICONDUCTOR TRANSMISSION LINE THEORY

Since the early days of telegraph, parallel conductors were 

used to guide electrical signals from one point to another. 

Therefore, the Transmission Line (TL) model has been studied, 

used and analyzed through numerous fields of electrical 

engineering. Prof. C. R. Paul has presented a systematic 

approach and a unitary view of the TL model and to its 

generalization, the Multiconductor Transmission Line (MTL) 

model [2]. Starting from the general properties of the transverse 

electromagnetic (TEM) mode of propagation, he derived the TL 

equations using several approaches integrating integral

equation techniques, matrix algebra and properties of the linear 

and nonlinear systems applied to electromagnetic theory. He

provided the derivation of the MTL equations along with the 

general properties of the per-unit-length parameters in those 

equations. DDE F5EG H9 # IJ& K5EG H9 I L& DDE K5EG H9 (1)

DDE K5EG H9 # IM& F5EG H9 I M& DDE F5EG H9 (2)

The line parameters are obtained depending on the geometry 
of the line configuration. These parameters are extracted per line 
unit length. The series resistance of the line originates from the 
ohmic resistance of the metallic conductor. The series 
inductance and the shunt capacitance result from the effects of 
magnetic and electric fields induced by the voltage and current. 
The shunt conductance is due to the leakage currents occurring 
in the insulators and in the insulating medium. The shunt 
currents are normally very small, wherewith the shunt 
conductance is often neglected. 

With the MTL approach, the per unit length matrices R and 

L are symmetric as shown in (3) and (4). The per unit length 

capacitance matrix C represents the displacement current 

flowing between the conductors in the transverse plane and is 

defined from (5). 

J # NO0 P O< O0 Q O0O0 O0 P OR Q O0S S T SO0 O0 Q O0 P OUV (3)
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The evolution of the linear parameters of the cable as a 

function of the temperature is neglected in this study. Indeed, 

the cable gauge has been sized according with a number of 

aeronautical standards criteria; among which are short circuit 

current constraint and the wire skin temperature limitations. 

Thus, given the current levels of application and the gauge 

chosen, it is justified to assume that the resistivity of the driver 

does not fluctuate too much.  

The aim now is to find formulae for the line parameters, or 

extract them with the use of numerical approaches.  

TABLE I. GEOMETRICAL CABLE SPECIFICATIONS

Wire Insulation

Parameter Unit Value Parameter Unit Value

No of strands - 127 Fluorocarbon

!m

2.5

Strand diameter

mm

0.30 Polyimide 30

Conductor diameter (max) 4.2 Fluorocarbon 2.5

Wire diameter (min) 4.47 PTFE – First tape 100

Wire diameter (max) 4.77 PTFE – Second tape 65

T1 T2 T3

B1 B2 B3

Inverter

Heat sink

PWM Management

AC Cable PMSM 
Mission profile

HVDC Network

cruise

take-off

landing

ground

ganding

+270Vdc

-270Vdc

LISN

M

Power lines Interconnecting Bundles

Ground plan

50 !

50 !

DC Cable

1 m

Mechanical frame

PTFE – 1st tape

PTFE – 2nd tape

Wire

Polyimide



IV. UNSHIELDED TWO-PHASE CABLE MODELS

It is customary to model the operation of two-wire cables by 

a distributed constant circuit [2], [3]. The line is thus considered 

to be homogeneous. The equivalent circuit of a uniformly 

distributed constant-line portion is shown in Fig 2. 

Fig. 2. Classical lumped circuit for a two-phase unshielded cable 

A. Analytical Models 

1) Per-Unit-Length Resistance 
With increasing frequency, as is well known, the electric 

current flows mainly at the skin of the conductor, between the 

outer surface and the skin depth c. The skin effect causes the 

effective resistance of the conductor to increase at higher 

frequencies where the skin depth is smaller. The resistance 

parameter of per-unit-length conductor is defined in (6). 

Odd # ef # e& 18gOR I 5O I c9Rh with, c # 1i8jkl (6)

2) Per-Unit-Length Inductance 
Inner Inductance – For the derivation of the inner inductance 

we first compute the magnetic energy within one length unit of 

the conductor: mdn # joj0p q rdnR stu # joj0p q v wxp8ORyR p8wswo
0 (7)

The inner inductance is equal to Wdn # mdnxR # joj0z8 (8)

Since the skin effect causes a current at high frequencies to flow 

mainly at the surface of a conductor, it can be seen [4] [5] that 

this will reduce the magnetic field inside the wire, modifying 

the inner inductance (9). 

Wdn # j0z8 & 12({O| }jokl with O~ # O&}1 I �pOsd��
R

(9)

Outer Inductance – For determining the part of the inductance 

originating by the field outside the conductor we consider the 

magnetic flux from the conductor surface within a radius x, as 

described in Fig. 3(b): W��� # j08 �� vp�d0 I OO y (10)

Wdd # Wdn P W��� # j08 �12({z& O| }jokl P �� vp�d0 I OO y� (11)

(a) (b)

Fig. 3. Inductances extraction : (a) Inner, (b) Outer. 

Mutual Inductance – .By the method of images, we may replace 

the plane with the cable image located at an equal distance �d0
below the position of the plane The mutual coupling between 

wires can be thus expressed as : 

Wd� � j0p8 �� ��d�sd�� � j0p8 �� v�sd�R P �& �d0R sd�� y (12)

3) Per-Unit-Length Capacitance 
Wire to Wire Capacitance – Consider the two wires carrying 

charge uniformly distributed around each wire periphery as 

shown in Fig 4(a). The electric field assessed in M point is, 

�� # �< P �R # �p8/0/o �1w P 1sd� I w� (13)

Then, the voltage between the wires can similarly be obtained 

by superimposing the voltages due to the two equal but opposite 

charge distributions as defined in (14). 

� # q ��sw���(o
o # �p8/0/o N q sww

���(o
o P q swsd� I w

���(o
o V* (14)

The per-unit-length capacitance is ]d� # �� # 8& �0& �oW� vsd� I OO y (15)

Ground Capacitance – In order to calculate the capacitive 

coupling between the feeders and the ground plane, we consider 

the case of one wire at a height h above and parallel to an 

infinite, perfectly conducting plane. By the method of images, 

this problem can be related to the problem of the previous sub-

section, as shown in Fig 4(b). Ground capacitance is equal to : ]d0 # p& ]���(�do� # p8�0�o����(< v�d0O y �
p8�0�oW� vp�d0O y (16)

Where, ����(<5�d04O9 *� ��*5p�d04O9*because O � �d0. 

(a) (b)

Fig. 4. Capacitance extraction : (a) Wire to wire, (b) Wire to ground plane. 
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a) b) c)

Fig. 5. Current density in a two-phase non-shielded cable models (f = 20 kHz, x< # 1* , xR # 2* ) 

B. Numerical Models 

The second method used to determine the cable parameters 

consists of using an electromagnetic solver tool. This method 

makes it possible to determine inductance, resistance and 

capacitance between the cable conductors. In this study, the 

finite element code “FEMM” software was used [6]. Three 

numerical models have been developed, the first identifies as 

“no strands” shown Fig. 5(a), the second one with a trapezoidal 

shape Fig. 5(b). Finally, the most representative model is shown 

in Fig. 5(c), in which the strands are orderly placed on 

concentric layers. 

C. Model comparison 

Per-unit-length parameters evaluations are provided in Fig. 

6 (one cable 5 cm above ground plane), Fig. 7 (two-phase cable 

5 cm above ground plane) and table II.  

There is a substantial match of the models up to a limit 

frequency of 30 MHz. However, the difference observed 

between the analytical model and the numerical ones, from 100 

kHz to 100 MHz, is due to the fact that the proximity effect is 

not taken into account in the mathematical model. Introducing 

a frequency dependent corrector factor to adjust the analytical 

model could be one way for better results agreement. 

From 30 MHz, a deflection can be noticed on the numerical 

model without strands compared to the other numerical models. 

It is explained by the non-consideration of the skin and 

proximity effects between the strands. This difference may also 

be due to a lack of mesh precision at the edge of the conductor, 

where the skin effect is located. 

TABLE II. CAPACITANCES VALUES

Analytical Numerical

Wire to wire: ]d� [pF/m] 68.46 62.95

Wire to ground: ]d0 [pF/m] 14.2 7.44

Fig. 6. Evolution of the per-unit-length resistance depending on frequency 

Fig. 7. Evolution of the per-unit-length inductance depending on frequency  

V. UNSHIELDED THREE-PHASE CABLE MODELS

The previous case can be extended for a three phase cable. 

Fig. 8 show the classical lumped circuit for the three phase 

unshielded cable. 

Fig. 8. Classical lumped circuit for a three-phase unshielded cable 

A. Analytical Models 

The per unit length parameters analytical expressions 

obtained in the previous section can also be extended to the 

three-phase case. Consequently, the line parameters for a three 

phase cable are listed in (17) to (21). 

Per-unit-length resistance 

Odd # ef # e& 18gOR I 5O I c9Rh (17)

Per-unit-length inductance  

Wdd � j08 �12({z& O| }jokl P �� vp�d0 I OO y� (18)

Wd� � j0p8 �� ��d�sd�� (19)
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Fig. 9. Transposition in a three-wire cable 

Per-unit-length capacitance  A three phase line and the ground 

plane do not constitute a symmetrical system. To catch up the 

dissymmetry effects, a transposition is made in accordance with 

Fig. 9. Mathematical formulation of such transposition results 

in a change of the height of transmission lines formula (20). 

]d� � p8�0�oW� v�|O y where, �~ # i�<0�R0�{0¡ (20)

]d0 # p8�0�o����(< v�|O y �
p8�0�oW� vp�|O y (21)

B. Numerical Models 

AC cable can be viewed as a three conductor transmission 

line guided by transmission line theory. Fig. 10 shows the three 

numerical models previously developed extended to the three 

conductors case. 

C. Model comparison 

Fig. 11 and Fig. 12 show the longitudinal per-unit-length 

parameters varying with the AC current frequency. 

Thanks to these graphs, the impact of the conductors 

modeling form on the evolution of the primary parameters of 

the cable as a function of the frequency is evaluated. Indeed, 

from 1 MHz, there is a noticeable difference between the 

models on the resistive part of the cable. For the inductive part, 

the shape impacts the entire frequency range.  

TABLE III. COMPUTATIONAL TIME COST

Models Unit Two-phase Three-phase

No strands

min

7.52 13.4

Trapezoidal 431.9 1003

Concentric 407.2 954.9

Fig. 11. Evolution of the per-unit-length resistance depending on frequency 

Fig. 12. Evolution of the per-unit-length inductance depending on frequency  

Unfortunately, like any mesh associated with the physical 

description of an object, the more it is dense the longer the 

computation time cost is, as seen in Table III.  

Authors in [7] proposed a cable model compatible with the 

Multiconductor Transmission Lines formalism. The used 

approach is less costly in terms of time consumption and IT 

resources. To avoid the problem of a too dense mesh, while 

retaining an interesting precision with respect to skin and 

proximity effects, they proposed a non-regular mesh with 

concentric layers of conductors of decreasing thickness at the 

periphery of the conductors.  

a) b) c)

Fig. 10. Current density in a three-phase non-shielded cable  (f = 20 kHz, x¢ # 1* , xu # x£ # 2* ) 
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VI. CONDUCTED EMISSIONS MODELING IN FREQUENCY DOMAIN

Conducted emissions modeling of such system requires 

considering parasitic couplings in converters, feeding cables 

and motor windings. A fast method for CM emissions modeling 

is explained in [8]. The idea is to represent the CM equivalent 

circuit as a chain of two-port networks corresponding to each 

component of the system, see Fig. 13. The modeling principle 

is based on the hypothesis that the CM currents are mainly due 

to CM voltage. 

The model is represented by a chain of two-port networks 

associated with impedance matrix Z, which is then transformed 

into transfer matrix T in order to easily compute the equivalent 

matrix of the consecutive two-port networks in cascade. 

Therefore, the relation between the matrices T and Z has to be 

established. 

The coefficients of matrix Z are defined by 

g¤h # ¥¤<< # t<4x<9¦§_0 ¤<R # t<4xR9¦¨_0¤R< # tR4x<9¦§_0 ¤RR # tR4xR9¦¨_0© (22)

The matrix T is defined by 

gªh # «ª<< # ¤<<4¤R< ª<R # 5¤<<¤RR94¤R< I ¤<RªR< # 14¤R< ªRR # ¤RR4¤R< ¬ (23)

Power cables are passive and symmetrical sub-systems,

which means simplifications can be done in Z matrix : ¤RR # ¤<< ¤R< # ¤<R (24)

The coefficients of cables Z matrix (25) are obtained 

accordingly to the circuit simplification, shown in Fig. 14. 

¤<< # �O59p P ® W59p � ¯E P 1°®& ]59 P ±59²& ¯E*
(25)¤<R # 15®& ]59 P ±5³99& ¯E

Sub-systems association is facilitated. Cascading two port 

networks allows fast simulations and cables parametric studies. 

To build different length cable models, we consider the 

equivalent matrix Teq of the series connection of n identical two 

port networks. This matrix is obtained simply by carrying out 

the matrix multiplication as follow: 

ª�´ #µªdn
d_< # ªn (26)

Fig. 13. Common mode quadripolar model  

Fig. 14. T equivalent per-unit-length circuit of transmissions lines equations 

This mathematical approach allows to take account of the 

frequency dependency of each matrix, easily. Results are 

obtained in less than 300 ms and shown in Fig. 15. As expected, 

the association of long cables and the electric motor generate 

resonances which are excited by the inverter fast commutations. 

Such resonances led to higher CM currents levels  

VII. CONCULSION

The use of unshielded cable models in conducted EMI 

simulations was investigated in this paper. As we previously 

mentioned, the models can be used to perform other 

simulations, making it possible to reduce output overvoltages at 

the motor terminals. Moreover, the developed predictive 

models can be easily integrated in conducted emissions 

simulations. The proposed approach lead to perform fast CM 

currents evaluations. For future means of transportation, it is 

necessary to optimize electromechanical chain by taking into 

account multi-constraints ageing and conducted disturbances 

up to 100 MHz. New design guidelines will be provided in 

future works with the objective of optimizing the mass and 

losses of EMI filters at operating system level. 

Fig. 15. CM currents at inverters output (Fsw = 15 kHz, Iout = 20A) 
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